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MICRO-MACRO MODELLING OF AN ARRAY OF SPHERES

INTERACTING THROUGH LUBRICATION FORCES

A. LEFEBVRE, B. MAURY

Abstract. We consider here a discrete system of spheres interacting through a lubrica-
tion force. This force is dissipative, and singular near contact: it behaves like the recip-
rocal of interparticle distance. We propose a macroscopic constitutive equation which is
built as the natural continuous counterpart of this microscopic lubrication model. This
model, which is of the newtonian type, relies on an elongational viscosity, which is pro-
portional to the reciprocal of the local fluid fraction. We then establish the convergence
in a weak sense of solutions to the discrete problem towards the solution to the partial
differential equation which we identified as the macroscopic constitutive equation.

Résumé. Nous considérons ici un système discret de sphères en interaction à travers
une force de lubrification. Cette force est dissipative et singulière près du contact :
elle se comporte comme l’inverse de la distance interparticulaire. Nous proposons une
équation constitutive macroscopique qui est construite comme le pendant continu de ce
modèle discret de lubrification. Ce modèle, de type Newtonien, repose sur une viscosité
élongationnelle proportionelle à l’inverse de la fraction locale de fluide. Nous établissons
ensuite la convergence dans un sens faible des solutions du problème discret vers les
solutions de l’équation aux dérivées partielles que nous avons identifiée comme l’équation
macroscopique constitutive.

Key words and phrases. Lubrication, fluid-solid interaction, homogeneization, macroscopic model.
Laboratoire de Mathématiques, Université Paris-Sud, 91405 Orsay Cedex, France.
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2 A. LEFEBVRE, B. MAURY

1. Introduction

Description of the macroscopic behaviour of diluted suspensions of rigid particles in a
Newtonian fluid has given rise to a large amount of papers over the last century. The first
models (see [6], [8, §22] where Eintein’s approach is detailed, or [5]) were based on the
asumption that particles do not interact, which restricts their domain of validity to highly
diluted suspension. This approach was extended to semi-diluted suspension ([1]), which
leads to second order asymptotic expansions of the apparent viscosity with respect to the
solid fraction.

More recently, some authors have investigated the other end of the dilution scale: the case
of highly packed suspensions of rigid spheres. Direct or semi-direct numerical simulations
have been carried out to investigate the behaviour of highly concentrated fluid-particle
mixtures ([2], [9]).

In [10], a first attempt was proposed to investigate the behaviour of the apparent shear
viscosity of a suspension in the neighbourhood of the maximal packing solid fraction Φmax.
A model is proposed, which gives a shear viscosity which is of the order (1 − Φ/Φmax)

−2

where Φ is the solid fraction. In [4], the authors investigate the asymptotic behaviour, as ε
goes to 0, of a set of particles under the assumption that distances between neighbouring
particles is subject to behave like ε. In this framework, the authors establish that the
apparent shear viscosity behaves like 1/ε3/2. This approach extents a previous work ([7])
where periodic arrays of spheres are considered. In this context, the elongational viscosity
can be shown to behave like 1/d where d is the constant distance between neighbouring
spheres.

The approach we propose here is based on a simpler model from the geometric standpoint,
as the spheres are supposed to be aligned. On the other hand it generalizes these works in
the sense that no assumption is made on the distances: the macroscopic behaviour depends
on the solid fraction only. Contacts between neighbouring particles are even allowed, and
a special attention has been paid to the way we express the continuous model so that
macroscopic clusters can be taken into account (the local viscosity within a cluster is
infinite).

We prove, as expected, that the limit elongational viscosity behaves singularly with re-
spects to the vanishing fluid fraction. This approach leads to an equation of the elliptic
type

−∂x

(

1

1 − ρ
∂xv

)

= ρf,

where v is the velocity field, ρ the solid fraction (which is 1 when all particles are in
contact), and f an external body force.

2. Discrete model

Consider two rigid spheres imbedded in a viscous fluid, subject to move horizontally.
Denoting by q1 and q2 the abscisses of their centers, by u1 and u2 their instantaneous
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q1 q2

d

Figure 1. Lubrication model

velocities and by d the border-to-border distance, the leading term in the asymptotic
expansion of the interaction force is (see [3])

(1) F1→2 = −κ
u2 − u1

d
,

where κ is a constant which depends on the viscosity of the lubricating fluid and the radii
of the spheres. We shall take κ = 1 in what follows. Consider now an array of N + 1
spheres, on the x-axis, with the same radius ε. We set the first and the last sphere at
position 0 and 1, respectively. As a consequence, the number of degrees of freedom is
N − 1, whereas the number of actual spheres is N + 1.

10

q0 q1 qi−1 qi qN−1 qN

d1
di dN−1

εε

Figure 2. Geometry

Definition 2.1. Given a vector of positions q = (qi)1≤i≤N−1, we say that q is ε-feasible
(spheres do not overlap), if

q1 ≥ 2ε , qN−1 ≤ 1 − 2ε , qi − qi−1 − 2ε ≥ 0 ∀i = 1, N,

and strictly ε-feasible if all inequalities are strict (spheres do not touch).

We denote by di = qi − qi−1 − 2ε the distance between spheres i and i − 1, by ui the
instantaneous velocity of sphere i, and by u = (ui)1≤i≤N−1 the velocity vector. Velocities
of the extremal spheres 0 and N + 1 are taken as 0 (see remark 2.4 for non-zero extremal
velocities). Given a strictly ε-feasible vector q, we define A(q) as the (N − 1) × (N − 1)
tridiagonal stiffness matrix

(2) A(q) =



























1
d1

+ 1
d2

− 1
d2

− 1
d2

1
d2

+ 1
d3

− 1
d3

. . .
. . .

. . .

− 1
di

1
di

+ 1
di+1

− 1
di+1

. . .
. . .

. . .

− 1
dN−2

1
dN−2

+ 1
dN−1

− 1
dN−2

− 1
dN−1

1
dN−1

+ 1
dN





























4 A. LEFEBVRE, B. MAURY

with di = qi−qi−1−2ε. Consider now a set of forces f1, f2,. . . fN−1, and the corresponding
vector f . From (1), the balance of forces reads

(3) −A(q)u + f = 0.

Proposition 2.2. Given a strictly ε-feasible vector q ∈ RN−1, a force field f ∈ RN−1,
problem (3) has a unique solution u, and we shall write

u = (ui)1≤i≤N−1 = P(q, f , ε).

This solution can be expressed

(4) ui =
1

DN

{

(DN − Di)
i
∑

k=1

Dkfk + Di

N−1
∑

k=i+1

(DN − Dk)fk

}

∀i = 1 . . . N − 1

with Di =

i
∑

j=1

dj .

Proof. Matrix A, which is similar to the matrix obtained by discretizing the Laplace
operator with Dirichlet boundary condition by finite differences, is symmetric positive
definite, and the vector u is immediately checked to solve the system. �

This approach can be extended to ε-feasible situations in a large sense (particles are
allowed to get into contact). As the interaction force (which tends to penalize the relative
velocity) blows up when particles tend to get into contact, we simply consider that two
particles in contact have the same velocity. This situation can be formalized the following
way: The N + 1 particules form Nc clusters, and the k-th cluster contains the Nk + 1
particles ik, ik + 1, . . . , ik + Nk (see Fig. 3). The balance of forces now reads

∀i /∈ ∪k[ik, ik + Nk],
ui+1 − ui

di+1
−

ui − ui−1

di
= −fi,(5)

∀k ∈ [1, Nc],











uik = uik+1
= . . . = uik+Nk

,

uik+Nk+1 − uik+Nk

dik+Nk+1
−

uik − uik−1

dik

= −

ik+Nk
∑

i=ik

fi.
(6)

qik−1 qik qik+Nk
qik+Nk+1

dik dik+Nk+12ε

Figure 3. Non-strictly ε-feasible configuration

Proposition 2.3. Given an ε-feasible vector q ∈ RN−1, a force field f ∈ RN−1, prob-
lem (5)(6) has a unique solution, and we shall write as before

u = (ui)1≤i≤N−1 = P(q, f , ε).
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An explicit expression of this solution is given by (4).

Remark 2.4. It is possible to set extremal velocities u0 and uN to non-zero values : in
that case, the balance of forces is given by

A(q)u = f + b,

where b contains the non homogeneous dirichlet conditions : b = (u0/d1, 0, . . . , 0, uN/dN )t.
The extension of Proposition 2.3 to that case is straightforward.

3. Micro to macro modelling: a heuristic approach

The purpose of this section is to derive heuristically a macroscopic constitutive equation
from the discrete balance of forces.

We consider an ε-feasible configuration of N+1 particles (see definition 2.1) q. We suppose
that u0 and uN are given, and the external force is taken 0. The balance of forces reads

(7) A(q)u = b,

where A is given by (2) and b contains the non homogeneous dirichlet conditions b =
(u0/d1, 0, . . . , 0, uN/dN )t.

The force exerted on the Nth particle by the others is

f sys
N =

uN−1 − uN

dN
.

As the solution to (7) can be expressed

ui = u0 +
Di

DN
(uN − u0),

it comes

(8) f sys
N =

u0 − uN

DN
,

where DN =

N
∑

j=1

dj is the quantity of vacuum between q0 and qN .

Given this discrete stress tensor, we shall conjecture the continuous one. Suppose the
density of particles is high and note the vacuum fraction in the neighbourhood of a point
x by D(x). The force exerted on point x by the part of the system on its right side is
given by

F{right side of x}→{x}
= lim

η→0
F[x,x+η]→{x}.

Using (8), it can be expressed by

F{right side of x}→{x}
≈ lim

η→0

v(x + η) − v(x)
∫ x+η
x D(x)dx

,
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which gives the following continuous stress tensor:

F{right side of x}→{x}
≈

1

D(x)
∂xv(x).

Following a very standard approach, we establish now the resulting equation which ex-
presses the local balances of forces overall a one-dimensional domain. We denote the solid
fraction by ρ and suppose that an external force with density f is exerted on the system.
We express the balance of forces on a part Ω = [a, b] of the system. The external force
exerted on Ω is given by

Fext =

∫

Ω
ρf

and the force exerted by the rest of the system on Ω is

Fsys =
∂xv(b)

D(b)
−

∂xv(a)

D(a)
=

∫

Ω
∂x

(

1

D(x)
∂xv(x)

)

,

so that the balance of forces on Ω reads
∫

Ω
ρf +

∫

Ω
∂x

(

1

D(x)
∂xv(x)

)

= 0.

This last result being true for all Ω we have

−∂x

(

1

D
∂xv

)

= ρf

and, since D = 1 − ρ, we finally obtain

(9) −∂x

(

1

1 − ρ
∂xv

)

= ρf.

4. Asymptotic behaviour of the discrete solutions

Let I denote ]0, 1[. Firstly, we build a new operator P̃, which is our key tool to connect
the microscopic level to the macroscopic one. This operator is defined the following way:
Given ε > 0, an ε-feasible position vector q (as stated by Definition 2.1, it represents a
distribution of particles whose centers are located at qi, i = 1, . . . , N , with common radius
ε), a force density f ∈ L1(I), we define vector u as P(q, f ε, ε) (see Proposition 2.2 or 2.3,
depending on whether q is strictly feasible or feasible), where f ε is defined by

f ε
i =

1

2ε

∫ qi+ε

qi−ε
f(s)ds for 1 ≤ i ≤ N − 1.

Now, to this vector u = P(q, f ε, ε) ∈ RN−1, we associate a piecewise affine function u
defined by

(10) u ∈ C0(I) , u affine on [qi, qi+1] ∀i = 0, . . . , N − 1 , u(qi) = ui ∀i = 0, . . . , N.

We shall write u = P̃(q, f, ε).
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In the same spirit, for any ε > 0, and any ε-feasible position vector q ∈ RN−1, we define
χ(q, ε) as the characteristic function of the solid phase associated to the (q, ε) distribution:

(11) χ(q, ε) =
N−1
∑

i=1

1]qi−ε,qi+ε[ + 1]0,ε[ + 1]1−ε,1[.

qε
ik−1 qε

ik
qε
ik+Nk

qε
ik+Nk+1

uε
ik

uε
ik−1

uε
ik+Nk+1

uε
ik+Nk

= uε
ik

2ε

Figure 4. Definition of uε

Before we state the main convergence theorem, we still have to give a sense to (9) when
the density ρ ∈ [0, 1] is allowed to take value 1, even on a set of non-zero measure.

Proposition 4.1. Let K : I 7→ R+∪{+∞} be measurable, K(x) ≥ α > 0 for almost every
x ∈ I, ϕ ∈ H−1(I), and let J be defined as

v ∈ H1
0 (I) 7−→ J(v) =

∫

I
K(x)|∂xv|2− < ϕ, v > ∈ R+ ∪ {+∞}.

There exists a unique u ∈ H1
0 (I) which realizes the minimum of J over H1

0 (I). If there
exists f ∈ L1 such that < ϕ, v >=

∫

fv, we shall say that u is a generalized solution to

−∂x (K(x)∂xu) = f.

Proof. The functional J is convex (strictly convex over its domain), coercive, and it can
be written

J(v) = sup
n∈N(∫I

min(K(x), n)|∂xv|2 −

∫

I
fv

)

,

thus it is l.s.c. as a supremum of a family of l.s.c functions. Therefore it admits a unique
minimizer. Note that the minimization problem is equivalent to the problem which consists
in minimizing the same functional J over the set

(12) HK =

{

v ∈ H1
0 (I), ∂xv = 0 a.e. in D(K)c and

∫

D(K)
K(x)|∂xv|2 < ∞

}

.



8 A. LEFEBVRE, B. MAURY

where D(K) = {x ∈ I,K(x) < +∞} is the domain of K. Consequently, u is characterized
by the variational formulation

�(13) u ∈ HK ,

∫

D(K)
K(x)∂xu∂xv =

∫

I
fv ∀v ∈ HK .

We may now state the convergence result.

Theorem 4.2. Let f ∈ L1(I) be a force density, and ρ ∈ L∞(I) a solid fraction, with
ρ(x) ∈ [0, 1] a.e. in I. Let (qε)ε be a sequence of ε-feasible position vectors (see Defini-
tion 2.1), qε ∈ RNε with Nε = 1/ε. We introduce χε = χ(qε, ε) (see (11)), and we assume
that χε converges toward ρ in L∞(I) weak-⋆.

Then uε = P̃(qε, f, ε) solution to the discrete model (see (10)) converges weakly toward u
in H1

0 (I) as ε converges to 0, where u is the solution to

(14) −∂x

(

1

1 − ρ
∂xu

)

= ρf,

in the sense of Proposition 4.1 (i.e. characterized by (13)).

Proof. The proof is based on some technical lemmas. For readability reasons, we postpone
the proofs of the lemmas to the end of the section.

As a first step, we define ρε, piecewise constant, as the proportion of solid on each subin-
terval [qε

i−1, q
ε
i ] in the following way : let di be the distance between particles i − 1 and i,

then

∀i = 0, . . . , N ε − 1 , ρε = ρε
i = 1 −

dε
i+1

qε
i+1 − qε

i

on [qε
i−1, q

ε
i ].

qε
ik−1 qε

ik
qε
ik+Nk

qε
ik+Nk+1

ρε
ik

ρε = 1

ρε
ik+Nk+1

Figure 5. ρε
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Define now wε, constant by part, as the discrete counterpart of ∂xu/(1 − ρ) given on
[qε

i−1, q
ε
i ] by

(15)







wε = wε
i =

1

1 − ρε
i

∂xuε , if ρε
i < 1

wε = wε
i = βε

i , if ρε
i = 1

where (βε
i )ik≤i≤ik+Nk

corresponding to the kth cluster, is the solution to the following
system:

(16)



















































βε
ik+1 −

uε
ik
− uε

ik−1

dε
ik

= −2εf ε
ik

,

βε
ik+2 − βε

ik+1 = −2εf ε
ik+1,

...
βε

ik+Nk
− βε

ik+Nk−1 = −2εf ε
ik+Nk−1,

uε
ik+Nk+1 − uε

ik+Nk

dε
ik+Nk+1

− βε
ik+Nk

= −2εf ε
ik+Nk

.

qε
ik−1 qε

ik
qε
ik+Nk

qε
ik+Nk+1

wε
ik

wε
ik+Nk+1

βε
ik+1

βε
ik+Nk

Figure 6. wε

Note that, summing up all equations of (16) we recognize the balance of forces on the kth
cluster given by (6).

Remark 4.3. The idea behind the above construction is that βi can be seen as the
cohesion force between particles i − 1 and i. A first way to notice it is to note that uε is
the limit of uε,η where uε,η is the solution to system (3) with di = η > 0 for i between
ik + 1 and ik + Nk and that we have

∀k , ∀j ∈ [1, Nk] , βε
ik+j = lim

η→0

uε,η
ik+j − uε,η

ik+j−1

η
.

Another way to define these cohesion forces is to consider the following minimization
problem : minimize

J(v) =
∑

i/∈∪k[ik+1,ik+Nk]

1

2

(vi − vi−1)
2

dε
i

+

N−1
∑

i=1

f ε
i vi
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over K = {v , ∀i ∈ ∪k[ik + 1, ik + Nk], vi = vi−1}. This problem is equivalent to
problem (5)(6) and βε

i turns up as the Lagrange multiplier associated to the constraint
vi = vi−1.

The next lemma shows that (14) is true at the discrete level :

Lemma 4.4. For any ε > 0,

(17) −∂x (wε) = 2εf ε

in H−1(I), where f ε =

Nε−1
∑

i=1

f ε
i δqε

i
(δqε

i
is the Dirac measure at point qε

i ).

The idea of the proof is now to let ε go to 0 in (17). To that purpose, we first study ρε

and 2εf ε when ε tends to zero:

Lemma 4.5. ρε ⋆
−⇀ ρ in L∞(I).

Lemma 4.6. 2εf ε ⋆
−⇀ ρf in H−1(I).

Let us now establish that uε is bounded in H1
0 (I). Applying Lemma 4.4 to the test function

uε gives, using that qε is ε-feasible,

‖uε‖2
H1

0
(I) ≤ ‖uε‖L∞(I)‖f‖L1(I) ≤ C‖uε‖H1

0
(I)‖f‖L1(I).

Hence, (uε)ε is bounded in H1
0 (I) and we can extract a subsequence of (uε)ε (still denoted

by (uε)ε ) such that uε ⇀ u in H1
0 (I). In order to pass to the limit in the left-hand side

of (17), we are going to prove that there exists a subsequence of (wε)ε converging to a w
in L1(I). This will follow from the next lemmas

Lemma 4.7. (wε)ε is bounded in L∞(I).

Lemma 4.8. (wε)ε has uniform bounded variation.

From these two lemmas it follows that (wε)ε is bounded in the space of functions of
bounded variation BV (I) and by compact injection of BV (I) in L1(I) we can find w ∈
L1(I) ∩ BV (I) and a subsequence of (wε)ε (still denoted by (wε)ε ) such that

(18) wε → w in L1(I) and a.e.

Then, convergence of wε and ρε make it possible to establish the following lemma:

Lemma 4.9.

∂xuε ⇀ (1 − ρ)w in L2(I).

We now come to the last step of the proof : let ε tend to zero in (17) and obtain asymp-
totically

−∂x

(

1

1 − ρ
∂xu

)

= ρf,

in the sense of Proposition 4.1, characterized by (13)
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First, Lemma 4.9 implies ∂xu = (1 − ρ)w, so u ∈ H1/(1−ρ) (defined by (12)). Then, by
Lemma 4.4,

∫

I
wεv′ = 〈2εf ε, v〉 ∀v ∈ H1

0 (I).

Passing to the limit on ε gives, using (18), Lemma 4.7 and Lemma 4.6,
∫

I
wv′ =

∫

I
ρfv ∀v ∈ H1

0 (I).

Finally, for any v ∈ H1/(1−ρ),
∫

I
ρfv =

∫

I
wv′ =

∫

ρ6=1
wv′

=

∫

ρ6=1

(1 − ρ)w

1 − ρ
v′ =

∫

ρ6=1

∂xu

1 − ρ
v′

and we conclude that u is the solution to (14).

So, we proved that there exists a subsequence of (uε)ε converging to u as ε tends to zero.
Since the same work can be done for each subsequence of (uε)ε, we conclude that (uε)ε
itself converges to u, which completes the proof of the theorem. �

Proof of Lemma 4.4: −∂x (wε) = 2εf ε in H−1(I).

First, a simple computation shows that

∂xwε =
∑

i ∈ 1..N ε − 1
di > 0, di+1 > 0

(

uε
i+1 − uε

i

dε
i+1

−
uε

i − uε
i−1

dε
i

)

δqε
i
+

Nc
∑

k=1

ik+Nk−1
∑

i=ik+1

(

βε
i − βε

i−1

)

δqε
i

+

Nc
∑

k=1

(

βε
ik+1 −

uε
ik
− uε

ik−1

dik

)

δqε
ik

+

Nc
∑

k=1

(

uε
ik+Nk+1 − uε

ik+Nk

dik+Nk+1
− βε

ik+Nk

)

δqε
ik+Nk

in the sense of distributions. Then, combining this with system (5)(6) and with the
definition of βi (16), we get

∂xwε = −

Nε−1
∑

i=1

2εf ε
i δqε

i
.

By density of C∞
0 (I) in H1

0 (I) and continuous injection of H1
0 (I) in C0(I), this result holds

in H−1(I) as required.

Proof of Lemma 4.5 : ρε ⋆
−⇀ ρ in L∞(I).

Since ρε − ρ = (ρε − χε) + (χε − ρ) and χε ⋆
−⇀ ρ in L∞(I), the result will follow provided

we show that

∀ϕ ∈ L1(I) , lim
ε→0

(∫

I
χεϕ −

∫

I
ρεϕ

)

= 0.
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By density of the set of stairs functions in L1(I), and by using the fact that (ρε)ε and
(χε)ε are bounded in L∞(I), this in turn will follow from

∀ϕ piecewise constant on I , lim
ε→0

(
∫

I
χεϕ −

∫

I
ρεϕ

)

= 0.

To show this, it suffices to prove that

∀α, β 0 < α < β < 1 lim
ε→0

(
∫ β

α
χε −

∫ β

α
ρε

)

= 0.

In order to do so take α and β such that 0 < α < β < 1 and denote the particules whose

center is in [α, β] by qε
i0

, qε
i0+1, . . . , qε

j0
. Since

∫ qε
i+1

qε
i

(χε − ρε) = 2ε− (qε
i+1 − qε

i − dε
i+1) = 0

for 1 ≤ i ≤ Nε − 1, we have
∫ β

α
χε −

∫ β

α
ρε =

∫ qε
i0

α
(χε − ρε) −

∫ β

qε
j0

(χε − ρε).

Then, a simple computation shows that the left-hand side converges to zero as ε tends to
zero wich completes the proof of the lemma.

Proof of Lemma 4.6 : 2εf ε ⋆
−⇀ ρf in H−1(I).

By injection of H1
0 (I) in C0(I) it suffices to show that

∀ϕ ∈ C0(I) , lim
ε→0

〈

2ε
Nε−1
∑

i=1

f ε
i δqε

i
, ϕ

〉

−

∫

I
ρfϕ = 0.

Moreover, we can write

2ε

Nε−1
∑

i=1

f ε
i δqε

i
− ρf =

(

Nε−1
∑

i=1

f ε
i δqε

i
− χεf

)

+ (χεf − ρf) .

Then, using the fact that χε ⋆
−⇀ ρ, the required result will follow as soon as we prove that

∀ϕ ∈ C0(I) , lim
ε→0

∆ε = 0,

where

∆ε =

〈

2ε

Nε−1
∑

i=1

f ε
i δqε

i
, ϕ

〉

−

∫

I
χεfϕ.

To obtain this, merely compute

∆ε =

Nε−1
∑

i=1

∫ qε
i +ε

qε
i −ε

[ϕ(qε
i ) − ϕ]f −

∫ ε

0
ϕf −

∫ 1

1−ε
ϕf

and use uniform continuity of ϕ together with the fact that qε is ε-feasible to define e(δ)
by

e(δ) = sup
x,y∈I,|x−y|<δ

|ϕ(x) − ϕ(y)|
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and show

|∆ε| ≤ e (ε)
Nε−1
∑

i=1

∫ qε
i +ε

qε
i −ε

|f |+

∫ ε

0
|ϕ||f |+

∫ 1

1−ε
|ϕ||f | ≤ e (ε) ‖f‖L1(I)+

∫ ε

0
|ϕ||f |+

∫ 1

1−ε
|ϕ||f |.

The result follows from this by letting ε → 0 and using the fact that ϕf ∈ L1(I). �

Proof of Lemma 4.7: (wε)ε is bounded in L∞(I).

By (15), wε is piecewise contant, equal to wε
i on [qε

i−1, q
ε
i ], where wε

i = 1
1−ρε

i
∂xuε =

uε
i−uε

i−1

dε
i

if ρε
i < 1, and wε

i = βε
i otherwise. Note that, by (16) and the fact that qε is ε-feasible

∀k = 1 . . . Nc , ∀j = 1 . . . Nk ,
∣

∣βε
ik+j

∣

∣ =

∣

∣

∣

∣

∣

∣

wε
ik−1 − 2ε

ik+j−1
∑

m=ik

fm

∣

∣

∣

∣

∣

∣

≤
∣

∣wε
ik−1

∣

∣+ ‖f‖L1(I).

Therefore, to show that ‖wε‖L∞(I) is bounded it suffices to obtain an upper-bound for
(wε

i )i s.t. ρi<1 . In order to do so, a simple computation gives using (4)

∀i s.t. ρi < 1 , wε
i = 2ε

Nε−1
∑

k=i+1

DNε − Dk

DNε

f ε
k − 2ε

i
∑

k=1

Dk

DNε

f ε
k .

Then, from
DNε−Dk

DNε
≤ 1, Dk

DNε
≤ 1 and the fact that qε is ε-feasible it follows that

|wε
i | ≤

Nε−1
∑

k=1

|2εf ε
k | ≤ ‖f‖L1(I)

and we conclude that

‖wε‖L∞(I) ≤ 2‖f‖L1(I),

which completes the proof of the lemma. �

Proof of Lemma 4.8: (wε)ε has uniform bounded variation.

We recall that the variation of a function is defined by

Var(f) = sup

{∫

I
fϕ′ : ϕ ∈ C1

c (I), ‖ϕ‖L∞(I) ≤ 1

}

.

By Lemma 4.4 applied to any test function ϕ ∈ C1
c (I) and the fact that qε is ε-feasible,

we see that

(19) Var(wε) ≤ ‖f‖L1(I),

so wε has uniform bounded variation. �

Proof of Lemma 4.9 : ∂xuε ⇀ (1 − ρ)w in L2(I).

Writing

∂xuε − (1− ρ)w = (1− ρε)wε − (1− ρ)w = {((1 − ρε) − (1 − ρ)) w}+ {(1 − ρε)(wε − w)} ,
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we shall prove the weak convergence to zero in L2(I) of both term of the left-hand side.
For the first term, take ϕ in L2(I). Using that w ∈ BV (I) ⊂ L∞(I), it follows that
wϕ ∈ L1(I) and by Lemma 4.5

lim
ε→0

∫

I
((1 − ρε) − (1 − ρ)) wϕ = 0,

as required.

We shall now prove the convergence of the second term to zero. By density of C∞
0 (I)

in L2(I) and Lemma 4.7 it suffices to take ϕ in C∞
0 (I). Therefore, the result follows

immediately from

∣

∣

∣

∣

∫

I
(1 − ρε)(wε − w)ϕ

∣

∣

∣

∣

≤ ‖ϕ‖∞

∫

I
|wε − w|

together with (18).
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