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Abstract

The Hamiltonian description of the self-consistent interaction between an electromagnetic plane-

wave and a co-propagating beam of charged particles is considered. We show how the motion can be

reduced to a one-dimensional Hamiltonian model (in a canonical setting) from the Vlasov-Maxwell

Poisson brackets. The reduction to this paradigmatic Hamiltonian model is performed using a Lie

algebraic formalism which allows us to remain Hamiltonian at each step of the derivation.
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I. INTRODUCTION

The interaction between electromagnetic fields and a beam of charged particles exhibit

a dynamics which is nowadays not fully understood, mainly due to the complexity inherent

to the infinite dimensional phase space. Although some attention has been devoted to

controlling those systems, a preliminary step is to shed light on the dynamics by analysing

for instance phase space structures and transport properties. In this ambitious framework,

reduced models have proved to be very valuable for this task. The reduction is of course

guided by the physics of a particular setting. For instance, a beam of ultra-relativistic

electrons interacts with plane waves (whether these are external ones or produced by the

beam moving into an array of magnets, called undulator) has shown to be a way for producing

a coherent light source. In what follows, we consider such a beam of electrons moving inside

an undulator which produces a static (but non-uniform) magnetic field. The acceleration

produced by the external magnetic field makes them emit a synchrotron radiation, which

is self-consistently interacting with the particles. Under some resonance condition, the

intensity of this electromagnetic wave grows exponentially and then saturates. In order to

capture this effect, a one-dimensional Hamiltonian model has been proposed. The reduced

Hamiltonian describes the evolution of the position θj and relative momentum pj (around a

resonant value) of the j-th particle. The N particles interact through a wave described by

its intensity I and phase φ. It reads :

H =

N
∑

j=1

(

p2
j

2
+ 2

√
I sin(θj − φ)

)

, (1)

where (θj , pj) and (φ, I) are canonical pairs of conjugate variables.

In the Free Electron Laser (FEL) configuration, this model has been derived [1, 2] from

the equations of motion of charged particles and Maxwell’s equations. Some approximations

were involved during the course of the derivation, and were guided by the physics of the

device, and among them, a specific form for the radiated fields (as a plane wave), a one-

dimensional reduction (obtained by reducing the dynamics in the transverse plane), an

expansion around a resonance fixed by the characteristics of the undulator. In addition,

this Hamiltonian model was also proposed to describe the wave-particle interaction in other

contexts, such as the beam-plasma instability [3, 4], or the Collective Atomic Recoil Laser

[5].
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In this article, we propose a derivation of the one-dimensional Hamiltonian (1) for the self-

consistent interaction from the Vlasov-Maxwell equations in a Hamiltonian setting. This

allows us to show that at each step of the derivation, the Hamiltonian structure of the

problem is conserved. Another advantage is that the conserved quantity (namely the to-

tal momentum of the system) is also easily deduced from the conserved quantity of the

Vlasov-Maxwell equations. Our approach follows from this algebraic framework: Instead of

working with the equations of motion for the derivation, we consider the Hamiltonian and

its associated Poisson bracket (for an introduction, see Refs. [6, 7]). By using a canonical

version, the Poisson bracket remains canonical (or generalized canonical in a broader sense).

Therefore the main approximations and computations have to be done on a scalar function,

the Hamiltonian which aims at simplifying the derivation.

In Sec. II we recall some basics of the Hamiltonian formulation of the Vlasov-Maxwell

equations for a continuous description of the particle distribution. In Sec. III, we apply

to this Hamiltonian system the approximations and reduction necessary for the derivation

of the reduced model (1) by expressing first the Vlasov-Maxwell system into a canonical

setting (Sec. IIIA), then performing the one-dimensional reduction (Sec. III B), changing

the reference frame (Sec. IIIC), and expanding the resulting Hamiltonian around a resonance

condition (Sec. IIID). Finally, we deduce (Sec. III E) a conserved quantity of the reduced

model (1) from a conserved quantity of the Vlasov-Maxwell equations by following the same

procedure as for the reduction of the Hamiltonian.

II. HAMILTONIAN FORMULATION OF VLASOV-MAXWELL EQUATIONS

The dynamics of Hamiltonian (1) follows from Hamilton’s equations for each pair of

canonically conjugate variables. More generally the dynamics of an observable F (function

of phase space coordinates ({θi, pi}, I, φ)) is given by :

dF

dt
= {H, F}, (2)

where the Poisson bracket between two observables is given by

{F, G} =

N
∑

i=1

(

∂F

∂pi

∂G

∂θi
− ∂F

∂θi

∂G

∂pi

)

+
∂F

∂I

∂G

∂φ
− ∂F

∂φ

∂G

∂I
.

In a continuous setting, this Hamiltonian model can be extended in a straightforward way.

The beam is now described by a distribution function f(θ, p) which constitutes a dynamical
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field, i.e., for each location in phase space (θ, p), the density of particles f(θ, p), labelled

by the phase space coordinates of the particles, evolves dynamically. The one-dimensional

Hamiltonian model is generalized from Hamiltonian (1)

H [f, I, φ] =

∫∫

dθdpf(θ, p)

[

p2

2
+ 2

√
I sin (θ − φ)

]

, (3)

where the dynamical variables are now I and ϕ, and a field of variables f(θ, p). The dynamics

of f , I and θ are obtained using the canonical Poisson bracket:

{F, G} =

∫∫

dθdpf(θ, p)

[

∂

∂p

δF

δf

∂

∂θ

δG

δf
− ∂

∂θ

δF

δf

∂

∂p

δG

δf

]

+
∂F

∂I

∂G

∂φ
− ∂F

∂φ

∂G

∂I
, (4)

i.e. it leads to a Vlasov equation for f

∂f

∂t
+ p

∂f

∂θ
− 2

√
I cos(θ − φ)

∂f

∂p
= 0,

where we notice that df/dt = ∂f/∂t since we use an Eulerian description for the observables.

This equation has been used to estimate quantitatively some features of the dynamics, like

the derivation of a reduced dimensional model [8] or the characteristics of the bunching in

the saturated regime [9, 10].

If f is a Klimontovitch distribution, that is the distribution function is a sum of Dirac

representing some point particles:

f(θ, p) =
∑

j

δ(θ − θj(t))δ(p − pj(t)),

we recover the equations for Hamiltonian (1).

The continuous formalism (3)-(4) is particularly well-suited for an algebraic treatment

of the dynamics (see e.g. [11]). In what follows we use Vlasov-Maxwell equations to derive

Hamiltonian (3). In order to do this we use a Hamiltonian formulation of these equations.

First let us recall that the interaction between electromagnetic fields and charged particles

(of normalized mass m = 1 and charge e = 1) is given as the sum of the kinetic energy of

the particles plus the energy of the field [12, 13, 14]:

H =

∫∫

d3qd3pf(q,p)
√

1 + p2 +

∫

d3q
|E(q)|2 + |B(q)|2

2
, (5)

where f(q,p) describes the distribution of particles in phase-space. Even though the kinetic

energy of the particles and the electromagnetic energy appear to be decoupled in the Hamil-

tonian, the interaction between the matter and the fields comes from the bracket which gives

4



the dynamics :

{F, G} =

∫∫

d3qd3p f

[

∂

∂p

δF

δf
· ∂

∂q

δG

δf
− ∂

∂q

δF

δf
· ∂

∂p

δG

δf

]

−
∫∫

d3qd3p fB ·
[

∂

∂p

δF

δf
× ∂

∂p

δG

δf

]

+

∫∫

d3qd3p

[

δF

δf

∂f

∂p
· δG

δE
− δG

δf

∂f

∂p
· δF

δE

]

+

∫

d3q

[(

∇× δF

δB

)

· δG

δE
− δF

δE
·
(

∇× δG

δB

)]

. (6)

This bracket satisfies the antisymmetry property, the Leibnitz product rule and the Jacobi

identity. Here, the Lie algebra on which this bracket operates is the set of smooth functionals

F [f(q,p),E(q),B(q)]. Using Hamiltonian (5) and the brackets (6), Eq. (2) allows one to

retrieve Maxwell’s equations for E and B, as well as Vlasov equation for f :

∂f

∂t
≡ ḟ = {H, f} = −v · ∇f − (E + v × B) · ∂f

∂p
,

∂E

∂t
≡ Ė = {H,E} = ∇×B −

∫

d3pvf,

∂B

∂t
≡ Ḃ = {H,B} = −∇× E,

where v is the velocity

v =
p

√

1 + p2
. (7)

We notice that the first line of the right hand side of Eq. (6) refers only to the particles

(and it is canonical), the second and third lines are the field-particle interaction terms (non-

canonical terms) and the last line is a field-only term (which is also canonical).

III. INTERACTION BETWEEN A PLANE WAVE AND A CO-PROPAGATING

BEAM OF PARTICLES

A. Expression of the Hamiltonian system in a canonical way

The Vlasov-Maxwell equations (5)-(6) can also be described using the potentials instead

of the fields [13]. The Lie algebra is now a set of functionals F [fmom(q,p),A(q),Y(q)]. The
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Hamiltonian and the bracket become :

H =

∫∫

d3qd3pfmom

√

1 + (p− A)2 +

∫

d3q
|Y|2 + |∇ × A|2

2
, (8)

{F, G} =

∫∫

d3qd3p fmom

[

∂

∂p

δF

δfmom
· ∂

∂q

δG

δfmom
− ∂

∂q

δF

δfmom
· ∂

∂p

δG

δfmom

]

+

∫

d3q

(

δF

δY
· δG

δA
− δF

δA
· δG

δY

)

. (9)

This can be obtained from Eqs. (5)-(6) using the change of coordinates

f(q,p) = fmom(q,p + A),

E = −Y,

B = ∇×A.

We notice that this time, the Poisson bracket is canonical and there is no term in this

bracket which couples the particles and the field. However, the coupling term is present in

Hamiltonian (8).

We translate the potential vector by a static Aw(q), which is imposed externally (as

in an undulator). We notice that a translation of A by a quantity Aw is a canonical

transformation, which implies that the bracket (9) is not changed. The new Hamiltonian

reads :

H =

∫∫

d3qd3pfmom

√

1 + (p− Aw − A)2 +

∫

d3q
|Y|2 + 2∇× Aw · ∇ × A + |∇ × A|2

2
,

where we have dropped the constant quantity
∫

d3q|∇ × Aw|2/2. In particular, we notice

that the dynamics of the radiated field is

Ȧ = {H,A} =
δH

δY
= Y,

which is equivalent to the equation for the radiated electric field Er:

Er = −∂A

∂t
.

For a wave co-propagating with the electrons in the z-direction, one can define the k-mode

of the wave as follows:

Ak(q⊥) =
1

L

∫

dze−ikzA(q),
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Yk(q⊥) =
1

L

∫

dze−ikzY(q),

where q⊥ = (x, y) and L is the length of the cavity where the interaction takes place.

This gives the Fourier expansion in the propagation direction Y(q) =
∑

k Yk(q⊥)eikz and

A(q) =
∑

k Ak(q⊥)eikz. Furthermore, since

δAk(q⊥)

δA(q′)
=

1

L
e−ikzδ(q⊥ − q′

⊥
),

which is obtained from the definition and linearity of the functional derivative, it follows

from the bracket (9) that

{Yk(q⊥),A−k′(q′

⊥
)} =

1

L
δkk′δ(q⊥ − q′

⊥
).

Since we also have:

{Yk(q⊥),Yk′(q′

⊥
)} = {Ak(q⊥),Ak′(q′

⊥
)} = 0,

the field part of the bracket turns into
∫

d3q

(

δF

δY
· δG

δA
− δF

δA
· δG

δY

)

=
1

L

∑

k

∫

d2q⊥

(

δF

δYk
· δG

δA−k
− δF

δAk
· δG

δY−k

)

.

We now consider the paraxial approximation both for the radiated and external fields, i.e.

we neglect their spatial variations in the x and y directions, so that they are homogeneous

in the transverse section S of interaction, and null outside it. We notice that this paraxial

approximation is the strongest approximation involved in the derivation process. The di-

mensional reduction crucially depends on it. In addition to this approximation, we restrict

the derivation to a monochromatic wave, i.e. we only take into account one Fourier mode k

in the propagation direction, and consider the case of a circularly polarized radiated wave.

Other modes can be included in the derivation in a very similar way, but we have only kept

one mode for the sake of clarity of the derivation. These two approximations allow us to

define the complex amplitude of the wave a such that

A = − i√
2

[

aeikz ê − a∗e−ikzê∗
]

,

Y = − k√
2

[

aeikz ê + a∗e−ikzê∗
]

, (10)

with ê = (x̂ + iŷ)/
√

2. Conversely, a can be defined as

a =
1

kV

∫

d3qe−ikz(−Y + ikA) · ê∗ =
1

kS

∫

d2q⊥(−Yk + ikAk) · ê∗,
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where V is the volume of the interaction domain, i.e. V = LS with the above notations.

Then, since

δa

δYk(q⊥)
= − 1

kS
ê∗,

δa

δAk(q⊥)
=

i

S
ê∗,

we get

{a, a∗} =
i

kV
,

so that a and a∗ are the new conjugate variables describing the radiated field. Hence, the

bracket turns into:

{F, G} =

∫∫

d3qd3pfmom

[

∂

∂p

δF

δfmom

· ∂

∂q

δG

δfmom

− ∂

∂q

δF

δfmom

· ∂

∂p

δG

δfmom

]

+
i

kV

(

∂F

∂a

∂G

∂a∗
− ∂F

∂a∗

∂G

∂a

)

.

As for the Hamiltonian, since we have ∇ × A = kA and |Y|2 = k2|A|2 = k2aa∗ for the

vector potential A, the energy of the radiated wave now reads:

∫

d3q
|Y|2 + |∇ × A|2

2
= k2V aa∗,

where we have used the relations ê · ê = 0 and ê · ê∗ = 1. So that the Hamiltonian becomes:

H =

∫∫

d3qd3pfmom

[

1 + p2 + aa∗ − i
√

2(aeikz ê − a∗e−ikz ê∗) ·Aw

+|Aw|2 − 2p⊥ · (Aw + A)

]1/2

+k2V a∗a − ikS√
2

∫

dz(aeikz ê − a∗e−ikzê∗) · (∇× Aw).

B. Reduction to a one-dimensional model

Here we assume that the external field Aw created by the undulator only depends on the

longitudinal variable z. If the beam of electrons has been injected in a proper way, we show

below that the motion is exactly described by a one-dimensional Hamiltonian, allowing for

a reduced – but exact – description of the dynamics.
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This reduction follows from the properties of the Liouville operator H = {H, ·}. Recalling

that:

δH

δfmom
=
[

1 + p2 +aa∗ − i
√

2(aeikz ê − a∗e−ikzê∗) · Aw

+|Aw|2 − 2p⊥ · (Aw + A)
]1/2

,

the Liouville operator reads:

H =
∫∫

d3qd3p
fmom

√

1 + p2 + (A + Aw)2

[

(p⊥ − Aw − A) · ∂

∂q⊥

δ

δfmom

+pz
∂

∂z

δ

δfmom

− (A + Aw) · ∂

∂z
(A + Aw)

∂

∂pz

δ

δfmom

]

+
i

kV

[

∂H

∂a

∂

∂a∗
− ∂H

∂a∗

∂

∂a

]

.

The ∂
∂p⊥

δ
δfmom

term has disappeared since its factor ∂(A + Aw)/∂q⊥ vanishes, as the fields

are assumed not to depend on the transverse direction q⊥. As a consequence, there is no

evolution for the particles distribution fmom(q,p) along the direction p⊥. This can be seen

by considering a distribution function of the following form

fmom(q,p) = f̂(q, pz)δ(p⊥).

Under the Liouville operator, we see that Hfmom is also proportional to δ(p⊥), using an

integration by parts and the fact that

δfmom(q,p)

δfmom(q′,p′)
= δ(q − q′)δ(p− p′).

We recall that p⊥ has been translated by Aw in Sec. IIIA, so in other words, if the beam is

initially injected with the transverse velocity Aw/
√

1 + |Aw|2 [from Eq. (7)], it remains with

this specific transverse velocity. Then, once restricted to the δ(p⊥) distribution, it comes

that the transverse profile of f does not act on the longitudinal dynamics any more. In

other words, the set F of observables F which do not depend on the transverse component

of the distribution, i.e. F such that

∂

∂q⊥

δF

δf̂
= 0,

is stable by H (i.e. HF ∈ F if F ∈ F), since A and Aw do not depend on q⊥. This

allows one to focus on the longitudinal dynamics by defining a reduced dynamics on F , with
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f̃(z, pz) the longitudinal distribution as new variable associated with the particles. The

bracket reduces to :

{F, G} =

∫∫

dzdpzf̃

[

∂

∂pz

δF

δf̃

∂

∂z

δG

δf̃
− ∂

∂z

δF

δf̃

∂

∂pz

δG

δf̃

]

+
i

kV

(

∂F

∂a

∂G

∂a∗
− ∂F

∂a∗

∂G

∂a

)

,

and the Hamiltonian becomes

H =

∫∫

dzdpzf̃

√

1 + p2
z + aa∗ − i

√
2(aeikz ê − a∗e−ikz ê∗) · Aw + |Aw|2 (11)

+k2V aa∗ − ikS√
2

∫

dz(aeikz ê − a∗e−ikzê∗) · (∇× Aw).

Since the motion is now one-dimensional, we drop the label z of the momentum in what

follows.

C. Particles-field phase frame

While Hamiltonian (11) is reduced to distribution functions with one dimension (one in

space and one in momentum), it still contains some terms which are not specific to the

interaction like the term aa∗. The emphasis can be put on the interaction between the

particles and the wave by considering the dynamics into the particles-field phase frame. We

consider a specific medium for the interaction between the particles and the radiated field.

For example, we can consider a linear undulator, such as in a Free Electron Laser. The

transverse field produced by such an undulator reads :

Aw =
aw√

2

(

e−ikwz ê + eikwz ê∗
)

. (12)

First we neglect the effects of finite size : The last term in Eq. (11) vanishes since it is a

sum of terms proportional to
∫

dze±i(k+kw)z terms. The Hamiltonian becomes

H =

∫∫

dzdpf̃
√

1 + p2 + aa∗ − iaw(aei(k+kw)z − a∗e−i((k+kw)z)) + a2
w + k2V aa∗.

In this Hamiltonian, the last term simply yields the propagation of the electromagnetic

wave. Indeed, since {k2V aa∗, a} = −ika, it generates an e−ikt factor for a(t), and so it is a

pure propagation term. This remark calls for a time-dependent change of coordinates. This

procedure is fairly standard, e.g., in quantum mechanics, and corresponds to the interaction
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representation [15]. Since time is not a variable for this model, we first need to extend

phase space to add a new pair of canonically conjugate variables with one being similar to

time. More precisely, we define the pair of conjugate variables (τ, E), such that the new

Hamiltonian and bracket read

Hext[f, a, a∗, E, τ ] = H [f, a, a∗] + E,

{F, G} =

∫∫

dzdpf̃

[

∂

∂p

δF

δf̃

∂

∂z

δG

δf̃
− ∂

∂z

δF

δf̃

∂

∂p

δG

δf̃

]

+
i

kV

(

∂F

∂a

∂G

∂a∗
− ∂F

∂a∗

∂G

∂a

)

+
∂F

∂E

∂G

∂τ
− ∂F

∂τ

∂G

∂E
,

so that τ̇ = {Hext, τ} = 1, which means that, practically, τ is identical to the evolution

variable t. We now consider the canonical change of variables (f̃ , a, a∗, τ, E) → (f̂ , â, â∗, τ̂ , Ê)

such that

â = aeikτ ,

Ê = E + k2V aa∗

f̂(z, p) = f̃(z, p),

τ̂ = τ.

It can be checked that the symplectic form ikV da∗ ∧ da + dE ∧ dτ is conserved by this

transformation. This results in a conservation of the Poisson bracket, while the Hamiltonian

now reads:

Ĥ =

∫∫

dzdpf̂
√

1 + p2 + ââ∗ − iaw(âei((k+kw)z−kτ) − âe−i((k+kw)z−kτ)) + a2
w + Ê.

Finally, the dynamics can be studied in the particles-field phase frame, the latter phase

being defined as θ = (k + kw)z − kτ , by considering the change of variables

f̄(θ, p) = f̂(z, p)/(k + kw),

ā = â,

Ē = Ê +
k

k + kw

∫∫

dθdpf̄p,

τ̄ = τ,
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where f̂ has been divided by k + kw for normalization purposes. We notice that the term

−k/(k + kw)
∫∫

dθdpf̄p has been added to Ê in order to ensure the canonicity of the change

of coordinates which translates here into the condition {Ē, f̄} = 0. Here we have used the

following properties of the functional derivative: If we perform a change of variables of f ,

denoted f̃ = f ◦ g, then the functional derivative of F̃ [f̃ ] = F [f ] satisfies

δF̃

δf̃
=

δF

δf

∣

∣g′ ◦ g−1
∣

∣ ,

which is obtained in a straightforward way from the definition of the functional derivative.

Now that we have performed the time-dependent change of coordinates and that the

Hamiltonian is time-independent, the (τ̄ , Ē) variables are somehow artificial and decoupled

from the other ones. It is more convenient to work in the reduced space and drop this

additional pair of variables. For notation purposes, we drop the bars over the other variables.

The Hamiltonian now reads:

H̄ =

∫∫

dθdpf̄

[

√

1 + p2 + a2
w − iaw(āeiθ − ā∗e−iθ) + āā∗ − k

k + kw
p

]

. (13)

The resulting Poisson bracket writes

{F, G} = (k + kw)

∫∫

dθdpf

[

∂

∂p

δF

δf

∂

∂θ

δG

δf
− ∂

∂θ

δF

δf

∂

∂p

δG

δf

]

+
i

kV

(

∂F

∂a

∂G

∂a∗
− ∂F

∂a∗

∂G

∂a

)

. (14)

D. Resonance condition and high-gain amplification

The next step is to expand Hamiltonian (13) around a resonant value. Following Eq. (2),

Hamiltonian (13) and bracket (14) yield the following equations of motion:

df

dt
= −(k + kw)

(

p
√

1 + p2 + a2
w − iaw(aeiθ − a∗e−iθ) + aa∗

− k

k + kw

)

∂f

∂θ

+
aw(k + kw)(aeiθ + a∗e−iθ)

√

1 + p2 + a2
w − iaw(aeiθ − a∗e−iθ) + aa∗

∂f

∂p

da

dt
= − k

V

∫∫

dθdpf
ia − awe−iθ

√

1 + p2 + a2
w − iaw(aeiθ − a∗e−iθ) + aa∗

From these equations it can be seen that the system is at equilibrium for a = 0 and f(θ, p) =

δ(p−pR)F (θ), where F (θ) is a distribution which satisfies
∫

dθe−iθF (θ) = 0, and pR is given
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by
pR

√

1 + a2
w + p2

R

− k

k + kw

= 0.

This resonant momentum pR can be linked to a resonant energy γR for the particles, defined

by

γR =
√

1 + a2
w + p2

R =
√

1 + a2
w

k + kw
√

kw(2k + kw)
. (15)

In the limit k ≫ kw, the definition (15) of the resonant energy yields the usual definition

γR =
√

k(1 + a2
w)/(2kw) (see for example [2]).

However, this equilibrium is unstable, and exposed to small perturbations, the wave starts

growing and destabilizes the particles at p = pR. This instability is responsible for the high-

gain growth of the wave, which is taken advantage of in devices such as FEL. The dynamics

can be linearized around this equilibrium point: Assuming the momenta of the particles

remain close from the resonant one pR, we shift p by pR, by defining f̂(θ, p̂) = f(θ, p) with

p̂ = p − pR. We also consider that the amplitude of the radiated field is weak compared to

the resonant energy

|a| ≪ γR.

Then, Hamiltonian (13) expands, at the first order in a and second order in p (we have

dropped the hat over p̂ and f̂), as follows:

Hlin =

∫∫

dθdpf

[

1 + a2
w

γ3
R

p2

2
− iaw

2γR

(

aeiθ − a∗e−iθ
)

]

,

associated with the bracket (14).

The equations of motion can be normalized through the following change of variables

f ′(θ′, p′) =
1

β
f(θ = θ′, p = p′/β),

a′ = ǫa.

Moreover, we include a rescaling of time t′ = αt, i.e. H ′ = H/α, and we consider a new

Hamiltonian νH ′ with a new Poisson bracket ν−1{., .} (which does not change the dynamics).

13



Using

α =
1

γR

(

a2
wkw(k + kw/2)

2kV

)1/3

,

β =
2

k + kw

(

2kV k2
w(k + kw/2)2

a2
w

)1/3

,

ǫ =

(

4k2V 2kw(k + kw/2)

aw

)1/3

,

ν = 2

(

2kV k2
w(k + kw/2)

a2
w

)1/3

,

the Hamiltonian and the bracket become :

H =

∫∫

dθdpf
p2

2
− i

∫∫

dθdpf
(

aeiθ − a∗e−iθ
)

, (16)

{F, G} =

∫∫

dθdpf

[

∂

∂p

δF

δf

∂

∂θ

δG

δf
− ∂

∂θ

δF

δf

∂

∂p

δG

δf

]

+ i

(

∂F

∂a

∂G

∂a∗
− ∂F

∂a∗

∂G

∂a

)

.

Finally, the canonical change of variables (a, a∗) → (φ, I) such that a =
√

Ie−iφ (so that

{φ, I} = 1) allows one to retrieve Hamiltonian (3) associated with the bracket (4).

E. Conserved quantities

Apart from H as given by Eq. (5), the Hamiltonian system of charged particles interacting

self-consistently with electromagnetic fields has its total momentum as conserved quantity,

as it was reported in Ref. [14]:

P[f,E,B] =

∫∫

d3qd3pfp +

∫

d3qE ×B.

We perform the same approximations and reductions as the ones done on Hamiltonian (5).

In this way, we recover the conserved quantity of the reduced model. For example, in the

canonical formulation (8) and (9), the total momentum turns into:

P[fmom,A,Y] =

∫∫

d3qd3pfmom(p− A) −
∫

d3qY × (∇×A) .

Furthermore, when considering a monochromatic, circularly polarised plane-wave such

as the one given by Eq. (10), the total momentum is decomposed into a transverse and a

longitudinal component:

P⊥[f,A] =

∫∫

d3qd3pf(p⊥ − A− Aw),

Pz[f,A,Y] =

∫∫

d3qd3pfpz + k2V aa∗ + k

∫

d3q (Aw ×Y) · êz.
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When focusing on the longitudinal dynamics (see Sec. III B), the conserved quantities P⊥

can be dropped since they provide information on the transverse dynamics. Then, when

considering the specific external field (12), if we neglect the finite-size effect, the last term

of the longitudinal momentum can be dropped, so that we get, for Hamiltonian (13), the

following conserved quantity

Pz[f, a, a∗] =

∫∫

d3qd3pfp + k2V aa∗.

Using the same normalization as in Sec. IIID, Pz becomes a conserved quantity for Hamil-

tonian (16):

P =

∫∫

dθdpfp + aa∗.

Finally, using the canonical change of variables (a, a∗) 7→ (φ, I), it becomes:

P =

∫∫

dθdpfp + I,

i.e. the average momentum plus the intensity is conserved by Hamiltonian (3).

Conclusion

In this paper, we derived a reduced Hamiltonian for the interaction between a wave and a

beam of charged particles driven by an external field, on the sole assumptions of transverse

fields and on-axis injection for the particles. A resonance condition – around an unstable

equilibrium point – has been identified, allowing for a linearization of the dynamics. Finally,

under the extra hypotheses of high-energy particles and weak radiated field, a paradigmatic

Hamiltonian has been retrieved within a fully Hamiltonian treatment. The main advantage

of the present derivation is a fully algebraic framework which is well suited to include ad-

ditional effects, like for instance, higher order terms in the expansions, or strategies using

other harmonics of the radiated field [16]. We have shown here that this treatment allows

one to recover some general features of the Vlasov-Maxwell equations in a very natural way,

like a conserved quantity of the flow.
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