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Abstract

This paper describes a novel approach to forming high resolution
MR images of the human fetal brain. It addresses the key problem of
fetal motion by proposing a registration refined compounding of mul-
tiple sets of orthogonal fast 2D MRI slices, that are currently acquired
for clinical studies, into a single high resolution MRI volume.

A robust multi-resolution slice alignment is applied iteratively to
the data to correct motion of the fetus that occurs between 2D ac-
quisitions. This is combined with an intensity correction step and a
super resolution reconstruction step, to form a single high isotropic
resolution volume of the fetal brain.

Experimental validation on synthetic image data with known mo-
tion types and underlying anatomy, together with retrospective appli-
cation to sets of clinical acquisitions, are included.

Results indicate that this method promises a unique route to ac-
quiring high resolution MRI of the fetal brain in vivo allowing com-
parable quality to that of neonatal MRI. Such data provides a highly
valuable window into the process of normal and abnormal brain de-
velopment which is directly applicable in a clinical setting.
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1 Introduction

Ultrasound is the imaging modality of choice for the screening evaluation
of the developing fetal brain. However, once an abnormality is suspected
by routine prenatal ultrasound, further evaluation with MRI is indicated
[1, 2]. Indeed, fetal MRI can detect additional abnormalities not detectable
by prenatal ultrasound, including gyral and sulcal abnormalities [2, 3, 4, 5, 6].

MRI allows for excellent tissue contrast and spatial resolution, uses no
ionizing radiation, permits imaging in multiple planes, has a large field of
view and allows for visualization of fetal anatomy in a manner not possible
with ultrasound. The development of ultrafast 2D acquisition sequences has
led to significant improvements in the clinical utility of fetal MRI [7, 8].
However, the slice acquisition time is still very critical and has to be as
short as possible to reduce the impact of fetal and maternal motion on the
exam and for the comfort of the mother, since fetal MRI is often performed
without sedation. As a result, sets of thick 2D slices are generally acquired
in clinical studies, with motion commonly occurring between slices. Overall,
the resulting image data is limited in its geometric integrity between slices
due to motion, and in its through plane spatial resolution. In addition, body
surface coils used in the imaging processes do not provide a homogeneous
sensitivity over the entire field of view and, combined with motion during
the acquisition, can then produce changes over time in the distortion profile
for the same anatomical region (see figure3). This inhomogeneity is due to
the fact that the gradients are linear over central region, but then fall off
along the length of the scanner. There are also regions at both ends where
the gradient strength is the same as in the center.

This work is motivated by the observation that current clinical imag-
ing protocols make use of multiple orthogonal 2D multi-planar acquisitions
to study the fetal brain. However, because of the motion between the slices,
current techniques do not allow direct quantitative measurements to be made
on the 3D anatomy. The aim of this work is to develop and apply registration
based reconstruction methods to the problem of correcting motion and inten-
sity distortions between the different 2D acquisitions, and to then reconstruct
a single higher resolution MR image of the fetal brain.
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1.1 Super Resolution Methods

The principle of super-resolution is to combine low resolution images to pro-
duce an image that has a higher spatial resolution than the original images
[9]. This is a large research field encompassing many applications, however
the majority of the work has focused on using lower resolution data acquired
on a regular grid and often assuming simple translational motion between
the lower resolution sample grids, unlike our data which is corrupted by full
3D rigid motion on a slice by slice basis.

Overall published methods can be categorized into two main divisions:
frequency domain and spatial domain. Frequency domain methods are based
on Fourier transform properties. Denote a continuous 2D image f(x, y) and
n shifted images fr(x+ δxr, y + δyr). Let the set {fr(i, j)}, with i ∈ {1...M},
j ∈ {1...N} and r ∈ {1...n} be the discrete version of the set {fr(x, y)}
using an ideal uniform sampling with periods Tx and Ty. The continuous
Fourier transform (CFT) Fr of the continuous image and the discrete Fourier
transform (DFT) Yr of the shifted and discrete images are related via aliasing:

Yr(m, n) =
1

TxTy

+∞
∑

i=−∞

+∞
∑

j=−∞
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)

)
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Assuming that f(x, y) is band limited and using the shifting property of
the Fourier transform, the equation (1) can be rewritten in matrix form as

Y = ΦF (2)

where Y is a vector containing the DFT coefficients Yr(m, n) and F is a vector
containing the unknown CFT of f(x, y). The super resolution restoration
requires finding the DFT’s of the observed images, determining the motion
matrix Φ, solving the system of equations (2) for F and applying the inverse
DFT to compute the reconstructed image.

The key advantages of frequency domain methods are their theoreti-
cal simplicity and the low computational complexity. Their disadvantages
include the limitation to global translational motion, a spatially invariant
degradation model and limited ability to vary the point spread function over
the image.

In spatial domain methods, the most common approach is to model the
physical problem and to invert it. These approaches use a generic observation
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model of the form:

yr = DBWrz + nr for 1 ≤ r ≤ n (3)

where

• yr, r ∈ {1...n} denotes the low resolution images,

• z is the high resolution image,

• nr represents observation noise,

• D is the subsampling matrix,

• B a blur matrix,

• Wr is the geometric transformation of rth low resolution image.

The three operators can be combined into a single matrix Hr: Hr =
DBWr. The matrix Hr thus incorporates motion compensation, degradation
effects, and sub-sampling.

The problem is usually decomposed into two parts: motion estimation
(estimating the matrix Hr for each yr) and super-resolution reconstruction
(estimating z using the observation model). Accurate motion estimation
which is a critical aspect of super-resolution methods, can be performed us-
ing block matching techniques or optical flow methods for instance. Please
see [10, 11] for further details about motion estimation. The super-resolution
reconstruction can be performed using Simulate and Correct methods [12, 13],
Projection Onto Convex Sets methods [14] and Bayesian methods [15, 16].
One can note that in [16], motion estimation and the high resolution image
are jointly estimated. These spatial domain methods offer important advan-
tages in terms of flexibility but they can be computationally very expensive.
Lastly, another spatial domain approach is that of Interpolation-Restoration

[17]. In this case a super-resolution image is reconstructed from low resolu-
tion images using techniques for reconstruction from non-uniformly spaced
samples, and restoration techniques can be applied to compensate for degra-
dations. Such a general approach is suited to our problem of slice-by-slice
motion corruption, and we will take this direction in our work.
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1.2 Application to MRI

Building a high resolution 3D MR image of the fetal brain is challenging
because of the original 2D slice thickness, the intensity distortion, and the
unpredictable fetal motion which can occur in any direction and can be a
much as several centimeters in distance between slice acquisitions. As far as
we know, this problem which has been discussed before in the literature [18,
19] is still an open issue. Super-resolution has previously been investigated in
MRI using a specialized protocol to acquire shifted images [20, 21], where the
motion between slices is a known translation in the slice direction. Moore et

al. in [22] built a high resolution dynamic heart model from isotropic coronal
slices. The misalignment was corrected by registering a volume with sagittal
and axial scout images. Image intensities were averaged together to generate
a high resolution volume. Lotjonen et al. in [23] have proposed an algorithm
to correct translation-only movement artifacts simultaneously from short-
and long-axis cardiac MR series. Locations of short-axis slices were optimized
based on data from long-axis slices and vice versa. No reconstruction of a
higher resolution volume of the heart was done.

The task of compounding multiple orthogonal sets of low resolution fetal
MRI slices into a single high resolution dataset shares a number of common
features with the published methods in the super-resolution literature, but
presents significant additional problems. Specifically, we have multiple or-
thogonal datasets that have non-isotropic voxel size, we have subject motion
during slice acquisitions so that each 2D slice is misaligned with respect to
others in the acquisition, and the resulting stack of low resolution 2D slices
does not have a consistent 3D geometry. This movement can also mean a
loss of spatial information between slices, in regions of anatomy missed in
the acquisition due to the motion. The fully 3D motion artifacts make a
manual motion correction procedure unfeasible. Moreover, because the in-
tensity inhomogeneity of the MRI acquisition, the movement of the fetus
within the field of view can induce large scale changes in the illumination
pattern between acquisitions.

In this article we report our work on this challenging problem and describe
a fully automatic and accurate algorithm to correct slice misalignments, cor-
rect relative intensity distortions, and reconstruct a single high resolution
image from sets of clinically typical low resolution fetal MRI data.
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2 Method

Our overall aim is to reconstruct an image of the fetal brain that has in-
creased and isotropic sampling resolution, increased overall spatial resolution
(reduced point spread function), and consistent tissue intensity over the field
of view. The resolution of the source data is typically 1x1mm in plane with
3mm thick slices. Multiple sets consisting of between 20 and 40 slices each
are acquired over a period of around 20 seconds for each set. The slices are
commonly acquired in an interleaved pattern (usually alternating odd-even)
and significant movement of a centimeter or more can occur during the acqui-
sition of one set of slices. If the fetus moves quickly at the wrong time, single
slices can be corrupted due to motion. This is relatively rare, but typically in
the clinical protocol, these images are visually detected and the acquisition
repeated, until at least two nonmotion degraded sets of axial, sagittal, and
coronal slices of the fetal brain are obtained. It is therefore reasonable to
assume (and has be confirmed visually) in this type of data, that motion
corrupted slices are rare within the data we have to reconstruct. However
the algorithm could be applied with slices removed where within slice motion
occurs, by making use of the other orthogonal datasets to fill in the missing
structure.

We posed the task of recovering the local relative alignment of each slice
in 3 dimensions, but can make use of the consistent geometry provided in the
through plane direction of a slice that is provided by the other orthogonal
sets of slice data, to constrain the collective alignment of the multiple low
resolution images.

The proposed method is made up of three steps: motion correction, vol-
ume reconstruction and contrast correction.

2.0.1 Notations

Let us consider n low resolution 3D images, denoted by I i
LR, i ∈ {1...n}.

A so-called low resolution 3D image is a stack of 2D thick slices. Such a
notation is used in order to keep in mind that the low resolution source data
are not geometrically consistent. The reconstructed high resolution volume
is denoted by IHR.
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2.1 Motion Correction

In order to correct fetal motion, we propose to use a registration based
method. Any registration method consists of three components [24]: a sim-
ilarity measure between the two images, a transformation relating the coor-
dinate system of one image to that of another image, and an optimization
procedure to improve the transformation between the two images with re-
spect to the similarity measure.

Registration methods are usually classified as being either sparse (feature)
or dense (voxel) based. In the case of fetal brain MRI registration, because of
the 3D non-consistency of the scans, finding homologous 3D landmarks is a
very challenging task and we have therefore approached the problem using a
voxel based method. Registration methods rely on the fact that the similarity
measure is optimal when the two images are perfectly aligned. The choice of
one measure relies on the assumptions relating intensities in the two images:
an identity relationship, an affine relationship, a functional relationship and
a statistical relationship. Due to the motion and contrast artifacts corrupting
fetal MRI, it is highly desirable to use a similarity measure that is not based
on strong assumptions between the two images. Mutual information is a
measure of the statistical dependence between two random variables [25, 26].
The mutual information MI(X, Y ) is defined as follows:

MI(X, Y ) = h(X) + h(Y ) − h(X, Y ) (4)

where the marginal entropy h(X) is h(X) = −
∫

fX(x) log fX(x)dx and where
the joint entropy h(X, Y ) is h(X, Y ) = −

∫

fXY (x, y) log fXY (x, y)dxdy. To
reduce the sensitivity to changes in overlap, we use the normalized mutual
information [27] which is:

NMI(X, Y ) =
h(X) + h(Y )

h(X, Y )
. (5)

Maximization of NMI(X, Y ) seeks a transformation where joint entropy is
minimized with respect to the marginal entropies.

Motion correction is performed by aligning globally the low resolution
images together and then by aligning every slice of the low resolution images
to the reconstructed high resolution volume.
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2.1.1 Low Resolution Image Registration

The first step consists of approximately globally aligning the n low resolution
images. One low resolution image is chosen arbitrarily as the reference image
and is used to define a global coordinate system. The other low resolution
images are rigidly registered to the reference image (6 degrees of freedom: 3
translations and 3 rotations). The 3D rigid transformation between an image
I i
LR and the reference image is denoted T i

1. The high resolution volume
coordinate system is chosen to match with the global coordinate system
defined previously. Figure 1 illustrates the two transformations for each
slice and the different coordinate systems used during the slice and image
registration.

2.1.2 Slice Registration

Once the low resolution images are roughly globally aligned, slice motion
artifacts are corrected. The low resolution image acquisition is interleaved
so that odd and then even slices are acquired in sequence. As the fetus can
move during the exam and the observed structures are small, consecutive
slices may present completely different anatomical structures. Therefore,
we cannot register the slices using, for instance, a correlation assumption
between consecutive slices. Slice motion is therefore corrected by rigidly
registering a slice to the current reconstructed high resolution volume. This
high resolution volume is built using the current estimate of slice positions.

We register the slices of low resolution image I i
LR with the volume recon-

structed using the n − 1 other low resolution images I
j

LR, j ∈ {1...n, j 6= i}.
A local coordinate system is defined for every slice and the transformation
between a slice and the high resolution volume is composed from the two
rigid transformations:

yi

k
= T i

1T
i
2k

xi

k
(6)

where T i
2k

denotes the 3D rigid transformation (6 degrees of freedom)
from the slice k of the low resolution image i to low resolution image i

coordinates, xi

k
is the slice pixel coordinates and yi

k
the voxel coordinates in

the compounded high resolution volume (see Figure 1).
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2.1.3 Optimization

For both image and slice registration, a gradient ascent method is used to
maximize the normalized mutual information. Concerning slice registration,
we exploit the interleaved acquisition to propose an hierarchical approach
to provide a starting estimate to the optimization procedure. Slices of a
low resolution image are ordered by acquisition time and are separated into
two groups. The optimization consists in finding the optimal rigid transfor-
mations T2 between the new groups of slices and the low resolution image
coordinate system. The similarity measure is computed between the current
reconstructed volume and the group of slices. This is performed for the n

low resolution images. Once the convergence criterion is reached, each group
is divided into two groups and the optimization procedure is then performed
on these new groups of slices (see Figure 2).

For the final phase of alignment, we maximize independently the normal-
ized mutual information between each slice and the current reconstructed
high resolution volume. This uses an iterative slice-by-slice scheme, looping
over all slices until the sum of the slice-to-volume criteria (called the global
convergence criterion) does not increase. For each 2D-3D registration step,
a two-level multiresolution strategy is applied to avoid the pitfall of local
optima.

2.2 Volume Reconstruction

The reconstruction problem can be classified as scattered interpolation [28].
As a volume reconstruction is required repeatedly during the registration
and contrast correction steps, the reconstruction algorithm must be compu-
tationally efficient. To deal with the computation time constraint, a local
neighborhood approach has been adopted. Local methods are based on the
assumption that each point influences the resulting volume only up to a
certain finite distance.

For each pixel x in the slices of the original low resolution scans, the 3D
coordinates y of x in the high resolution volume are calculated taking into
account the results of the image and slice registration. The intensity value
of x is injected into the reconstructed volume using a kernel f centered at y.
If the kernel is a narrow boxcar function, the reconstruction method approx-
imates a the pixel nearest neighbor (PNN) method [29]. If the kernel is a
pyramid function, the method is referred to pixel trilinear (PTL) interpola-

9



tion [30]. Our choice of kernel is motivated by need to match the underlying
point spread function of the data. In the through slice direction this can be
modeled as a Gaussian [31]. The Gaussian kernel is perpendicular to the slice
plane, and the standard deviation determining the profile is chosen to match
the known acquisition profile. Within a slice plane of the MRI, the point
spread function can often be modeled as a sinc, but for simplicity we have
used a narrow Gaussian. Local methods such as these have the advantage of
making it possible to update the compounded image incrementally within a
limited spatial extent, thus requiring lower computational burden.

Using local reconstruction methods with a truncated kernel for speed,
gaps can occur in the reconstructed volume when sudden significant motion
occurs, and there is no data contributing to a given reconstructed point.
Empty voxels are filled using the average of the surrounding voxels. This
local approach has the advantage that it can be implemented very efficiently.
In practice, using a oriented Gaussian kernel, we found that gaps do not
occur using three or more orthogonal low resolution images.

2.3 Contrast Correction

We employ a contrast correction step to correct the local relative intensity
distortion between the low resolution images to allow accurate compounding.
Intensity changes from one 2D slice to another are both global and local.
To address this issue, one low resolution image is used as a reference for
tissue intensities and the other low resolution images are corrected to it. We
consider the relationship between contrasts in the low resolution image to be
corrected and the reference image as a spatially varying multiplicative field
which is assumed to vary smoothly over the field of view. A direct approach
to estimation is used where the two volumes are low pass filtered with a
Gaussian kernel G. The relative scaling in intensity βi(x) at location x of
the low resolution image I i

LR(x) is estimated for all slice pixels x as follows:

βi(x) = ai ∗
G(IR(x))

G(I i
LR(x))

with ai =

∑

x
I i
LR(x)

∑

x
I i
LR(x) G(IR(x))

G(Ii

LR
(x))

(7)

where IR is the intensity reference image, I i
LR is the low resolution image

considered and ai is used to keep the mean value of the image I i
LR unchanged.

IR is an arbitrary low resolution image projected in the reconstruction space.
The corrected low resolution image Î i

LR is then: Î i
LR(x) = βi(x)I i

LR(x).
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2.4 Overview of the algorithm

The proposed method consists in the following steps:

1. Apply global rigid registration between all the low resolution images.

2. Create initial slice registration estimate by hierarchical application of
Slice Registration Algorithm

3. For each Resolution:

(a) Apply Slice Registration Algorithm

(b) Test Global Criteria Reached

4. Apply relative intensity distortion correction

5. Reconstruct the final high resolution volume

Where the slice registration algorithm is the following:

1. For each low resolution image I i
LR:

(a) Reconstruct a high resolution volume using the low resolution im-
ages I

j

LR, j ∈ {1...n, j 6= i},

(b) For each slice in I i
LR, perform the 2D-3D registration.

3 Material and Evaluation Procedure

3.1 Simulated Motions on Real MR Datasets

Initially we want to explore the ability to recover slice to volume alignment
for typical but known motion, on typical anatomical structures. In order to
perform the most realistic simulation possible, we used as a starting point
3D MRI acquisitions of four premature neonates with high quality and no
motion. The post conceptional age of the premature neonates at the scan
acquisition was 28, 32.6, 34.3 and 42.6 weeks. T1 weighted SPGR images
were acquired on a 1.5T GE MRI scanner with a dedicated MRI compatible
incubator and had a spatial resolution of 0.7 x 0.7 x 2.1mm. The 3D image
was interpolated to isotropic voxels using B-spline interpolation. Figure 4
shows coronal views of the four premature neonates.
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In order to evaluate the slice registration algorithm, anisotropic subsam-
pled volumes with 6 degrees of freedom (DOF) motion artifact were simulated
from the isotropic neonatal image. Motion artifacts were defined by the max-
imum magnitude of the head motion and by the head motion type. The first
simulated motion was a sudden motion. It simulated a short fast movement
of the head during a short portion of the acquisition. The model used for
the simulation incorporates the interleaved aspect of acquisition. The second
type of motion was a temporally smooth motion simulated using B-Splines.
In both simulations, some information is lost due to missed portions of the
underlying anatomy. The displacements were chosen from a uniform distri-
bution with a varying range for [−x, x]mm translations in each direction and
between [−x, x] degrees for each rotation, x ∈ {1, 5, 10}. Compared with the
size of fetal brain, a head motion of ±10mm in translation is a significant
fraction of the diameter of the brain.

Figure 5 shows one isotropic premature neonate data and two examples of
simulated low resolution images using random motions (sudden motion and
smooth motion with a maximum magnitude of 10mm for the translation and
10 degrees for the rotations). These simulations from a known underlying
anatomy allow us to assess both the accuracy and the robustness of the
slice registration process. Considering n simulated low resolution images
already globally aligned, the hierarchical and the multiresolution strategies
are applied for the slice registration. Evaluation of the algorithm has been
done using 24 simulations.

The accuracy was assessed by computing a registration error measured
on a set of 4 points Pi distributed within every slices as follows: RMS =
√

1
n

∑n

i=1 TRE2
i , where TRE is the target registration error defined as fol-

lows: TREi = ‖Pi − T̂−1(T ∗(Pi))‖
2. T ∗ denotes the known applied motion

transformation and T̂ is the estimated geometric transformation. Pi form a
square of 100mm by 100mm in which the fetal brain is included. The error
previously defined provides thus a maximum bound of the registration error
for the region of interest.

3.2 Fetal Datasets

A typical clinical study of a fetus at our institute follows the following pro-
cedure: a quick localizer sequence is obtained in less than 30 seconds during
maternal free breathing in order to determine the location of the fetal head.
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No sedation or contrast agents were administered during the study, and this
study was approved by the UCSF IRB. Conventional Single-shot Fast Spin-
echo (SSFSE) T2-weighted images are then acquired during normal maternal
breathing (a single slice is acquired in less than one second). Sets of contigu-
ous slices were acquired in the axial, sagittal, and coronal planes with respect
to the fetal brain, based on the initial localizer. All images were acquired
in an interleaved manner to reduce saturation of spins in adjacent slices
due to fetal motion during the sequence. The sequence parameters were:
TR=6000, TE effective = 90 ms, field of view = 240mm (FOV), in plane
resolution about 1mm, 3mm slice thickness. The reconstruction method has
been performed on a database of 17 subjects.

4 Results

From the simulated motion experiments on premature neonatal data, we
evaluated the RMS registration error for four points at the corners of a box
within the brain tissue of size 100mm × 100mm for each slice. These are
presented in Figure 6. The simulated starting RMS error is up to 12mm.
Each point represents the result of one simulation and its coordinates are the
starting RMS error and the final RMS error. For all cases the final overall slice
alignment error was significantly reduced by the alignment process. Overall,
even with the presence of strong motion artifacts and significantly varying
developmental age, RMS errors remained below 1mm. In all the cases, visual
inspection of the obtained results was also very satisfactory (see Figure 5).
These experiments show the robustness of the proposed method to significant
fetal head motion and demonstrate that the stage of development of the
underlying brain anatomy does not affect the registration accuracy.

We then applied the algorithm to clinically acquired fetal MRI datasets
using the same optimization parameters. Each dataset consists of three or-
thogonal low resolution images (axial, coronal, sagittal). Figure 3 shows the
high resolution reconstructed volume compared to the three original low reso-
lution images. It clearly shows the quality improvement in terms of resolution
and motion correction provided by the proposed compounding method, even
with the presence of significant motion artifacts.

Figure 7 shows one low resolution image and the high resolution recon-
structed image, and the corresponding segmented brain from the original
coronal low resolution and the high resolution. The surface rendering of
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semi-interactive brain surface segmentation has been performed using the
rview software1. This figure clearly illustrates the importance of a geomet-
rically consistent and intensity consistent image when interpreting cortical
development. In the compounded image, early stages of the formation of the
temporal and frontal gyri are seen. In addition, in the original data one can
note that when the fetal brain is not entirely scanned in one of the sets, but
compounding multiple image sets where the extremities were scanned, allows
recovery of the whole brain.

Finally, Figure 8 shows the results of the proposed method at three dif-
ferent time points for the same subject (25, 30 and 34 weeks). Overall,
the results in terms of contrast and resolution are visually very satisfactory,
whatever the age of the subject. Such quality of the reconstructed images
allows us to study the early stages of the formation of the cortex.

5 Discussion

The ability to study the developing fetal brain in high resolution promises to
provide a vital source of clinical information which could contribute directly
to a number of challenging clinical questions. It will permit the use of many
quantitative morphometric analysis methods, originally developed to study
the adult [34] and neonatal brain [35, 36], to be applied to examine the
process of in utero brain development. Critically, high resolution imaging
is the key to seeing the process of cortical folding (in utero [32, 19] and
post mortem [33]), while consistent contrast allows us to study patterns of
myelination. Such data is valuable both to specific clinical questions and,
more fundamentally, to an improved understanding of the process of human
brain development.

In this paper we have described a new methodology to reconstruct in utero
high resolution 3D MRI scans of the fetal brain by proposing to compound
multiple sets of orthogonal 2D MRI slices. The method makes use of a novel
combination of 2D to 3D registration, relative inhomogeneity correction and
high resolution reconstruction from sparse data.

This is achieved by first globally registering the low resolution images, and
then applying an iterative slice alignment scheme which seeks to refine the
3D positioning of each slice to the current combined high resolution volume.
This step is embedded in a spatio-temporal acquisition-ordered hierarchical

1http://rview.colin-studholme.net
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scheme to recover the fetal brain trajectory, which employs multiple image
resolution refinement at each step. This is driven by normalized mutual
information to provide robustness to contrast variation induced my motion
of the fetal brain with respect to the imaging coil in the magnet. As a final
step, a relative intensity correction is applied between the low resolution
images to remove the differences in relative signal strength across the different
acquisitions in each region of the fetal brain.

In the proposed approach, an arbitrary low resolution image is used as
a reference image for the registration step and for the intensity correction
method. Since this reference is only used for the estimation of the initial
global rigid transformation, the choice of image does not have a significant
impact on the final registration result. The choice of the reference image for
the intensity correction step is also not critical, since the purpose of this part
of the algorithm is simply to correct the relative contrast variations between
the acquisitions for compounding. An absolute intensity correction can then
be applied after reconstruction. One assumption we have made is that fetal
motion within the time period of one slice is negligible. Since this assumption
is reasonable in most of the cases, it may happen that one slice is obscured by
motion artifact during the time of imaging. In such case, the corrupted slice
can be manually removed from the stack of slices. Further work concerning
this aspect would be to remove automatically corrupted slices using intensity
information between consecutive slices.

We have used a kernel-based local approach for the reconstruction step
of the algorithm. This approach can handle data with anisotropic resolution
and is computationally efficient. The overall algorithm thus takes less than
20 minutes to register three low resolution images and to reconstruct a high
resolution volume, running on a 3GHz Pentium 4 CPU. Although the pro-
posed method allows us to successfully recover the 3D geometry of the fetal
brain, there is still a slight loss of contrast in the reconstructed images. The
reconstruction issue can be seen as an approximation problem with sparse
data and anisotropic points. A possible way to improve the final quality
of the reconstructed volume could be to develop a dedicated approximation
method fast enough to handle these specific data. Moreover, further work
is needed to evaluate the influence of the different sources of errors on the
reconstructed volume quality: registration errors, intensity contrast varia-
tions and the reconstruction method. An elegant manner to reconstruct high
resolution fetal MR volume would be to include all these sources of errors in
an unified framework.
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Visual inspection of the obtained results on clinical data are very en-
couraging. The developed algorithm automatically reconstructs a 3D high
resolution geometrically consistent volume and it has proved to be robust to
large artifacts. This represents an important step towards 3D quantitative
analysis of the fetal brain. Further work is needed to better understand the
capabilities and limitations of the approach on a range of fetal motion profiles
and image quality. Moreover, in the future, we would like to investigate the
use of the proposed method to study other fetal organs and also for other
modalities such as functional MRI or diffusion tensor imaging (DTI) when
images are motion corrupted.
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Figure 1: Coordinate systems used during the slice and image registration.
Two rigid transformations are considered for each slice: T i

2k
between the slice

k and the low resolution image i and T i
1 between the low resolution image i

and the high resolution volume.
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Figure 2: Optimization example for slice registration exploiting interleaved
acquisition. The slices are grouped by time (in this example an image of
8 slices is considered). At the first step, the optimization is performed for
two groups of 4 slices each. At the next step, each group is divided into two
groups. At the end, the optimization is performed for each slice indepen-
dently.
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Figure 3: Acquired fetal MR image data (top 3 rows) with a resolution of
1x1x3mm. It can be noted that strong motion artefact corrupt the coronal
acquisition (second row). Lower row shows the resulting reconstructed high
resolution image (resolution 1x1x1mm).

24



(a) (b)

(c) (d)

Figure 4: Isotropic high resolution premature neonatal MRI datasets used
for the simulations showing large range of anatomy. The age at exam are:
(a) 28 weeks, (b) 32.6 weeks, (c) 34.3 weeks and (d) 42.6 weeks.
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(a)
(b)
(c)

Figure 5: (a) Original isotropic high resolution premature neonatal brain
MRI; (b) Simulated low resolution volume using sudden motion and cor-
responding high resolution reconstructed volume; (c) Simulated low resolu-
tion volume using smooth motion and corresponding high resolution recon-
structed volume. The maximum magnitude of the simulated motion was 10
(see text for more details)
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Figure 6: Simulation results for premature neonate MR images: starting
RMS errors versus final RMS errors in mm using two different simulated
motions (sudden motion and smooth motion). Each of the 24 simulations is
represented by a point. For all cases, final RMS errors remained below 1mm

(please note the difference of scaling between starting RMS and final RMS).
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Figure 7: High Resolution fetal MR image (2nd row) reconstructed from low
resolution images (1st row, coronal acquisition). 3rd row: Surface render-
ing of semi-automatic brain surface segmentation performed on original low
resolution image and on high resolution reconstructed image.

Figure 8: High resolution reconstructed images at three different time points
for the same subject (25, 30 and 34 weeks). This result illustrates that
whatever the age of the subject, the quality of the reconstruction volumes is
visually very satisfactory.

28


