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Abstract. In self-gravitating stars, two dimensional or geophysicalflows and in plasmas, long range
interactions imply a lack of additivity for the energy; as a consequence, the usual thermodynamic
limit is not appropriate. However, by contrast with many claims, the equilibrium statistical mechan-
ics of such systems is a well understood subject. In this proceeding, we explain briefly the classical
approach to equilibrium and non equilibrium statistical mechanics for these systems, starting from
first principles. We emphasize recent and new results, mainly a classification of equilibrium phase
transitions, new unobserved equilibrium phase transition, and out of equilibrium phase transitions.
We briefly discuss what we consider as challenges in this field.
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1. INTRODUCTION

In a large number of physical systems, any single particle feels a potential dominated
by interactions with far away particles: this is our definition of long range interactions.
In a system with algebraic decay of the inter-particle potential V (r) ∼

r→∞
rα , this occurs

whenα is less than the dimension of the system (these interactionsare sometimes called
”non-integrable”). Then the energy is not additive, as the interaction of any subpart of
the system with the whole is not negligible with respect to the internal energy of this
given part.

Self gravitating stars, after the discovery of negative specific heat in [1], have played
a very important historical role, by emphasizing the peculiarities in the statistical me-
chanics of systems with long range interactions. Besides astrophysical self gravitating
systems [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], the main physical examples of non-additive sys-
tems with long range interactions are two-dimensional or geophysical fluid dynamics
[12, 13, 14, 15, 16, 17] and a large class of plasma effective models [18, 19, 20, 21].
Spin systems [22] and toy models with long range interactions [23, 24, 25] have also
been widely studied. The links between these different subjects have been emphasized
recently [23].



In these systems, the most prominent and interesting physical phenomenon is the self
organization of the particles, or of the velocity field. Thisleads to coherent clouds of
particles in plasma physics, to galaxies and globular clusters in astrophysics and to large
scale jets and vortices in two dimensional or geophysical flows. Given the large number
of particles or of degrees of freedom, it is tempting to adopta statistical approach in
order to describe these phenomena. The statistical description of such a self organization,
both at the levels of equilibrium situations and relaxationtowards equilibrium (kinetic
theories), is a classical, long studied field. One of the aim of this proceeding is to insist
on the vitality of this old subject and to stress new advancesand remaining issues. By
contrast, the out of equilibrium statistical mechanics of such phenomena is still in its
infancy, and few studies have been devoted to it. We emphasize the importance of such
studies for real applications, as most plasma and geophysical physical phenomena are
out of equilibrium. We also describe some recent very suggestive results.

Both equilibrium and out of equilibrium phase transitions play a key role in our under-
standing of physics, because they separate regions of parameter space with qualitatively
different behaviors. Very naturally, a large part of our studies will be devoted to phase
transitions. We will especially stress the peculiar association of phase transitions with
negative specific heat and statistical ensemble inequivalence in systems with long range
interactions. We also insist on recently observed out of equilibrium phase transtions, in
the context of two dimensional flows. Finally, we describe our personal guesses for what
may be the challenges and interesting issues in the field of systems with long range inter-
actions. We hope this could open new discussions, although we are conscious that such
guesses are necessarily biased by personal prejudices. We actually sincerely hope that
future researches will be much richer than what we describe.The article is organized
in three main sections: equilibrium, relaxation to equilibrium and kinetic theories, non
equilibrium stationary states.

Equilibrium. Long range interacting systems are known to display peculiar ther-
modynamic behaviors. As additivity is often seen as a cornerstone of usual statistical
mechanics and thermodynamics, it is sometimes written in textbooks or articles that
“statistical mechanics or thermodynamics do not apply to systems with long range inter-
actions”. In this paper, we argue on the contrary that usual tools and ideas of statistical
mechanics do apply to such systems, both at equilibrium and out of equilibrium. How-
ever, reviewing a variety of recent works, we will show that acareful application of
these tools reveals truly unusual and fascinating behaviors, absent from the world of
short range interacting systems.

After a brief introduction on the unusual negative specific heat and other peculiar
thermodynamical phenomena, we discuss the usual assumptions of equilibrium statis-
tical mechanics and their interpretation in systems with long range interactions. Based
on the assumption of equal probability of any configuration with a given energy, we
then explain why the Boltzmann-Gibbs entropy actually measures the probability to
observe a given distribution function. This relies on our ability to prove large deviations
results for such systems. The result of this analysis is thatmicrocanonical and canonical
ensembles of systems with long range interactions are described by two dual variational
problems. We explain why such variational problems lead to possible generic ensemble
inequivalence, and to a richer zoology of phase transitionsthan in usual systems. A



natural question then arises: do we know all possible behaviors stemming from long
range interactions, and, if not, what are the possible phenomenologies? We answer
this question by discussing aclassificationof all microcanonical and canonical phase
transitions, in long range interacting systems, with emphasis on situations of ensemble
inequivalence [26]. Very interestingly many possible phase transitions and situations of
ensemble inequivalence have not been observed yet. We then describe, for two dimen-
sional flows, the first observation of appearance of ensembleinequivalence associated
to bicritical and azeotropy phase transitions.

Kinetic theories and relaxation toward equilibrium.Because systems with long
range interactions relax very slowly towards equilibrium,or because they can be forced
by external field, the study of out of equilibrium situationsis physically essential. During
the past century, there have been many attempts to find a general formalism for out of
equilibrium statistical mechanics, which would give the equivalent of the Gibbs picture
for out of equilibrium states. Unfortunately, as recognized by most of the statistical
mechanics community, until now any such attempt failed. This is mainly due to the fact
that our knowledge of out of equilibrium situations can not be parameterized by a small
number of macroscopic quantities, playing the same role as dynamical invariants for the
equilibrium theory. Then out of equilibrium statistical mechanics must be addressed by
a case by case careful examination of dynamics, using some appropriate probabilistic
description.

For relaxation to equilibrium of Hamiltonian systems with long range interactions,
standard tools have been developed, mainly kinetic theory.In the introductory para-
graph, we briefly explain the basic ideas of kinetic theories. In the following, we first
stress the role of a Vlasov description for small time, and then the role of Lenard-Balescu
equation (also called collisional Boltzmann equation in the context of self-gravitating
systems) for larger time. We also briefly review the recent application of Lynden-Bell
equilibrium statistical mechanics for the Vlasov equationto simple one dimensional
models. We also discuss new recent results for the kinetic theory of such systems.
The first is the generic existence, for the one particle stochastic process, of anomalous
diffusion and of long relaxation times. We guess that the implications of such a result
for the validity of the kinetic approach has not been well appreciated up to now. The
second class of results deals with the time of validity for the Vlasov approximation
and with the typical time needed to observe relaxation towards equilibrium. One of the
most striking result is that the Lenard Balescu operator vanishes identically for one
dimensional systems. This explains the existence of anomalous scaling laws for the
relaxation towards equilibrium in models like the HMF model.

Non equilibrium stationary states (NESS).Another class of out of equilibrium prob-
lems is the study of systems with long range interactions subjected to small non-
Hamiltonian forces and to weak dissipation. Such a framework is actually the most rele-
vant one for many physical applications. We will emphasize its interest for geophysical
flows, like for instance simplified models of ocean currents.



FIGURE 1. Caloric curve (temperatureT = β−1 as a function of the energyU) for the SGR model,
for ε = 10−2. The energies corresponding to the dashed vertical lines are referred to, from left to right,
asUlow, Utop, Uc, andUhigh. The decreasing temperature betweenUtop andUc characterizes a range of
negative specific heat and thus of ensemble inequivalence. At Uc, there is a microcanonical second order
phase transition associated with the canonical first order phase transition (please see the text for a detailed
explanation). Such a behavior is linked to the existence of tricritical points in both statistical ensembles
(see figure 2). A classification of all possible routes to ensemble inequivalence is briefly described in
section 2.4 or in [26].

The average balance between forcing and dissipation usually leads to statistically
stationary states, the properties of which may be studied experimentally, numerically
and theoretically. As there is no detailed balance, the system is maintained out of
equilibrium. The fluxes of the Hamiltonian conserved quantities then become essential
physical variables.

We show in this last section, that this leads, in the context of two dimensional flows,
to very interesting out of equilibrium phase transitions. We believe that the study of the
statistical mechanics of such non equilibrium stationary states and phase transitions, in
other systems with long range interactions, is one of the main challenges in this field.

2. EQUILIBRIUM STATISTICAL MECHANICS OF SYSTEMS
WITH LONG RANGE INTERACTIONS

2.1. Peculiarities of thermodynamics of systems with long range
interactions

For systems with long range interactions, the most intriguing thermodynamical prop-
erty is the generic occurrence of statistical ensemble inequivalence and negative specific
heat. Such possibilities have first been recognized and studied in the context of self
gravitating systems [1, 27, 11]. Afterwards, ensemble inequivalence and negative spe-
cific heat have been observed or predicted in a number of different physical systems:
two dimensional turbulence [12, 28, 29], plasma physics [28, 19], spin systems or toy
models [22, 25], or self gravitating systems in situations different from the simple initial
case [7, 5, 3, 4, 6, 30, 9]. A detailed description of each of these cases is provided in
[26].
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FIGURE 2. Phase diagrams for the SGR model. Left: for each value ofε, the critical energies where
a microcanonical phase transition occurs are represented by black points or circles. When the softening
parameter is varied, at the tricritical pointε = εµ

T , first order phase transitions (black points) change to
second order phase transitions (circles). Right: the bottom dashed line and black line represent respectively
Ulow (see fig. 1) andUhigh. The differenceUhigh−Ulow is the energy jump associated to a first order phase
transition in the canonical ensemble. This jump decreases to zero at canonical tricritical pointεc

T where the
canonical first order phase transition changes to a canonical second order phase transition. The tricritical
points have different energies andε values in both ensembles.

To motivate the following development, let us give an example where ensemble in-
equivalence appears in an unusual way. We discuss the equilibrium properties of the
Self Gravitating Ring (SGR) model, a toy model for self gravitating systems. Whereas
we mainly present here its equilibrium properties, we stress that this system is very in-
teresting also from a dynamical point of view, as it shows a number of out of equilibrium
quasi-stationary states [31, 32].

The Hamiltonian of the SGR model is:H = 1
2 ∑N

i=1 p2
i − 1

2 ∑N
i, j=1

1√
2

1√
1−cos(θi−θ j )+ε

.

Particles are constrained on a ring (0≤ θi ≤ 2π). The anglesθi are conjugate to the
momentapi . ε is a small scale softening of the gravitational interaction. We study the
phase transitions of this system and how they evolve whenε is varied. Please see [30]
for a detailed discussion.

Figure 1 shows the caloric curveT(U) for ε = 10−2, whereT is the temperature
andU is the energy. ForUtop < U < Uc the temperature is decreasing. The specific
heatC = dU/dT is thus negative in this area, showing that statistical ensembles are
not equivalent (in the canonical ensemble, the specific heatis always positive). The
horizontal dashed line is the Maxwell construction, which links microcanonical and
canonical ensembles. From it one sees that in the canonical ensemble, whenβ is varied,
there is a first order phase transition characterized by an energy jump between the values
Ulow andUhigh. This is a common feature in case of ensemble inequivalence.

What is less common is the concomitant existence of a second order phase transition
in the microcanonical ensemble, at the energyUc. At this point, the temperatureT is
continuous, whereas its derivative is discontinuous as it is clear from the curve. In figure
2, we show that this type of ensemble inequivalence, with thecoexistence of a first
order canonical first order phase transition and of a microcanonical second order phase
transition, is linked to the existence of a tricritical point in both ensembles.



The SGR model displays one possible route to ensemble inequivalence, out of sev-
eral others. However, there are some constraints on the possible phenomenologies. For
instance, at a second order phase transition, the negative specific heat jump must be pos-
itive. By contrast, the temperature jumps at a discontinuity associated with a first order
microcanonical phase transition must be negative (this means that when energy is in-
creased the system has a negative temperature jump). Summarizing all these constraints
yields aclassification[26] of all possible ensemble inequivalences and their links with
phase transitions. To prepare the discussion of this classification, we recall now the main
hypothesis and definitions of statistical equilibrium, in the context of systems with long
range interactions.

2.1.1. Additivity extensivity and thermodynamic limit

When studying statistical mechanics of non additive systems, the first problem one
has to deal with is the inadequacy of the thermodynamic limit(N → ∞, V → ∞ -V is
the volume-, withN/V kept constant). Indeed, what is physically important in order to
understand the behavior of large systems, is not really to study the largeN limit, but
rather to obtain properties that do not depend much onN for largeN (the equivalent
of intensive variables). For short range interacting systems, this is achieved through the
thermodynamic limit; for non additive systems, the scalinglimit to be considered is
different and depends on the problem. Let us considerN particles which dynamics is
described by the Hamiltonian

HN =
1
2

N

∑
i=1

p2
i +

c
2

N

∑
i, j=1

V(xi −x j) , (1)

wherec is a coupling constant. The thermodynamic limit in this caseamounts to send
N and the volume to infinity, keeping density andc constant. IfV(x) decreases fast
enough so that interactions for a particle come mainly from the first neighbors, then
increasingN at constant density has almost no effect on the bulk, and physical properties
are almost independent ofN: the thermodynamic limit is appropriate. This is wrong of
course if the potential for a particle is dominated by the influence of far away particles.
The appropriate scaling in this case may be as follows: fixed volume,c ∝ 1/N2, and
N → ∞ (others equivalent combinations are possible, as the one given below for self
gravitating particles).

The best known example of such a special scaling concerns self gravitating stars, for
which the rationM/R is usually kept constant, whereM is the total mass andR is the
system’s radius (thermodynamic limit would beM/R3 constant). Another toy example
is given and studied for instance in [33]. This type of scaling is also the relevant one for
point vortices in two dimensional and geophysical turbulence, where the total volume
and total vorticity have to be kept fixed, but divided in smaller and smaller units. Let
us note for completeness that in some cases, the thermodynamic limit is appropriate in
presence of long range interactions, for instance when somescreening is involved [34];
we shall exclude these cases in the following.



According to the above discussion, let us rewrite Eq. 1 usingthe convenient scaling
c = ±1/N:

HN =
1
2

N

∑
i=1

p2
i ±

1
2N

N

∑
i, j=1

V(xi −x j) (2)

This classical scaling of the coupling parameter is called the Kac’s prescription ([35])
or sometimes the mean field scaling (see for instance [36]). Within this scaling, taking
the limit N → ∞ with all other parameters fixed (fixed volume for instance), the sum
over i and j is clearly of orderN2, and the energy per particleHN/N is intensive. This
scaling is also the relevant one in order to obtain the collisionless Boltzmann equation,
for the dynamics, in the largeN limit. We will use Eq. 2 in the following.

2.1.2. The microcanonical and canonical ensembles

We suppose that the energyE of our system is known, and consider the microcanon-
ical ensemble. In this statistical ensemble all phase spaceconfigurations with energyE
have the same probability; the associated microcanonical measure is then

µN =
1

ΩN (E)

N

∏
i=1

dxidpiδ (HN ({xi , pi})−E) ,

where ΩN (E) is the volume of the energy shell in the phase spaceΩN (E) ≡∫
∏dxidpiδ (HN ({xi , pi})−E). We consider here the energy as the only parameter,

however generalization of the following discussion to other quantities conserved by the
dynamics is straightforward.

The only hypothesis of equilibrium statistical mechanics is that averages with respect
to µN will correctly describe the macroscopic behavior of our system. This hypothesis
is usually verified after a sufficiently long time, when the systems has “relaxed” to
equilibrium.

The Boltzmann entropy per particle is defined as

SN (E) ≡ 1
N

logΩN (E)

In the following, we will justify that in the long range thermodynamic limit, the entropy
per particleSN (E) has a limit:

SN (E) →
N→∞

S(E)

The canonical ensemble is defined similarly, using the canonical measure

µc,N =
1

ZN (E)

N

∏
i=1

dxidpi exp[−βHN ({xi , pi})] ,

with the associated partition functionZN (β ) ≡
∫

∏dridpi exp[−βHN ({xi , pi})] and
free energiesFN (β ) ≡ 1

N logZN (β ) andFN (β ) →
N→∞

F (β )



2.2. Large deviation results

2.2.1. Justification of the Boltzmann-Gibbs entropy

Let us consider the particle distribution onµ−spacef (x, p) ( f (x, p)dxdpis the prob-
ability to observe a particle with positionx and momentump). f defines a macrostate
as many microscopic states correspond to a givenf . As explained in the previous para-
graph, the hypothesis of usual statistical mechanics is that all microscopic states with a
given energyE are equiprobable. Given this uniformity in phase space, we address the
question: what is the number of microscopic states having the distributionf ?

It is a classical combinatorial result to show that the logarithm of number of micro-
scopic states corresponding to a distributionf is given by

s[ f ] = −
∫

dxdp flog f

wheres is sometimes called the Boltzmann-Gibbs entropy. It is the Boltzmann entropy
associated to the macrostatef , in the sense that it counts the number of microstates
corresponding tof . We stress thatno other functional has this probabilistic meaning,
and that this property is independent of the Hamiltonian.

Thanks to the long range nature of the interaction, for most configurations, the energy
per particle can be expressed in term of the distribution function f , using

h( f ) ∼
N→∞

∫
p2

2
f (x, p)dx dp +

∫
dx1dp1dx2dp2 f (x1,p1) f (x2,p2)V(x1−x2). (3)

This mean field approximation for the energy allows to conclude that the equilibrium
entropy is given by

SN (E) = log(ΩN (E)) ∼
N→∞

NS(E) with S(E) = sup
f
{s( f ) | h( f ) = E} (4)

In the limit of a large number of particles, the mean field approximation Eq. (3) and its
consequence the variational problem (4) have been justifiedrigorously for many systems
with long range interactions. The first result assumes a smooth potentialV and has
been proved by [36], see also the works by Hertel and Thirringon the self gravitating
fermions [27].

2.2.2. Large deviations

We explained why the Boltzmann-Gibbs entropy is the correctone to describe the
probability of a givenf . Large deviations provide a useful tool to obtain similar results
in a wider context. We refer to the very interesting contributions of Ellis and coworkers
([37, 29, 38, 39, 40]). We also refer to [41] for a simple detailed explanation of many
large deviations results in the context of long range interacting systems.

In a first step one describes the system at hand by a macroscopic variable; this
may be a coarse-grained density profilef , a density of charges in plasma physics, a



magnetization profile for a magnetic model. In the following, we will generically call
this macroscopic variablem; it may be a scalar, a finite or infinite dimensional variable.

One then associates a probability to each macrostatem. Large deviation theory
comes into play to estimateΩ(m), the number of microstates corresponding to the
macrostatem:

log(ΩN (m)) ∼
N→∞

Ns(m) .

This defines the entropys(m).
In a second step, one has to express the constraints (energy or other dynamical

invariants) as functions of the macroscopic variablem. In general, it is not possible to
express exactlyH; however, for long range interacting systems, one can definea suitable
approximating mean field functionalh(m), as in Eq. (3).

Having now at hand the entropy and energy functionals, one can compute the micro-
canonical density of statesΩ(E) ([37]): the microcanonical solution is simply given by
the variational problem

log(ΩN (E)) ∼
N→∞

NS(E) with S(E) = sup
m

{s(m) | h(m) = E} (5)

In the canonical ensemble, similar considerations lead to the conclusion that the free
energy and the canonical equilibrium are given by the variational problem

log(ZN (β )) ∼
N→∞

NF(β ) with F (β ) = inf
m
{−s(m)+βh(m)} (6)

We insist that this reduction of the microcanonical and canonical calculations to the
variational problems (5) and (6) is in many cases rigorouslyjustified.

2.3. Ensemble equivalence and simplification of variational problems

As discussed in the previous section, the microcanonical and canonical equilibrium
states are, most of the times, given by (5) and (6) respectively. These two variational
problems are dual ones: the canonical one is obtained from the microcanonical one
by relaxing a constraint. In the following section, we discuss the mathematical links
between two such dual variational problems. We then apply this to characterize ensemble
equivalence, and we use it to prove relations between classes of variational problems.

2.3.1. Relations between constrained and relaxed variational problems

It is possible to state some general results about the variational problems (5) and (6),
independently of the precise form of the functionss andh:

1. a minimizermc of (6) is a minimizer of (5), with constraintE = h(mc).
2. a minimizermµ of (5) is a critical point of (6) for someβ , but it is not always a

minimizer: it is a minimizer of (6) if and only ifScoincides with its concave hull at
pointE = h(mµ). Otherwise, it may be a local minimum, or a saddle point of (6).



Such results are extremely classical. More detailed results in this context may be
found in [37]. We also refer to [42] for a concise discussion and proof. The previous
points immediately translate into the language of statistical mechanics, and provide a
full characterization of ensemble inequivalence:

• A canonical equilibrium is always a microcanonical equilibrium for some energyE.
• A microcanonical equilibrium at energyE is a canonical equilibrium for some

temperature 1/β if and only if S coincides with its concave hull at energyE.
WheneverS coincides with its concave hull, we will say that the ensembles are
equivalent; otherwise we will say they are not equivalent.

2.3.2. Simpler variational problem for statistical equilibria

In the previous paragraph, we have explained relations between solutions of a con-
strained variational problem and of the associated relaxedone. Using similar results
and further theoretical considerations, it is possible to obtain much simpler variational
problems than the natural microcanonical ones, for the equilibria of Euler and Vlasov
equations [42]. We think that these new results provide essential simplifications that
will be useful in many studies, we thus describe them in this section. However, from a
physical point of view, these mathematical results may be viewed as technical, and we
advise the non expert reader to skip this section at first reading.

When studying statistical equilibria of systems with long range interactions, one has
to deal with variational problems with one or several constraints. In the case of the
statistical mechanics of the Euler (resp. the Vlasov equation), there is actually an infinite
number of Casimir’s functional conservation laws, encodedin the initial distributiond
of the vorticity field (resp. the particle distribution function). This is a huge practical
limitation. When faced with real phenomena, physicists canthen either give physical
arguments for a given type of distributiond (modeler approach) or ask whether there
exists some distributiond with equilibria close to the observed field (inverse problem
approach). However, in any case the complexity remains: theclass of equilibria is huge.

In the following of this paragraph, we describe recent mathematical results which
allow to relate the microcanonical equilibria to much simpler variational problems.
From a physical point of view, this simplification is extremely interesting. We describe
these results in the context of the equilibrium theory for the Euler equation (Robert
Sommeria Miller theory [15, 14] or RSM theory), but the following results may be
easily generalized to other cases like the statistical mechanics of the Vlasov equation.
We refer to [42] for a more detailed discussion.

>From a mathematical point of view, one has to solve a microcanonical variational
problem (MVP): maximizing a mixing entropyS [ρ] = −

∫
D d2x

∫
dσ ρ logρ, with

constraints on energyE and vorticity distributiond

S(E0,d) = sup
{ρ|N[ρ]=1}

{S [ρ] | E [ω ] = E0 ,D [ρ] = d } (MVP).



ρ (x,σ) depends on spacex and vorticityσ variables.
During recent years, authors have proposed alternative approaches, which led to prac-

tical and/or mathematical simplifications in the study of such equilibria. As a first exam-
ple, Ellis, Haven and Turkington [29] proposed to treat the vorticity distribution canon-
ically (in a canonical statistical ensemble). From a physical point of view, a canonical
ensemble for the vorticity distribution would mean that thesystem is in equilibrium
with a bath providing a prior distribution of vorticity. As such a bath does not exist, the
physically relevant ensemble remains the one based on the dynamics: the microcanon-
ical one. However, the Ellis-Haven-Turkington approach isextremely interesting as it
provides a drastic mathematical and practical simplification to the problem of comput-
ing equilibrium states. A second example, largely popularized by Chavanis [43, 44], is
the maximization of generalized entropies. Both the prior distribution approach of El-
lis, Haven and Turkington or its generalized thermodynamics interpretation by Chavanis
lead to a second variational problem: the maximization of Casimir’s functionals, with
energy constraint (CVP)

C(E0,s) = inf
ω

{
Cs[ω] =

∫

D
s(ω)d2x | E [ω] = E0

}
(CVP)

whereCs are Casimir’s functionals, andsa convex function (Energy-Casimir functionals
are used in classical works on nonlinear stability of Euler stationary flows [45, 46],
and have been used to show the nonlinear stability of some of RSM equilibrium states
[14, 47]).

Another class of variational problems (SFVP), that involvethe stream function only
(and not the vorticity), has been considered in relation with the RSM theory

D(G) = inf
ψ

{∫

D
d2x

[
−1

2
|∇ψ|2+G(ψ)

] }
(SFVP)

Such (SFVP) functionals have been used to prove the existence of solutions to the equa-
tion describing critical points of (MVP) [47]. Interestingly, for the Quasi-geostrophic
model, in the limit of small Rossby deformation radius, sucha SFVP functional is sim-
ilar to the Van-Der-Walls Cahn Hilliard model which describes phase coexistence in
usual thermodynamics [17, 48]. This physical analogy has been used to make precise
predictions in order to model Jovian vortices [17, 49]. (SFVP) functionals are much
more regular than (CVP) functionals and thus also very interesting for mathematical
purposes.

When we prescribe appropriate relations between the distribution functiond, the
functionss andG, the three previous variational problems have the same critical points.
This has been one of the motivations for their use in previousworks. However, a
clear description of the relations between the stability ofthese critical points is still
missing (Is a (CVP) minimizer an RSM equilibria? Or does an RSM equilibria minimize
(CVP)?). This has led to fuzzy discussions in recent papers.Providing an answer is
a very important theoretical issue because, as explained previously, it leads to deep
mathematical simplifications and will provide useful physical analogies.

In [42] we establish the relation between these three variational problems. The result is
that any minimizer (global or local) of (SFVP) minimizes (CVP) and that any minimizer



of (CVP) is an RSM equilibria. The opposite statements are wrong in general. For
instance (CVP) minimizers may not minimize (SFVP), but may be instead only saddles.
Similarly, RSM equilibria may not minimize (CVP) but be onlysaddles, even if no
explicit example has yet been exhibited.

These results have several interesting consequences :

1. As the ensemble of (CVP) minimizers is a sub-ensemble of the ensemble of RSM
equilibria, one can not claim that (CVP) are more relevant for applications than
RSM equilibria.

2. The link between (CVP) and RSM equilibria provides a further justification for
studying (CVP).

3. Based on statistical mechanics arguments, when looking at the Euler evolution at
a coarse-grained level, it may be natural to expect the RSM entropy to increase.
There is however no reason to expect such a property to be truefor the Casimir’s
functional. As explained above, it may also happen that entropy extrema be (CVP)
saddles.

2.4. Classification of phase transitions

Beyond the full characterization of ensemble inequivalence we have described above,
there are many other qualitative features of the thermodynamics that depend only on the
structureof the variational problems (5) and (6). Indeed, although the precise form of
the solution obviously depends on the problem at hand through the functionss(m) and
h(m), it is possible toclassifyall the different phenomenologies that one may find in
the study of a particular long range interacting system. Thequestions in that respect are,
increasing complexity at each step:

• what are the different possible types of generic points on anentropy curveS(E)
(these correspond to different phases)?

• what are the possible singular points of a genericS(E) curve (these correspond to
phase transitions)?

• what are the possible singular points on theS(E) curve, when an external parameter
is varied in addition to the energy (that is how phase transitions evolve when a
parameter is varied)?

We address these different levels in the following paragraphs, using results from [37, 26].
These results are obtained by adapting to the dual variational problems (5) and (6)
ideas that lead to the Landau classification of phase transitions. In the long range case
however, there is no approximation involved, so the classification does not suffer from
the problems of standard Landau theory (wrong critical exponents for instance).
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2.4.1. Generic points of an entropy curve

There are three types of generic points on the entropy curve,see Fig. 3:

• Concave points (that isCv > 0) where canonical and microcanonical ensembles are
equivalent.

• Concave points where ensembles are not equivalent.
• Convex points (Cv < 0), where ensembles are always inequivalent.

2.4.2. Singular points of a generic entropy curve: phase transitions

Generic points as described above define segments of entropycurves, separated by
singular points, that can be of several types. These points for systems without symmetry
are classified in Fig. 4.
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associated with symmetry breaking.

2.4.3. Singular points on a singular entropy curve

When an external parameter is varied, the entropy curve is modified. Some special
values of the parameter correspond to qualitative changes for the phase transitions. All
these possible qualitative changes are classified in [26]; Fig. 5 summarizes the results.

All types of phase transitions and ensemble inequivalencesfound in the literature
so far are reproduced in the classification. In addition, theclassification predicts the
possibility of new phenomenologies, and new routes to ensemble inequivalence, that
have not so far been observed in any specific model.

2.5. Examples of new phase transitions

In the previous section we explained the existence of many yet unobserved appearance
of ensemble inequivalence, associated to phase transitions, as described in [26]. More
recently the new finding of two such examples have been reported [50]: bicritical
points (a bifurcation from a first order phase transition towards two second order phase
transitions) and second order azeotropy (the simultaneousappearance of two second
order phase transitions at a bifurcation). We present here these new phase transitions;
they are associated with equilibrium states of the two dimensional Euler equation, when
there is a linear relation between vorticity and stream function. This was first studied
by Chavanis and Sommeria [51] in the context of the Robert-Sommeria-Miller (RSM)



statistical mechanics of 2D flows [15, 14]. They found a criterion for the existence
of a transition from a monopole to a dipole above a critical energy, for all (closed)
domain geometry. In this section, we present an alternativemethod providing the same
criterion, which generalizes to a large class of models, andthus shows the universality
of the phenomenon. More interestingly this new method clarifies the nature of the phase
transitions involved in this problem and makes the link withthe existence of an ensemble
inequivalence region. Those results are presented in a moregeneral context in [50],
where we note the interest of these phase transitions for very simple ocean models.

Euler equation and associated variational problem.Let us consider the 2D Euler
equation in a closed domainD . It can be written as a transport equation for the vorticity
ω = ∆ψ: ∂tω +u.∇ω = 0. The velocity fieldu is related toω via the stream functionψ:
u = ez×∇ψ, with ψ = 0 on∂D . We introduce the projectionsωi of the vorticityω on a
complete orthonormal basis of eigenfunctionsei(x,y) of the Laplacian:∆ei = λiei , where
the λi (all negative) are in decreasing order. The stationary states of this equation are
prescribed by a functional relationω = f (ψ). In the following we consider the solutions
of the variational problem:

S(E,Γ) = max
ω

{S [ω] | E [ω] = E & C [ω] = Γ} (7)

The variational problem (7) is similar to the generic problem (5) studied above, with two
constraints instead of one.

• S is the entropy of the vorticity fieldω; we restrict ourselves to a quadratic

functional:S [ω] = −1
2

〈
ω2

〉
D

= −1
2 ∑ω2

i .

• E is the total energy:E [ω] = 1
2

〈
(∇ψ)2

〉
D = −1

2 ∑i λiω2
i

• C is the circulation:C [ω] = 〈ω〉D = ∑i 〈ei〉ωi where〈ei〉 =
∫
D ei(x,y)dxdy

To compute critical points of the variational problem (7), we introduce two Lagrange
parametersβ andγ, associated respectively with the energy and the circulation conserva-
tion. Those critical points are stationary solutions for the initial transport equation with
f (ψ) = βψ − γ. The solutions of the variational problem will thus providethe equilib-
rium states of the Euler equation that present a linear relationship between vorticity and
stream function, for a given energy and circulation.

The aim of the following paragraphs is to determine which ones among the critical
points are solutions of (7). It will then be possible to draw aphase diagram in the plane
(Γ,E) for those equilibrium states.

Dual quadratic variational problems. The problem (7), with two constraints, will be
referred to as the microcanonical problem. As already explained earlier, it is sufficient
to study the easier unconstrained ensembles, unless there is inequivalence of ensembles.
The strategy is then the following. Start with the easiest problem:

J(β ,γ) = minq{−S [ω] +β E [ω]+ γC [ω]} (grand canonical). Check if all
possible values ofE or Γ correspond to a grand canonical solution; if yes
the problem is solved, otherwise, we turn to the more constrained problem:
F(β ,Γ) = minq{−S [q] +β E [q] | C [q] = Γ} (canonical).



In principle we could eventually have to solve the microcanonical problem. However,
in this case, we will see that the microcanonical ensemble isequivalent to the canonical
one: the whole range ofE andΓ will be covered by canonical solutions.

We notice first thatS , E are quadratic functionals and thatC is a linear functional.
We will thus have to look for the minimum of a quadratic functional with a linear part.

Let us callQ the purely quadratic part andL the linear part of this functional. Then we
have three cases

1. The smallest eigenvalue ofQ is strictly positive. The minimum exists and is achieved by a
unique minimizer.

2. At least one eigenvalue ofQ is strictly negative. There is no minimum.
3. The smallest eigenvalue ofQ is zero (with eigenfunctione0). If Le0 = 0 (case 3a), the

minimum exists and each state of the neutral direction{αe0} is a minimizer. IfLe0 6= 0,
(case 3b) then no minimum exists.

The grand canonical ensemble.In that case the quadratic operatorQ associated to
J = −S +β E + γC is diagonal in the Laplacian eigenvector basis. The variational
problem admits a unique solution if and only ifβ > λ1 (case 1. above). Ifβ = λ1(case
3. above), a neutral direction exists if and only ifγ = 0. By computing the energy
and circulation of all those states, we prove that there is a unique solution at each
point in the diagram(E,Γ), below a parabolaP (see figures 6 and 7-a). Because
the values of energies above the parabolaP are not reached, we conclude that there
is ensemble inequivalence for parameters in this region. Wethen turn to the more
constrained canonical problem to find solutions in this area.

The canonical ensemble.The circulation is now fixed. We first transform this prob-
lem into an unconstrained variational problem. By using thecirculation constraint, we
express one coordinate in term of the others:ω1 = (Γ−∑i ωi〈ei〉)/〈e1〉. This expres-
sion is then injected in the functionalF = −S + βE . The problem is now to find a
minimizer{ωi}i≥2 of this functional, without constraints. This case requires more com-
putations that the previous one since the operatorQ associated to the quadratic part of
F is no more diagonal in the basis{ei}.

We first notice that if the domain geometry admits one or more symmetries, it gener-
ically exists eigenfunctions having the property〈ei〉 = 0. In the subspace spanned by
all those eigenfunctions,Q is diagonal, and its smallest eigenvalue is positive as long
asβ > β 0

1 , whereβ 0
1 is the greatestλi on this subspace. Then we look for the value of

β such that the smallest eigenvalue ofQ is zero in the subspace spanned by eigenfunc-
tions with〈ei〉 6= 0. Let us callβ ∗ this value, andω∗ the corresponding eigenfunction:
Q[ω∗] = 0. We find after some manipulation thatβ ∗ is the greatest zero of the func-
tion f (x) = 1− x∑i≥1〈ei〉2/(x−λi). We conclude that there is a single solution to the
variational problem if and only ifβ > max

(
β 0

1 , β ∗). Whenβ = max
(
β 0

1 , β ∗), we dis-
tinguish two cases according to the sign ofβ 0

1 −β ∗ to discuss the existence of a neutral
direction:

• i) β 0
1 < β ∗ we then considerβ = β ∗. There is a solution (case 3a) ifΓ = 0 and no solution

(case 3b) forΓ 6= 0.
• ii) β 0

1 > β ∗ we then considerβ = β 0
1 . There is a solution (case 3a) for all values ofΓ.



FIGURE 6. Case i) Phase diagram for a domain having no symmetry, or witha symmetry axis in the
caseβ ∗ < β 0

1 . a) Internal parameters are circulationΓ and energyE. Straight line: first order transition.
ParabolaP: above this line there is no grand canonical solutions; onlycanonical and microcanonical
solutions exist. It corresponds to an ensemble inequivalence region. b) examples of flow. c) Equilibrium
entropyS as a function ofE andΓ. We see clearly a region where the concave envelop ofS(E,Γ) is
not equal toS(E,Γ), which includes the first order transition line; d)β = ∂S/∂E at fixedΓ: there is
no singularity. e)γ = ∂S/∂Γ at fixed E: there is a discontinuity ofγ at Γ = 0 (first order transition).
The Maxwell construction shows that the ensemble inequivalence region is associated with a first order
transition in the ensemble where the value of the energy is fixed.

We thus obtain a criterion, namely the sign ofβ 0
1 − β ∗, that provides two classes of

phase diagrams. This criterion depends only on the domain geometry. If the domain
admits a symmetry axis, and is sufficiently stretched in a direction perpendicular to this
axis, thenβ 0

1 > β ∗. For an ellipse, this is always the case. However, there are domains
with a symmetry axis for which one can find a critical aspect ratio τc that separates the
two cases. This is for instance the case of rectangular domains. Forτ > τc , case ii) is
realized (β 0

1 > β ∗) and forτ < τc, case i) is realized (β 0
1 < β ∗). To conclude, we find

two classes of phase diagrams:

• i) Domain without symmetry, or with symmetry with aspect ratio τ < τc (see figure
6). If Γ 6= 0, all energy values are reached in the canonical ensemble, and there is a
single solution for each point(Γ,E). If Γ = 0 (straight line on figure 6), two states
coexist for each energy valueE, andβ = β ∗.

• ii) Domain with symmetry and with an aspect ratioτ > τc (see figure 7). There is a
unique canonical solution at each point of the diagram belowa parabolaP0 in the
plane(E,Γ) (see the dashed line figure 7). Above this parabola,β = β 0

1 , and there is



FIGURE 7. Case ii) Phase diagram for a domain having a symmetry axis, and sufficiently stretched
in a direction perpendicular to this axis (caseβ ∗ > β 0

1 ). a),b),c),d),e): see figure (6). Dashed parabola
P0: second order transition line. Above this line,∂S/∂E = β 0

1 , and the choice of one state among two
possibilities breaks the system’s symmetry. We see that∂β/∂E is discontinuous at pointG, as well as
∂γ/∂Γ at pointsB andC, which is the signature of a second order phase transition.

two canonical solutions at each point of the diagram. They differ only by the sign of
the contribution of the Laplacian eigenvector associated to the eigenvalueβ 0

1 (it is a
dipole). Below the Parabola, this eigenmode has no contribution to the solution. The
choice of one solution among the two possibilities breaks the system’s symmetry
whenP0 is crossed. At high energy, the contribution of the dipole isdominant.

In both cases we find that all circulation and energy values have been reached by
canonical solutions. We conclude that microcanonical and canonical ensembles are
equivalent: all microcanonical solutions are also canonical solutions.

Description of phase transitions.The difference between the two classes of flow
is the existence of either first or second order phase transitions, corresponding respec-
tively to case i) and ii). The main observation is that first order and second order mi-
crocanonical transitions always take place in the ensembleinequivalence area. In that
respect, those transitions are signatures of ensemble inequivalence for this class of two-
dimensional flows, which could be observed in laboratory experiments on quasi two
dimensional flows.

The transition from systems of type i) to systems of type ii),when the geometry
is modified, leads to one of the predicted, but yet unobservedphase transition of the
classification [26], described here in sectionClassification of Phase Transitions. On



FIGURE 8. Bicritical point (from Ref. [50]) for a rectangular domain with aspect ratioτ. Bifurcation
from a first order transition line to two second order phase transition lines. Insets are schematic projections
of the EntropyS [ω ] in a plane(ω0

1 ,ω∗), by taking into account the constraints. M: maximum. m:
minimum. s: saddle.

figure 8, we consider a fixed energy, and present the phase diagram in the(Γ,τ) plane,
whereτ is an external parameter characterizing the aspect ratio ofthe domain. In the
microcanonical ensemble, there is a bifurcation from a firstorder transition line to two
second order transition lines at a critical valueτ = τc. Such a bifurcation is referred to
as a bicritical point.

2.6. Challenges in the equilibrium statistical mechanics

It seems fair to say that the equilibrium statistical mechanics of long range interacting
systems is well understood at a fundamental level, despite the important differences with
the short range case. However, some challenges and questions remain open; we mention
here some of them.

A first issue is the relevance for natural phenomenon or laboratory experiments: is
it possible to identify situations where equilibrium statistical mechanics satisfactorily
describes the structures observed (like in Jovian atmosphere [17])?

The main challenge is probably to observe negative specific heat and ensemble in-
equivalence in experiments or in real physical systems. Up to now, this has not been
possible. A first possibility would be to observe natural phenomena corresponding to sta-
tistical microcanonical equilibria, which are characterized by negative specific heat, like
for instance geophysical flows in microcanonical situations. Another possibility would
be to achieve this in the lab. One should consider a physical system sufficiently simple in
order to be able to characterize ensemble inequivalence, orthe computation of negative
specific heat. Moreover, exchanges of energy with the environment have to be negligible
over a sufficiently long time, in order to make sure that the microcanonical ensemble is
the relevant one; this imposes severe constraints on any laboratory setup. Several can-
didates have been considered. One of the most popular one maybe to build synthetic



magnetic systems with long range interactions. Another possibility could be to design
simple two dimensional flow experiments or two dimensional plasma experiments, in
order to reproduce the recently predicted ensemble inequivalence, as briefly describe
in [50].

There also several theoretical issues :

• Could we find physical examples of the new phase transitions found in the classifi-
cation?

• The structure of the dual variational problems (5) and (6) appears in other physical
contexts. Could the results described here, like for instance the classification of
phase transitions, have an interest, when applied to these different situations? For a
step in this direction, see for instance [52].

• A very interesting and difficult challenge would be to make the classification [26]
rigorous. This implies to give a precise mathematical definition to the notion of a
normal form for a mean field variational problem.

3. KINETIC THEORIES OF SYSTEMS WITH LONG RANGE
INTERACTIONS

The previous section provided a brief summary of old and new results for long range
interacting systems at equilibrium. Unfortunately, it turns out that the coherent structures
these systems form, and the stationary states they reach aregenerally out of equilibrium.
Although knowledge of equilibrium is a useful benchmark, which usually yields a
qualitative understanding of the physics, some new techniques are needed to really
understand the phenomena at hand. Clearly, we have to reintroduce the time in our
framework and study the dynamics of the systems.

We have seen that for systems with long range interactions, amean field approach is
usually exact in the limit of a large number of particles, when one wants to describe the
equilibrium macrostates. This is valid thanks to an averaging of the potential over many
particles. In the following we explain that a similar mean field approach is also valid
for the dynamics: at each time the potential and the force canbe expressed with a very
good approximation from the one particle distribution function, and thus the BBGKY
hierarchy can be safely truncated.

This well understood fact is the base of the kinetic theory for the dynamics of
systems with long range interaction. This led to the classical kinetic theories of self
gravitating stars, plasmas in the weak coupling limit, or point vortex models in two
dimensional turbulence. In the limit of a large number of particles, such dynamics is
well approximated by kinetic theories [53, 54, 16, 55, 56, 57]: to leading order in 1/

√
N

the dynamics is of a Vlasov type; after a much longer time, therelaxation towards
equilibrium is governed by Lenard-Balescu type dynamics (or its approximation by the
Landau equation).

In the next subsection, we introduce briefly the Vlasov dynamics, and the issue of
its time of validity. For a large numberN of particles, these systems may exhibit quasi-
stationary states (QSS) [58, 59] (in the plasma or astrophysical context see for instance
[60, 53]). We give a kinetic interpretation of such states asstable stationary solutions of



the Vlasov dynamics.
An interesting question is whether we can predict such Quasi-Stationary States, from

the initial condition of the Vlasov equation, using statistical mechanics. In the following
subsection, we present recent studies on the equilibrium statistical mechanics of the
Vlasov equation (and not of the N particle dynamics) [61, 62,63], in the spirit of Lynden-
Bell’s work [1] in the context of self-gravitating stars.

We then turn to the kinetic theory of these systems beyond thetime of validity of
Vlasov equation, which leads to the Lenard-Balescu equation. This allows to address
the important question of the time scale for the relaxation to equilibrium: this time scale
may be of orderN/ logN (this is a classical result by Chandrasekhar for relaxationto
equilibrium of self-gravitating stars, or of a plasma), of orderN (for a smooth potential),
or much larger thanN (this is related to the recent result that the Lenard-Balescu operator
identically vanishes for one dimensional systems [55]). This last result explains the
striking numerical observation of anN1.7 time scale in the HMF model [59].

In the following subsection, we explain how a classical kinetic approach allows to
describe the stochastic process of a single particle in a bath composed by a large number
of other particles. This stochastic process is governed by ausual Fokker-Planck equation.
In classical papers, this bath is at equilibrium. We stress here that this bath can also be a
bath of particles in an out of equilibrium Quasi Stationary State. We explain recent new
results [55] proving that this Fokker Planck equation has nospectral gap, and lead to
long time algebraic correlations and anomalous diffusion.This provides a quantitative
prediction for the algebraic autocorrelation function andanomalous diffusion indices,
previously observed in some numerical computations [64, 65, 66]. These theoretical
predictions have been numerically checked in [67]. Some more recent related results
have also been reported in [68]. We note that an alternative explanation, both for the
existence of QSS and for anomalous diffusion has been proposed in the context of
Tsallis non extensive statistical mechanics [69, 66] (see [59] and [55, 70] for further
discussions).

The last subsection is devoted to describe some remaining issues and challenges in
the context of the classical kinetic theory for systems withlong range interactions.
We also note that we do not describe many other existing dynamical properties which
are common to systems with long range interactions: vanishing Lyapounov exponents
[58, 71], breaking of ergodicity [72, 73, 74], ans so on. All of the common dynamical
properties of systems with long range interactions are a result of similar collective (self-
consistent) dynamics [75].

3.1. Vlasov dynamics and Quasi-Stationary states

As for the equilibrium statistical mechanics, one needs to choose a scaling to study
the kinetic theory; again, the scaling described in the equilibrium context, which ensures
that each particle experiences a force of order 1, is the appropriate one. The goal is now
to approximate the dynamics ofN ordinary differential equations for the discrete parti-
cles dynamics by a single Partial differential equation forthe one-particle distribution
function.



For definiteness, we consider the following Hamiltonian system:
{

ẋi = pi

ṗi = − 1
N ∑ j 6=i

dV
dx(xi −x j)

(8)

The range of the potentialV is supposed to be of the same order of magnitude as the
total size of the system: this is our definition for ”long range interaction”1.

Consider the following continuous approximation of the potential:

Φ(x, t) =

∫
V(y−x) f (y, p, t) dy dp; (9)

and the corresponding equation for the one-particle distribution function f (this is the
Vlasov equation):

∂ f
∂ t

+ p
∂ f
∂x

− ∂Φ
∂x

∂ f
∂ p

= 0 (10)

Replacing the true discrete potential byΦ neglects correlations between particles and
finite-N effects. However, as each particle interacts at any time with an extensive number
of other particles, one may hope that this mean field approachcorrectly reproduces the
potential experienced by a particle, and becomes exact in the infinite N limit. Under
some regularity assumptions for the potentialV, this is indeed correct, and it has been
rigorously proved (see [76] for a very regularV, [77] for a mildly singular potential).
To be more precise, these theorems state the following: takea discreteN-particles initial
condition and an initial continuous one-particle distribution function f (x, p,0) which is
close, in some sense, to the former; evolve theN particles according to (8), and evolve
f (x, p,0) according to (9) and (10); then theN-particles dynamics andf (x, p, t) will
remain close for a time at least of the order of logN. Several remarks are in order:

1. This implies that if thet → ∞ limit is taken for a fixedN, finite-N effects will come
into play; the evolution will then depart from the Vlasov equation, and we expect
the system to eventually reach the statistical equilibrium. However, for any finite
timeT there exists someN such that the system approximately follows the Vlasov
equation up to timeT.

2. The logN is optimal in the sense that there exist initial conditions such that the
discrete (8) and Vlasov (10) dynamics diverge on such a time scale (see [78] for
further discussion).2

3. However, this ”coincidence time” may in some cases be muchlonger: for instance,
discrete initial conditions close to a stable stationary state of the Vlasov equation
stay so for a time algebraic inN (see [59] for a numerical observation and [80] for
a mathematical investigation of the phenomenon).

1 Albeit rather general, equations (8) do not include the 2D flows, nor the wave-particles models; most of
the following discussion does apply to these cases too, withsmall modifications.
2 A recent consideration of the thermodynamic stability of a mean field Ising model with stochastic
dynamics has found the relaxation time to be logarithmic inN [79].



4. The analogous result for 2D flows is the convergence of the dynamics of discrete
vortices to the corresponding continuous partial differential equation for the vor-
ticity field (Euler, Quasi-geostrophic...). For 2D flows however, the fundamental
equation is the PDE, contrary to the classical particles case. A mathematical proof
of convergence is given in [81]. For wave-particles systems, the analogous theorem
is given in [82].

5. The mathematical proofs cited above do not include the gravitational and electro-
static 1/r cases. It seems however reasonable to believe that some convergence
result towards the Vlasov equation still holds in this case;Vlasov equation is rou-
tinely used by physicists for these potentials.

In the light of the previous remarks, and if the number of particlesN is big enough, the
following dynamical scenario now seems reasonable:

• Starting from some initial condition, theN-particles system approximately follows
the Vlasov dynamics, and evolves on a time scale of order 1.

• It then approaches a stable stationary state of the Vlasov equation; the Vlasov
evolution stops.

• Because of discreteness effects, the system evolves on a time scale of orderNα

for someα, and slowly approaches the full statistical equilibrium, moving along a
series of stable stationary states of the Vlasov equation.

In this scenario, theN-particles system gets trapped for long times out of equilibrium,
close to stable stationary states of the Vlasov equation: these are then called “quasi
stationary states” in the literature. This is the basis for the “violent relaxation” theory of
Lynden-Bell [1]; Refs. [61, 59, 83] give examples of this scenario for wave-particles, the
HMF and astrophysical models. The next problem is then to study the stable stationary
states of the Vlasov equation, that is the candidates for the“quasi stationary states”.
Before turning to this in the next paragraph, let us note thatthere is however no reason for
this scenario to be the only possibility: for instance, the Vlasov dynamics may converge
to a periodic solution of the Vlasov equation [84].

The Vlasov equation (as well as the Euler equation and its variants) has many in-
variants: beside the energyH[ f ] (and possibly the linear or angular momentum), inher-
ited from the discrete Hamiltonian equations, the following quantitiesCs[ f ], sometimes
called Casimirs, are conservedfor any function s:

Cs[ f ] =
∫

s( f (x, p, t)) dx dp. (11)

Using these invariants, it is possible to construct many stationary states of the Vlasov
equation. Consider the following variational problem, fora concave functions:

sup
f

{∫
s( f (x, p)) dx dp |

∫
f dx dp= 1 , H[ f ] = e

}
. (12)

Any solution of this variational problem yields a stationary solution of the Vlasov
equation. In addition, the variational structure of the construction is very useful to study
the stability of such states (see [29, 85] for more details).There is no constraint on the



concave functions, so that we have very many stable stationary states of the Vlasov
equation. As a consequence, many numerical or experimentalresults can be fitted with a
good choice ofs; this is also a serious limit of the theory: without a recipe to choose the
right stationary state, the theory is not predictive. We address this problem in the next
paragraph.

We have explained that any Vlasov stable stationary solution is a Quasi Stationary
State. Then, because inhomogeneous Vlasov stationary states do exist, one should not
expect Quasi Stationary States to be homogeneous. This is illustrated in the case of
several generalizations of the HMF model in Ref. [78].

The issue of the robustness of QSS when the Hamiltonian is perturbed by short range
interactions [86] or when the system is coupled to an external bath [87] has also been
addressed, and it was found that while the power law behaviorsurvives, the exponent
may not be universal.

3.2. Lynden Bell statistical mechanics

Under the Vlasov dynamics, the distribution functionf is advected, by a field which
itself depends onf . The conservation of Casimirs amounts to the conservation of the
area of all level sets

I[a,b] = {(x, p) such thata≤ f (x, p, t) ≤ b} ;

as time goes by the sets are filamented down to a finer and finer scale, and the filaments
get interwoven. Understanding the long time behavior of this complicated dynamics is
not an easy task, analytically or numerically. Assuming that f tends to one of the many
stable stationary states of the Vlasov equation, the Lynden-Bell statistical mechanics
is a recipe to choose the right one. In a nutshell, at fixed energy (and possibly linear
or angular momentum), it selects the most mixed state compatible with the Casimirs
conservation. It is a maximum entropy theory; the Lynden-Bell equilibrium is given by
the solution of a problem like (12), the functionsbeing determined by probability theory
and the initial distributionf (x, p, t = 0) 3.

The idea goes back to a pioneering work of Lynden-Bell in the context of astrophysics
in 1967 [1]; the problem was later revisited by Chavanis and collaborators [88], in
connexion with the statistical mechanics of 2D flows. Let us note that the analog of
Lynden-Bell theory for the Euler and Euler-like equations of 2D flows is the Robert-
Sommeria-Miller theory [89, 15, 14]: it relies on the very same ideas.

The Lynden-Bell and Robert-Sommeria-Miller theories havehad important successes;
let us mention here the descriptions of the core of elliptical galaxies, and the giant
vortices in Jupiter’s atmosphere [17]. However, this is theexception rather than the
rule. A lot of works have been devoted to checking these theories in different contexts,
to which we do not do justice here. To summarize them very briefly, the rule is that

3 We have to mention that the determination of the Lynden-Bellequilibrium is in general a difficult task;
the calculations are usually practical only for two- or three-levels initial distributions.



the phase space mixing induced by the Vlasov equation is not strong enough, so that
the theoretical predictions are in general at best qualitatively correct (see [63] for a
discussion of these issues; see also [90]).

3.3. Order parameter fluctuations and Lenard-Balescu equation

In this section, we explain briefly how one classically obtains exact expressions for
the 1/

√
N fluctuations of the order parameter, for a system with long range interactions

close to a Quasi Stationary State. In order to make this discussion as simple as possible,
we treat the case of the HMF model, a one dimensional system with a smooth two
body potentialV. We follow [55], and refer to [91] for a plasma physics treatment, to
[56, 57, 16] for the case of point vortices and to Ref. [92] forself-gravitating stars.

One could use an asymptotic expansion of the BBGKY hierarchy, where 1/
√

N is the
small parameter, and obtain the same results. The 1/

√
N fluctuations would then have

been obtained by explicitly solving the dynamical equationfor the two point correlation
function, while truncating the BBGKY hierarchy by assuminga Gaussian closure for
the three point correlation function. Such a procedure is justified in the largeN limit
(see Ref. [54]). Our presentation rather follows the Klimontovich approach.

The state of theN-particles system can be described by thediscretesingle particle
time-dependent density functionfd (t,x, p) = 1

N ∑N
j=1δ

(
x−x j (t)

)
δ

(
p− p j (t)

)
, where

δ is the Dirac function,(x, p) the Eulerian coordinates of the phase space and(xi , pi)
the Lagrangian coordinates of the particles. The dynamics is thus described by the
Klimontovich’s equation [54].

∂ fd
∂ t

+ p
∂ fd
∂x

− dV
dx

∂ fd
∂ p

= 0, (13)

where the potentialV that affects all particles isV(t,x) ≡ −
∫ 2π

0 dy
∫ +∞
−∞dp cos(x−

y) fd(t,y, p). This description of the Hamiltonian dynamics derived from(1) is exact : as
the distribution is a sum of Dirac functions it contains the information on the position
and velocity of all the particles. It is however too precise for usual physical quantities
of interest but will be a key starting point for the derivation of approximate equations,
valid in the largeN limit and describing average quantities.

WhenN is large, it is natural to approximate the discrete densityfd by a continu-
ous onef (t,x, p). Considering an ensemble of microscopic initial conditions close to
the same initial macroscopic state, one defines the statistical average〈 fd〉 = f0(x, p),
whereas fluctuations of probabilistic properties are of order 1/

√
N. We will assume that

f0 is any stable stationary solution of the Vlasov equation. The discrete time-dependent
density function can thus be rewritten asfd(t,x, p) = f0(x, p)+δ f (t,x, p)/

√
N, where

the fluctuationδ f is of zero average. We define similarly the averaged potential 〈V〉 and
its corresponding fluctuationsδV(t,x) so thatV(t,x) = 〈V〉+ δV(t,x)/

√
N. Inserting

both expressions in Klimontovich’s equation (13) and taking the average, one obtains

∂ f0
∂ t

+ p
∂ f0
∂x

− d〈V〉
dx

∂ f0
∂ p

=
1
N

〈
dδV
dx

∂δ f
∂ p

〉
. (14)



The lhs is the Vlasov equation. The exact kinetic equation (14) suggests that the quasi-
stationary states of sections 3.1 and 3.2 do not evolve on time scales much smaller than
N; this would explain the extremely slow relaxation of the system towards the statistical
equilibrium.

Let us now concentrate on stable homogeneous distributionsf0(p), which are station-
ary since〈V〉 = 0. Subtracting Eq. (14) from Eq. (13) and usingfd = f0 +δ f/

√
N, one

gets

∂δ f
∂ t

+ p
∂δ f
∂x

− dδV
dx

∂ f0
∂ p

=
1√
N

[
dδV
dx

∂δ f
∂ p

−
〈

dδV
dx

∂δ f
∂ p

〉]
.

For times much shorter than
√

N, we may drop the rhs encompassing quadratic terms
in the fluctuations. The fluctuating partδ f are then described, by the linearized Vlasov
equation (this is another result of the Braun and Hepp theorem [76, 93]). This suggests
to introduce the spatio-temporal Fourier-Laplace transform of δ f andδV. This leads to

δ̃V(ω,k) = −π
(
δk,1 +δk,−1

)

ε(ω,k)

∫ +∞

−∞
dp

δ̃ f (0,k, p)

i(pk−ω)
, (15)

where

ε(ω,k) = 1+πk
(
δk,1 +δk,−1

)∫ +∞

−∞
dp

∂ f0
∂ p

(pk−ω)
(16)

is the dielectric permittivity. The evolution of the potential autocorrelation, can therefore
be determined. For homogeneous states, by symmetry,〈δ̃V(ω1,k1)δ̃V(ω2,k2)〉 = 0
except ifk1 = −k2 = ±1.

3.3.1. Autocorrelation of the potential

One gets, after a transitory exponential decay, the generalresult

〈δV(t1,±1)δV(t2,∓1)〉 =
π
2

∫

C
dω e−iω(t1−t2) f0(ω)

|ε(ω,1)|2
. (17)

This is an exact result, no approximation has been done yet.

3.3.2. Lenard Balescu equation

A similar, but longer, calculation allows to compute the rhs. of Eq. (14), at order 1/N.
This is very interesting as it gives access to the slow evolution of the distributionf0
due to the “collisional” effects. This is, for systems with long range interactions, the
analogue of the Boltzmann equation for dilute system with short range interactions. We
do not describe the computation in details (see [91, 54]), aswe just want to discuss



qualitatively the collision operator. This collision operator is called the Lenard Balescu
operator and it leads to the Lenard Balescu equation.

For system of particle with long range interactions given bya two body potential
1
NV (x1−x2), the Lenard Balescu equation reads :

∂ f0(p, t)
∂ t

=− 1
N

∂
∂p

.

[∫
dkdp′ φ(k)

|ε(k,k.p′)|k.

(
f0(p)

∂ f0
∂p

(p′)− f0
(
p′) ∂ f0

∂p
(p)

)
δ

(
k.

(
p−p′))

]
,

(18)
wherek is a wave vector,φ(k) is the Fourier transform of the potentialV(x), and
|ε(k,k.p′)| is the dielectric permittivity. One note that this is a quadratic operator, as
for the Boltzmann equation. Moreover, this operator involve a resonance condition in
the Dirac distributionδ (k.(p−p′)).

>From this equation one clearly expects a relaxation towards equilibrium of any
Quasi-Stationary state with a characteristic time of orderN. We note that for plasma
or self gravitating systems, due to the smallr divergence of the interaction potential,
the Lenard Balescu operator diverges at small scales. This is regularized by close two
body encounters, fixing a small scale cutoff. This leads to a logarithmic correction to the
relaxation time, which is then the Chandrasekhar time proportional to log(N)/N.

One clearly sees on equation (18) that the mechanism for evolution of the distribution
function is related to the resonances of two particles. An essential point is that the
condition k.(p−p′) = 0 cannot be fulfilled for one dimensionnal systems. It would
indeed implyp = p′, and because the Lenard Balescu operator is odd in the variable
p, it will vanish. Another way to obtain the same result, is to directly compute the rhs
of Eq. (14). We do not report such long and tedious computations, but it shows that it
identically vanishes at order 1/N, for one dimensional systems.

This proves that Vlasov stable distribution function will not evolve on time scales
smaller or equal toN. This is an important result:generic out of equilibrium distribu-
tions, for one dimensionnal systems, evolve on time scales much larger than N. This is
in agreement with theN1.7 scaling law which was numerically reported [59].
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FIGURE 9. Panel (a) presents the temporal evolution of the magnetization M(t), for the HMF model,
for different particles numbers:N = 102(103), 103(102), 2.103(8), 5.103(8), 104(8) and 2.104(4) from
left to right, the number between brackets corresponding tothe number of samples. The horizontal line
represents the equilibrium value ofM. Panel (b) shows the logarithmic timescaleb(N) as a function ofN,
whereas the dashed line represents the law 10b(N) ∼ N1.7. From Ref. [59].



3.3.3. The stochastic process of a single particle in a bath

Let us now consider relaxation properties of a test-particle, indexed by 1, surrounded
by a background system of(N− 1) particles with a homogeneous distribution. The
fluctuation of the potential is thus

δV(t,x) ≡−
∫ 2π

0
dy

∫ +∞

−∞
dp cos(x−y)δ f (t,y, p)− 1√

N
cos(x−x1) . (19)

Using the equations of motion of the test particle and omitting the index 1 for the sake
of simplicity, one obtainsp(t) = p(0)− ∫ t

0du(dδV(u,x(u)))/(dx)/
√

N. By introducing
iteratively the expression ofx in the rhs and expanding the derivative of the potential, one
gets the result at order 1/N. The key point is that this approach does not use the usual
ballistic approximation. As a consequence, we obtain an exact result at order 1/N. This
is of paramount importance here to treat accurately thecollective effects. As the changes
in the impulsion are small (of order 1/

√
N), the description of the impulsion stochastic

process by a Fokker-Planck equation is valid. This last equation is then characterized by
the time behavior of the first two moments〈(p(t)− p(0))n〉. Using the generalization of
formula (17) when the effect of the test particle is taken into account, one obtains in the
larget-limit

〈(p(t)− p(0))〉 ∼
t→+∞

t
N

(
dD
dp

(p)+
1
f0

∂ f0
∂ p

D(p)

)
(20)

〈(p(t)− p(0))2〉 ∼
t→+∞

2t
N

D(p), (21)

where the diffusion coefficientD(p) can be written as

D(p) = 2Re
∫ +∞

0
dt eipt 〈δV(t,1)δV(0,−1)〉=

π2 f0(p)

|ε(p,1)|2
. (22)

These results are the exact leading order terms in an expansion where 1/N is the small
parameter.

Using time variableτ = t/N as suggested by Eqs. (20) and (21), the Fokker-Planck
equation describing the time evolution of the distributionof the test particle is

∂ f1(τ, p)

∂τ
=

∂
∂ p

[
D(p)

(
∂ f1(τ, p)

∂ p
− 1

f0

∂ f0
∂ p

f1(τ, p)

)]
. (23)

We stress that this equation depends on the bath distribution f0. It is valid both for equi-
librium and and out of equilibriumf0, provided thatf0 is a stable stationary solution
of the Vlasov equation. In the limitτ → ∞ (more precisely 1<< τ << N), the bracket
vanishes: the PDFf1 of the test particle converges toward the quasi-stationarydistribu-
tion f0 of the surrounding bath. This is in complete agreement with the result thatf0 is
stationary for time scales of orderN.

All the results of this section, except the fact that the Lenard Balescu equation
vanishes for one dimensional systems, are classical results. In the next section we explain
recent results related to the very interesting and peculiarproperties of the Fokker-Planck
equation (23).



3.4. Autocorrelation function with algebraic decay and anomalous
diffusion

In this subsection, we present recent results [55] which predicted the existence of
non exponential relaxation, autocorrelation of the momentum p with algebraic decay at
large time, and anomalous diffusion of the spatial or angular variablex. They clarify the
highly debated disagreement between different numerical simulations reporting either
anomalous [64] or normal [65] diffusion, in particular by delimiting the time regime for
which such anomalous behavior should occur. We briefly recall that when the moment
of ordern of the distribution scales likeτn/2 at large time, such a transport is called
normal. However,anomaloustransport [94, 95], where moments do not scale as in the
diffusive case, were reported in some stochastic models, incontinuous time random
walks (Levy walks), and for systems with a lack of stationarity of the corresponding
stochastic process [96].

These results have been obtained by analyzing theoretically the properties of the
Fokker-Planck equation (23). >From the physical point of view, as particles with large
momentump fly very fast in comparison to the typical time scales of the fluctuations
of the potential, they experience a very weak diffusion and thus maintain their large
momentum during a very long time (one sees from equation (22), using|ε(p,1)|2 →

p→∞
1,

that the diffusion coefficient decays as fast as the bath distribution f0(p) for large times).
Because of this very weak diffusion for largep, the distribution of waiting time for
passing from a large value ofp to a typical value ofp, is a thick distribution. This
explains the algebraic asymptotic for the correlation function. From a mathematical
point of view, these behaviors are linked to the fact that theFokker-Planck equation (23)
has a continuous spectrum down to its ground state (without gap). This leads to a non
exponential relaxation of the different quantities and to long-range temporal correlations
[55, 97]. These results will generalize to the kinetic theory of any system for which the
slow variable (here the momentum) live in an infinite space.

By explicitly deriving an asymptotic expansion of the eigenvalues and eigenfunctions
of the Fokker Planck equation, the exponent for the algebraic tail of the autocorrelation
function of momenta has been theoretically computed [55, 97]. This mechanism is
new in the context of kinetic theory. However, we have discovered later that similar
Fokker-Planck equations, with a rapidly vanishing diffusion coefficients obtained by
other physical mechanisms, had been studied [98, 99, 100]. Amore recent alternative
approach to the same phenomena has been proposed [68], together with interesting
discussions of kinetic applications.

Let us present the results in the context of the HMF model, forwhich algebraic large
time behaviors for momentum autocorrelations had been firstnumerically observed
in Refs. [69, 66]. In its Quasi Stationary States, the theoretical law for the diffusion
of anglesσ2

x (τ) has been also derived in [55, 97]. The predictions for the diffusion
properties are listed in Table 1.

When the distributionf0(p) is changed within the HMF model, a transition between
weak anomalous diffusion (normal diffusion with logarithmic corrections) and strong



TABLE 1. Asymptotic forms of initial distributionsf0(p), and theoret-
ical predictions of correlation functionsCp(τ) and the diffusionσ2

x (τ) in
the long-time regime. Asymptotic forms of the distributionand the pre-
dictions are assumed and predicted in the limits|p| → ∞ andτ → ∞ re-
spectively, whereτ = t/N is a rescaled time. The exponentα is given as
α = (ν −3)/(ν +2). See Ref. [55, 97] for details.

Tails f0(p) Cp(τ) σ2
x (τ)

Power-law |p|−ν τ−α τ2−α

Stretched exponential exp(−β |p|δ ) (lnτ)2/δ

τ τ(lnτ)2/δ+1
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FIGURE 10. Angles diffusion (< (x(t)− x(0))2 > as a function of time) in the HMF model, for a
quasi-stationary state. Points are from a N body numerical simulation, the straight line is the analytic
prediction by the kinetic theory. For large times< (x(t)−x(0))2 > ∼

t→∞
tν with ν 6= 1. Such an unexpected

anomalous diffusion is also observed at equilibrium (see [55] for more details)

anomalous diffusion is thus predicted. We have numericallyconfirmed the theoretical
predictions [67]. For initial distributions with power-law or Gaussian tails, correlation
function and diffusion are in good agreement with numericalresults. Diffusion is indeed
anomalous super-diffusionin the case of power-law tails, whilenormalwhen Gaussian.
In the latter case, the system is at equilibrium, but the diffusion exponent shows a loga-
rithmically slow convergence to unity due to a logarithmic correction of the correlation
function. This long transient time to observe normal diffusion, even for Gaussian dis-
tribution and at equilibrium, suggests that one should be very careful to decide whether
diffusion is anomalous or not.

We note the existence of another interpretation of Quasi Stationary States and anoma-
lous diffusion : the algebraic behaviors for momentum autocorrelations have been fitted
using q-exponential functions [69, 66], derived from Tsallis’ non extensive statistical
mechanics. Our theoretical and numerical results are in disagreement with this interpre-
tation (see [70, 55, 67] for further discussions). By contrast with the use of non extensive



statistical mechanics, we think that our theory explains the phenomena of long range
temporal correlation and of anomalous diffusion from first principles.

3.5. Challenges in kinetic theories

Our main message in this section is that a classical kinetic theory approach for these
long range interacting systems already explains many intriguing behaviors of these
systems. However, in contrast with the equilibrium theory,many questions remain open;
we mention here some of them, without any pretention to be exhaustive:

• Can we find a better recipe than Lynden-Bell’s theory to predict the outcome of
the Vlasov evolution? This seems hopeless in a general setting (see for instance the
discussion in [63]).

• Is it possible to explain the 1.7 exponent for the relaxation to equilibrium in the
HMF model, and does it have some universality? More generally, is it possible to
extract other general features of the dynamics beyond the Vlasov equation, like the
anomalous diffusion, or the long relaxation times described above?

• At the mathematical level: is it possible to improve on [80] concerning the lifetime
of QSS? Can the convergence theorems to the Vlasov equation be extended to more
singular potentials?

• The most important issue concerning kinetic theories is a clear understanding of
the limits of validity the different equations. Whereas, for smaller times, kinetic
theory are based on solid theoretical arguments, the understanding of larger time
behavior of an ensemble of trajectories, initially close toone another, is not yet
understood. Numerical computations could be very useful inorder to understand
that. Very few direct numerical tests of the kinetic theories have been performed
up to now. The main reason is probably the difficulty for such tests, because of the
long time needed for such test. We think it would be highly relevant to consider
such problem, in models as simple as possible.

4. OUT OF EQUILIBRIUM

4.1. Motivations

We have described the computation of equilibrium states forsystems with long range
interactions in the first section, and addressed the problemof relaxation to equilibrium
in the second one. These two types of problems concern isolated Hamiltonian systems,
systems which may be considered so on the relevant time scales, or systems in contact
with a thermal bath. In many cases of interest, the system experiences random forces
and dissipation. Very often the mechanism for dissipation and random forces are from a
different origin, and do not act as a thermal bath. As a consequence, detailed balance is
no more valid and the system is subject to fluxes of energy or possibly of other conserved
quantities; the average energy of the system is fixed by the balance between forcing and
dissipation. The understanding of the properties of the corresponding Non Equilibrium



Steady States (NESS) is thus of deep importance. We present here first studies of such
NESS in the context of systems with long range interactions.The most prominent result
is the finding of out of equilibrium phase transitions.

These first studies have been done in the context of two dimensional flows. This
is indeed essential in this case, as in many applications of fluid dynamics, one of the
most important problem is the prediction of the very high Reynolds’ large-scale flows.
The highly turbulent nature of such flows, for instance oceancirculation or atmosphere
dynamics, renders a probabilistic description desirable,if not necessary. At equilibrium,
a statistical mechanics explanation of the self-organization of geophysical flows has been
proposed by Robert-Sommeria and Miller (RSM). Out of equilibrium, there are several
practical and fundamental problems to understand: How the invariants are selected by
the presence of weak forces and dissipation? What are the associated fluctuations? Are
all forcings compatible with RSM equilibria?

We will thus study the Navier Stokes equation with weak random stochastic forces
and dissipation:

∂ω
∂ t

+u.∇ω = ν∆ω −αω + fs (24)

whereω is the vorticity, fs is a random force,αω is the Rayleigh dissipation andν is
the fluid viscosity.

4.2. Out of equilibrium phase transitions

In many turbulent geophysical flows, one can see transitions, at random times, be-
tween two states with different large scale flows. The most famous example are probably
the time reversal of the earth magnetic field. We may cite alsoexperimental studies of
such phenomena, for two dimensional magnetic flows [101], rotating tank experiment in
relation with weather regimes in meteorology [102], or magnetic field reversal in MHD
[103]. In all these examples, this generic phenomenon takesplace in systems with a
large number of degrees of freedom. The case of simple turbulent flows may be stud-
ied in much details theoretically and numerically; we focushere on the case of the two
dimensional Navier-Stokes equation with a random force.

Figure 11 shows the relaxation of the 2D Navier-Stokes equation to a statistically
stationary state. It illustrates that, depending on the aspect ratio of the domain, two types
of large scale flows are possibly observed, either dipoles orunidirectional (zonal) flows.
We note that these two topologies are also predicted by the equilibrium statistical theory.

As shown on figure 12, for some values of the control parameter(the aspect ratio
of the domain), we observe the coexistence of these two flow topologies: the system
switches back and forth, at random times, between dipole andunidirectional flows. This
phenomenology is similar to what happens when noise is addedto a bistable system. A
crucial difference here, is that the deterministic dynamics does not have two different
attracting states (there is no double well potential in thiscase).

These few figures show that NESS, for systems with long range interactions, may
exhibit very interesting phenomena. We hope that this will open a large number of new



FIGURE 11. Right panel: relaxation towards a statistically stationary state of the two dimensional
Navier Stokes equation. After a transient state with a dipole vorticity field, the flow switches to a zonal
(unidirectional) organization of the vorticity field. Leftpanel: for a different value of the control parameter
(here the aspect ratio of the domain), we observe a dipole organization in a statistically stationary situation.
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fundamental works on the subject. Moreover, in a forthcoming paper, we will discuss
the application of these results to geophysical flows.

5. CONCLUSION

We have briefly reviewed in this contribution old and new results on the old, but active,
subject of systems with long range interactions. We clearlyacknowledge that this review
is far from exhaustive and represents our personal interests.

In conclusion, it seems to us that equilibrium statistical mechanics of these non addi-
tive systems is very well understood: a careful applicationof standard tools allows one
to deal with the unusual non additivity condition, see the section devoted to equilibrium.
The situation is somewhat similar as far as relaxation to equilibrium is concerned: in
this case also, classical tools, namely those of kinetic theory, have proved sufficient to
explain some unexpected phenomena. Thus, we fell that thereis at present no obvious



need for an alternative theory describing the relaxation ofthese systems with long range
interacting.

Let us note that despite the successes of these well established theories, standard sta-
tistical mechanics at equilibrium, classical kinetic theory concerning the relaxation to
equilibrium, there remains open questions and challenges,and room for new discover-
ies, especially concerning the relaxation; we have tried tooutline a few of them along
the way. The most important are probably, on one hand the quest for ensemble inequiv-
alence, negative specific heat and phase transitions in natural phenomena or laboratory
experiment, and on the other hand the understanding of the limits of kinetic theories.
However, we feel that the most relevant questions, both theoretically and practically,
concern forced and dissipative systems, out of equilibrium. The last section presents
very recent preliminary steps towards an undertanding of these situations, for which the
theory is far less developed.
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