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Abstract. In self-gravitating stars, two dimensional or geophysilcaVs and in plasmas, long range
interactions imply a lack of additivity for the energy; asansequence, the usual thermodynamic
limit is not appropriate. However, by contrast with manyirtlg, the equilibrium statistical mechan-
ics of such systems is a well understood subject. In thisgeding, we explain briefly the classical
approach to equilibrium and non equilibrium statisticalcmanics for these systems, starting from
first principles. We emphasize recent and new results, maiclassification of equilibrium phase
transitions, new unobserved equilibrium phase transitio out of equilibrium phase transitions.
We briefly discuss what we consider as challenges in this field

Keywords: Long range interactions, Inequivalence of ensembles,tiitleeory, Out of equilib-
rium phase transitions, Two dimensional turbulence, Ggsighl flows.
PACS: 05.20.Dd, 05.20.Gg, 05.70.Fh, 05.70.Ln

1. INTRODUCTION

In a large number of physical systems, any single partigésfa potential dominated
by interactions with far away particles: this is our defimitiof long range interactions.
In a system with algebraic decay of the inter-particle ptteh (r) oe r%, this occurs

whena is less than the dimension of the system (these interacii@sometimes called
"non-integrable”). Then the energy is not additive, as titeraction of any subpart of
the system with the whole is not negligible with respect te ithternal energy of this
given part.

Self gravitating stars, after the discovery of negativecgfpeheat in [1], have played
a very important historical role, by emphasizing the pexitles in the statistical me-
chanics of systems with long range interactions. Besid&s@sysical self gravitating
systems[[2[]3[]14] 9] ¢] 7] 8 B.]10] 11], the main physical exesnpf non-additive sys-
tems with long range interactions are two-dimensional apggsical fluid dynamics
(L3, @3,[I#[T5[ 16, 17] and a large class of plasma effectivdais [I8,[IP[ 30} 21].
Spin systemg]22] and toy models with long range interasti@3, [2%,[2b] have also
been widely studied. The links between these differentestibjhave been emphasized

recently [2B].



In these systems, the most prominent and interesting pdyshenomenon is the self
organization of the particles, or of the velocity field. Theads to coherent clouds of
particles in plasma physics, to galaxies and globular etssh astrophysics and to large
scale jets and vortices in two dimensional or geophysicaldldiven the large number
of particles or of degrees of freedom, it is tempting to adestatistical approach in
order to describe these phenomena. The statistical désargd such a self organization,
both at the levels of equilibrium situations and relaxatiowards equilibrium (kinetic
theories), is a classical, long studied field. One of the dithis proceeding is to insist
on the vitality of this old subject and to stress new advam@cesremaining issues. By
contrast, the out of equilibrium statistical mechanics wérsphenomena is still in its
infancy, and few studies have been devoted to it. We emph#séizimportance of such
studies for real applications, as most plasma and geolydysical phenomena are
out of equilibrium. We also describe some recent very suggaesults.

Both equilibrium and out of equilibrium phase transitiotesya key role in our under-
standing of physics, because they separate regions of peagpace with qualitatively
different behaviors. Very naturally, a large part of ourdsés will be devoted to phase
transitions. We will especially stress the peculiar asgom of phase transitions with
negative specific heat and statistical ensemble inequigalan systems with long range
interactions. We also insist on recently observed out oflibgum phase transtions, in
the context of two dimensional flows. Finally, we describemersonal guesses for what
may be the challenges and interesting issues in the fieldstéys with long range inter-
actions. We hope this could open new discussions, althowgarevconscious that such
guesses are necessarily biased by personal prejudicesctiyasincerely hope that
future researches will be much richer than what we desciibe.article is organized
in three main sections: equilibrium, relaxation to equilimm and kinetic theories, non
equilibrium stationary states.

Equilibrium. Long range interacting systems are known to display pecthier-
modynamic behaviors. As additivity is often seen as a cstoae of usual statistical
mechanics and thermodynamics, it is sometimes writtenxtbo®ks or articles that
“statistical mechanics or thermodynamics do not apply 8tesys with long range inter-
actions”. In this paper, we argue on the contrary that usa@stand ideas of statistical
mechanics do apply to such systems, both at equilibrium anhdfeequilibrium. How-
ever, reviewing a variety of recent works, we will show thataaeful application of
these tools reveals truly unusual and fascinating behsyvadysent from the world of
short range interacting systems.

After a brief introduction on the unusual negative specigathand other peculiar
thermodynamical phenomena, we discuss the usual assurmpticequilibrium statis-
tical mechanics and their interpretation in systems witigloange interactions. Based
on the assumption of equal probability of any configuratiathva given energy, we
then explain why the Boltzmann-Gibbs entropy actually meas the probability to
observe a given distribution function. This relies on outigtto prove large deviations
results for such systems. The result of this analysis istti@tocanonical and canonical
ensembles of systems with long range interactions areitegdoy two dual variational
problems. We explain why such variational problems leadssfble generic ensemble
inequivalence, and to a richer zoology of phase transittbas in usual systems. A



natural question then arises: do we know all possible behsgtemming from long
range interactions, and, if not, what are the possible pinenologies? We answer
this question by discussingdaassificationof all microcanonical and canonical phase
transitions, in long range interacting systems, with ersghan situations of ensemble
inequivalence[[36]. Very interestingly many possible ghansitions and situations of
ensemble inequivalence have not been observed yet. We ésenilae, for two dimen-
sional flows, the first observation of appearance of ensembtgiivalence associated
to bicritical and azeotropy phase transitions.

Kinetic theories and relaxation toward equilibriumBecause systems with long
range interactions relax very slowly towards equilibriombecause they can be forced
by external field, the study of out of equilibrium situatiosphysically essential. During
the past century, there have been many attempts to find aajdoenalism for out of
equilibrium statistical mechanics, which would give theleglent of the Gibbs picture
for out of equilibrium states. Unfortunately, as recogdizgy most of the statistical
mechanics community, until now any such attempt failedsTeimainly due to the fact
that our knowledge of out of equilibrium situations can netdarameterized by a small
number of macroscopic quantities, playing the same roleg/aardical invariants for the
equilibrium theory. Then out of equilibrium statistical amanics must be addressed by
a case by case careful examination of dynamics, using sopre@mate probabilistic
description.

For relaxation to equilibrium of Hamiltonian systems witing range interactions,
standard tools have been developed, mainly kinetic thdorthe introductory para-
graph, we briefly explain the basic ideas of kinetic theorieghe following, we first
stress the role of a Vlasov description for small time, amahtine role of Lenard-Balescu
equation (also called collisional Boltzmann equation ia tdontext of self-gravitating
systems) for larger time. We also briefly review the recemtliaption of Lynden-Bell
equilibrium statistical mechanics for the Vlasov equatiorsimple one dimensional
models. We also discuss new recent results for the kine&orthof such systems.
The first is the generic existence, for the one particle ststoh process, of anomalous
diffusion and of long relaxation times. We guess that thelicagions of such a result
for the validity of the kinetic approach has not been wellrapated up to now. The
second class of results deals with the time of validity fog ¥asov approximation
and with the typical time needed to observe relaxation tdg/aquilibrium. One of the
most striking result is that the Lenard Balescu operatoiisveas identically for one
dimensional systems. This explains the existence of armmadcaling laws for the
relaxation towards equilibrium in models like the HMF madel

Non equilibrium stationary states (NESS)Another class of out of equilibrium prob-
lems is the study of systems with long range interactiongestdd to small non-
Hamiltonian forces and to weak dissipation. Such a framkwsoactually the most rele-
vant one for many physical applications. We will emphasigénterest for geophysical
flows, like for instance simplified models of ocean currents.



FIGURE 1. Caloric curve (temperatufé = 8~ as a function of the enerdy) for the SGR model,
for ¢ = 10~2. The energies corresponding to the dashed vertical lireesederred to, from left to right,
asUjow, Utop, Ue, andUpigh. The decreasing temperature betwékg), andU¢ characterizes a range of
negative specific heat and thus of ensemble inequivalertdg;,Ahere is a microcanonical second order
phase transition associated with the canonical first ordas@transition (please see the text for a detailed
explanation). Such a behavior is linked to the existenceiaftical points in both statistical ensembles
(see figureﬂZ). A classification of all possible routes to ertse inequivalence is briefly described in

sectior] 24 or in[[26].

The average balance between forcing and dissipation ysleatls to statistically
stationary states, the properties of which may be studigeraxentally, numerically
and theoretically. As there is no detailed balance, theegyss maintained out of
equilibrium. The fluxes of the Hamiltonian conserved qusegithen become essential
physical variables.

We show in this last section, that this leads, in the contétwo dimensional flows,
to very interesting out of equilibrium phase transition® Wélieve that the study of the
statistical mechanics of such non equilibrium stationaayes and phase transitions, in
other systems with long range interactions, is one of thenrclaallenges in this field.

2. EQUILIBRIUM STATISTICAL MECHANICS OF SYSTEMS
WITH LONG RANGE INTERACTIONS

2.1. Peculiarities of thermodynamics of systems with longange
interactions

For systems with long range interactions, the most intigahermodynamical prop-
erty is the generic occurrence of statistical ensembleunatence and negative specific
heat. Such possibilities have first been recognized andestud the context of self
gravitating systemqJ1, RT,]11]. Afterwards, ensemble imejence and negative spe-
cific heat have been observed or predicted in a number ofreliffephysical systems:
two dimensional turbulencé J112,]12B,]29], plasma physdick [[&8, spin systems or toy
models [ZR[ 5], or self gravitating systems in situatioiffetent from the simple initial
case [[I7[B[13[1419,B0] 9]. A detailed description of each ef¢hcases is provided in

[2d].
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FIGURE 2. Phase diagrams for the SGR model. Left: for each valug tfe critical energies where

a microcanonical phase transition occurs are represegtéthbk points or circles. When the softening
parameter is varied, at the tricritical poiait= s#, first order phase transitions (black points) change to
second order phase transitions (circles). Right: the bottashed line and black line represent respectively
Uiow (see fig |]l) antlygn. The differencénigh — Ujow is the energy jump associated to a first order phase
transition in the canonical ensemble. This jump decreasesrb at canonical tricritical poirf where the
canonical first order phase transition changes to a cari@@cand order phase transition. The tricritical
points have different energies andalues in both ensembles.

To motivate the following development, let us give an examphere ensemble in-
equivalence appears in an unusual way. We discuss the equili properties of the
Self Gravitating Ring (SGR) model, a toy model for self gtating systems. Whereas
we mainly present here its equilibrium properties, we sttbat this system is very in-
teresting also from a dynamical point of view, as it showsm@aber of out of equilibrium
quasi-stationary statef ]3] 32].

The Hamiltonian of the SGR model ist = 3 3N ; p? — %Zi’\,ljzlé \/17cos(16‘,76,-)+s'

Particles are constrained on a ring<06; < 2m). The angless, are conjugate to the
momentap;. € is a small scale softening of the gravitational interactie study the
phase transitions of this system and how they evolve whisrnvaried. Please sef [30]
for a detailed discussion.

Figure[lL shows the caloric curve(U) for € = 1072, whereT is the temperature
andU is the energy. Folp < U < U the temperature is decreasing. The specific
heatC = dU/dT is thus negative in this area, showing that statistical ries are
not equivalent (in the canonical ensemble, the specific isealways positive). The
horizontal dashed line is the Maxwell construction, whigtk$ microcanonical and
canonical ensembles. From it one sees that in the canomisah®le, whe is varied,
there is a first order phase transition characterized by arggjump between the values
Ujow andUpigh. This is a common feature in case of ensemble inequivalence.

What is less common is the concomitant existence of a secaladl phase transition
in the microcanonical ensemble, at the enddgy At this point, the temperature€ is
continuous, whereas its derivative is discontinuous asdldgar from the curve. In figure
B, we show that this type of ensemble inequivalence, withcthexistence of a first
order canonical first order phase transition and of a microngcal second order phase
transition, is linked to the existence of a tricritical poiim both ensembles.




The SGR model displays one possible route to ensemble wedgoce, out of sev-
eral others. However, there are some constraints on thébpmpsenomenologies. For
instance, at a second order phase transition, the negpgedis heat jump must be pos-
itive. By contrast, the temperature jumps at a discontynasisociated with a first order
microcanonical phase transition must be negative (thisns'@aat when energy is in-
creased the system has a negative temperature jump). Strmgaitl these constraints
yields aclassificationPq] of all possible ensemble inequivalences and theirsliwkh
phase transitions. To prepare the discussion of this &lzessdn, we recall now the main
hypothesis and definitions of statistical equilibrium, e tontext of systems with long
range interactions.

2.1.1. Additivity extensivity and thermodynamic limit

When studying statistical mechanics of non additive systehe first problem one
has to deal with is the inadequacy of the thermodynamic I{Mit> co, V — o -V is
the volume-, withN/V kept constant). Indeed, what is physically important ineorid
understand the behavior of large systems, is not reallyudysthe largeN limit, but
rather to obtain properties that do not depend muciNdor large N (the equivalent
of intensive variables). For short range interacting systethis is achieved through the
thermodynamic limit; for non additive systems, the scaliimgt to be considered is
different and depends on the problem. Let us consii@articles which dynamics is
described by the Hamiltonian

N
=353 Ptz Y Vix—x), (1)

wherec is a coupling constant. The thermodynamic limit in this caseunts to send
N and the volume to infinity, keeping density andconstant. 1fV(x) decreases fast
enough so that interactions for a particle come mainly frbm first neighbors, then
increasingN at constant density has almost no effect on the bulk, andgddysoperties
are almost independent bf. the thermodynamic limit is appropriate. This is wrong of
course if the potential for a particle is dominated by theuiefice of far away patrticles.
The appropriate scaling in this case may be as follows: fix@dme,c 0 1/N?, and

N — o (others equivalent combinations are possible, as the oren dielow for self
gravitating particles).

The best known example of such a special scaling concerhgragltating stars, for
which the rationM /R is usually kept constant, wheh is the total mass ang is the
system’s radius (thermodynamic limit would Mg/R® constant). Another toy example
is given and studied for instance n]33]. This type of saaimalso the relevant one for
point vortices in two dimensional and geophysical turba&rnwhere the total volume
and total vorticity have to be kept fixed, but divided in sraaknd smaller units. Let
us note for completeness that in some cases, the thermodyham is appropriate in
presence of long range interactions, for instance when seneening is involved [34];
we shall exclude these cases in the following.



According to the above discussion, let us rewrite [fq. 1 ustilegconvenient scaling
c==+1/N:

Zpﬁim ZV —Xj) (2)

i,]=1
This classical scaling of the coupling parameter is caled¢ac’s prescription [[35])
or sometimes the mean field scaling (see for instande [36Gthik\this scaling, taking
the limit N — o with all other parameters fixed (fixed volume for instanckg sum
overi and j is clearly of ordeN?, and the energy per partickéy /N is intensive. This
scaling is also the relevant one in order to obtain the ¢otliess Boltzmann equation,
for the dynamics, in the largd limit. We will use Eq[P in the following.

2.1.2. The microcanonical and canonical ensembles
We suppose that the energyof our system is known, and consider the microcanon-

ical ensemble. In this statistical ensemble all phase spacigurations with energlg
have the same probability; the associated microcanonieabnore is then

=5 (F (0%, P} —E).

where Qn (E) is the volume of the energy shell in the phase sp@ggE) =
JNdxdpd (Hn ({xi,pi}) —E). We consider here the energy as the only parameter,
however generalization of the following discussion to otipgantities conserved by the
dynamics is straightforward.

The only hypothesis of equilibrium statistical mechangtiat averages with respect
to un will correctly describe the macroscopic behavior of ourteys This hypothesis
is usually verified after a sufficiently long time, when thestggns has “relaxed” to
equilibrium.

The Boltzmann entropy per particle is defined as

SNE) =5 |OQQN( )

In the following, we will justify that in the long range theodynamic limit, the entropy
per particleSy (E) has a limit:
SN (E) — S(E)

N—oo

The canonical ensemble is defined similarly, using the c@abmeasure

N
Hen = ZN—l(E)Ddxdn expl—BHy ({x. pi})].

with the associated partition functiaty () = [ []dridp exp[—BHn ({xi, pi})] and
free energiesy (B) = %IogZN (B) andRy (B) N F(B)



2.2. Large deviation results

2.2.1. Justification of the Boltzmann-Gibbs entropy

Let us consider the particle distribution gr-spacef (x, p) (f (x, p) dxd pis the prob-
ability to observe a particle with positionand momentunp). f defines a macrostate
as many microscopic states correspond to a givels explained in the previous para-
graph, the hypothesis of usual statistical mechanics tsafthenicroscopic states with a
given energ)E are equiprobable. Given this uniformity in phase space, deeess the
guestion: what is the number of microscopic states haviagltstributionf ?

It is a classical combinatorial result to show that the Idgar of number of micro-
scopic states corresponding to a distributfas given by

s[f] = —/dxdp flog f

wheresis sometimes called the Boltzmann-Gibbs entropy. It is tbhéZBnann entropy
associated to the macrostatein the sense that it counts the number of microstates
corresponding td. We stress thato other functional has this probabilistic meanjng
and that this property is independent of the Hamiltonian.

Thanks to the long range nature of the interaction, for mostigurations, the energy
per particle can be expressed in term of the distributioetion f, using

2
h(f) N:w/ % f(x, p)dxdp+ /dxld prdxod p2 f(Xq, p1) f (X2, P2)V (X1 —%2).  (3)

This mean field approximation for the energy allows to codelthat the equilibrium
entropy is given by

Su(E) = log (@n(E)) ~_NS(E) with S(E) = sup(s(f) (1) =E} (4

In the limit of a large number of particles, the mean field appnation Eq. [B) and its
consequence the variational probldin (4) have been justifiecbusly for many systems
with long range interactions. The first result assumes a #mpotentialV and has
been proved by[[36], see also the works by Hertel and Thimimghe self gravitating
fermions [2}].

2.2.2. Large deviations

We explained why the Boltzmann-Gibbs entropy is the corose to describe the
probability of a givenf. Large deviations provide a useful tool to obtain similaulés
in a wider context. We refer to the very interesting conttidms of Ellis and coworkers
([B7,[29,[38,3P[40]). We also refer tp J41] for a simple diehiexplanation of many
large deviations results in the context of long range irtiing systems.

In a first step one describes the system at hand by a macroscapable; this
may be a coarse-grained density profilea density of charges in plasma physics, a



magnetization profile for a magnetic model. In the followimge will generically call
this macroscopic variabl®; it may be a scalar, a finite or infinite dimensional variable.

One then associates a probability to each macrostatearge deviation theory
comes into play to estimat@(m), the number of microstates corresponding to the
macrostaten:

Iog(QN(m))Nr:mNs(m) .
This defines the entrops(m).

In a second step, one has to express the constraints (energghey dynamical
invariants) as functions of the macroscopic variabldn general, it is not possible to
express exactlil; however, for long range interacting systems, one can dafsugtable
approximating mean field functiona{m), as in Eq. [([3).

Having now at hand the entropy and energy functionals, onecmpute the micro-
canonical density of stat€3(E) ([B4]): the microcanonical solution is simply given by
the variational problem

log(Qw (E))~_ NSEE) with S(E) = sup{s(m) | h(m) = E} (5)

In the canonical ensemble, similar considerations leada@abnclusion that the free
energy and the canonical equilibrium are given by the vianal problem

10g(Zx (B)) ~_NF(B) with F (8) = inf {—s(m) + Bh(m)} )

We insist that this reduction of the microcanonical and cécad calculations to the
variational problemd]5) anfl] (6) is in many cases rigorojsified.

2.3. Ensemble equivalence and simplification of variatiorigoroblems

As discussed in the previous section, the microcanoniaélcamonical equilibrium
states are, most of the times, given Py (5) did (6) respégtiVbese two variational
problems are dual ones: the canonical one is obtained fremilerocanonical one
by relaxing a constraint. In the following section, we dissuihe mathematical links
between two such dual variational problems. We then apmydltharacterize ensemble
equivalence, and we use it to prove relations between dagsariational problems.

2.3.1. Relations between constrained and relaxed vanatiproblems

It is possible to state some general results about the i@ratproblems|[(5) and](6),
independently of the precise form of the functieendh:

1. a minimizem of (8) is a minimizer of [(6), with constraifE = h(m).

2. a minimizermy, of (§) is a critical point of ) for som@, butit is not always a
minimizer it is a minimizer of [f) if and only ifScoincides with its concave hull at
pointE = h(my). Otherwise, it may be a local minimum, or a saddle poinflof (6)



Such results are extremely classical. More detailed resunlthis context may be
found in [BT]. We also refer tq[#2] for a concise discussion @roof. The previous
points immediately translate into the language of staastmechanics, and provide a
full characterization of ensemble inequivalence:

+ A canonical equilibrium is always a microcanonical equiliic for some energi.

« A microcanonical equilibrium at energy is a canonical equilibrium for some
temperature AB if and only if S coincides with its concave hull at enerdy
WheneversS coincides with its concave hull, we will say that the ensesaldre
equivalent; otherwise we will say they are not equivalent.

2.3.2. Simpler variational problem for statistical eqbilia

In the previous paragraph, we have explained relationsdestvgolutions of a con-
strained variational problem and of the associated relaxed Using similar results
and further theoretical considerations, it is possibletitam much simpler variational
problems than the natural microcanonical ones, for thelibgai of Euler and Vlasov
equations[[42]. We think that these new results providergg&sesimplifications that
will be useful in many studies, we thus describe them in tactien. However, from a
physical point of view, these mathematical results may leeved as technical, and we
advise the non expert reader to skip this section at firsimgad

When studying statistical equilibria of systems with loagge interactions, one has
to deal with variational problems with one or several caists. In the case of the
statistical mechanics of the Euler (resp. the Vlasov equgtthere is actually an infinite
number of Casimir’s functional conservation laws, encoithetthe initial distributiond
of the vorticity field (resp. the particle distribution furan). This is a huge practical
limitation. When faced with real phenomena, physicists tten either give physical
arguments for a given type of distributieh(modeler approach) or ask whether there
exists some distributiod with equilibria close to the observed field (inverse problem
approach). However, in any case the complexity remain<ltses of equilibria is huge.

In the following of this paragraph, we describe recent madgcal results which
allow to relate the microcanonical equilibria to much sierpVariational problems.
From a physical point of view, this simplification is extregeteresting. We describe
these results in the context of the equilibrium theory fag Euler equation (Robert
Sommeria Miller theory[[15[ 14] or RSM theory), but the folimg results may be
easily generalized to other cases like the statistical mr@ch of the Vlasov equation.
We refer to [4R] for a more detailed discussion.

>From a mathematical point of view, one has to solve a migrooecal variational
problem (MVP): maximizing a mixing entropy”[p] = — [, d*x [do plogp, with
constraints on enerdy and vorticity distributiord

S(Eo.d) = sup {#[p] | E[@] =Eo,D[p] =d } (MVP).
{pIN[p]=1}



p (X,0) depends on spaceand vorticityo variables.

During recent years, authors have proposed alternativ@apipes, which led to prac-
tical and/or mathematical simplifications in the study aftsequilibria. As a first exam-
ple, Ellis, Haven and Turkingtofi JR9] proposed to treat tbeieity distribution canon-
ically (in a canonical statistical ensemble). From a phglspoint of view, a canonical
ensemble for the vorticity distribution would mean that gystem is in equilibrium
with a bath providing a prior distribution of vorticity. Asish a bath does not exist, the
physically relevant ensemble remains the one based on tiendygs: the microcanon-
ical one. However, the Ellis-Haven-Turkington approackexgremely interesting as it
provides a drastic mathematical and practical simplifacato the problem of comput-
ing equilibrium states. A second example, largely popa&tiby Chavani 43, #4], is
the maximization of generalized entropies. Both the pristribution approach of El-
lis, Haven and Turkington or its generalized thermodynanmiterpretation by Chavanis
lead to a second variational problem: the maximization cdi@a’s functionals, with
energy constraint (CVP)

C(Eo,s) = igf{%s[w] . /@ s(w)d?x | E [w] = Eo} (CVP)

where%s are Casimir’s functionals, argh convex function (Energy-Casimir functionals
are used in classical works on nonlinear stability of Eulatisnary flows [4b[46],
and have been used to show the nonlinear stability of some&df Bquilibrium states
13, ETD).

Another class of variational problems (SFVP), that invdlve stream function only
(and not the vorticity), has been considered in relatiomwite RSM theory

D(G)ziﬂf{/@dzx {—%|DW|Z+G(4/)} } (SFVP)

Such (SFVP) functionals have been used to prove the exestdrsolutions to the equa-
tion describing critical points of (MVP)[J47]. Interestilyg for the Quasi-geostrophic
model, in the limit of small Rossby deformation radius, sacBFVP functional is sim-

ilar to the Van-Der-Walls Cahn Hilliard model which des&#bphase coexistence in
usual thermodynamic$ J[LF,]48]. This physical analogy hashesed to make precise
predictions in order to model Jovian vorticgs][{7} 49]. ($f\unctionals are much

more regular than (CVP) functionals and thus also very &stigng for mathematical

purposes.

When we prescribe appropriate relations between the loligion functiond, the
functionss andG, the three previous variational problems have the samealrgoints.
This has been one of the motivations for their use in previvosks. However, a
clear description of the relations between the stabilityha&fse critical points is still
missing (Is a (CVP) minimizer an RSM equilibria? Or does atvR&Sjuilibria minimize
(CVP)?). This has led to fuzzy discussions in recent pag@naviding an answer is
a very important theoretical issue because, as explainedausly, it leads to deep
mathematical simplifications and will provide useful plogdianalogies.

In [B3] we establish the relation between these three wvanakproblems. The result is
that any minimizer (global or local) of (SFVP) minimizes ()/and that any minimizer



of (CVP) is an RSM equilibria. The opposite statements arengrin general. For
instance (CVP) minimizers may not minimize (SFVP), but mayristead only saddles.
Similarly, RSM equilibria may not minimize (CVP) but be ondaddles, even if no
explicit example has yet been exhibited.

These results have several interesting consequences :

1. As the ensemble of (CVP) minimizers is a sub-ensemblesoétisemble of RSM
equilibria, one can not claim that (CVP) are more relevantafoplications than
RSM equilibria.

2. The link between (CVP) and RSM equilibria provides a fartjustification for
studying (CVP).

3. Based on statistical mechanics arguments, when lookitigeeEuler evolution at
a coarse-grained level, it may be natural to expect the RSikbgnto increase.
There is however no reason to expect such a property to béardlee Casimir's
functional. As explained above, it may also happen thabggtextrema be (CVP)
saddles.

2.4. Classification of phase transitions

Beyond the full characterization of ensemble inequivadane have described above,
there are many other qualitative features of the thermatyesathat depend only on the
structureof the variational problemg](5) anf] (6). Indeed, althoughgrecise form of
the solution obviously depends on the problem at hand ttrolig functionss(m) and
h(m), it is possible toclassifyall the different phenomenologies that one may find in
the study of a particular long range interacting system.duestions in that respect are,
increasing complexity at each step:

- what are the different possible types of generic points oergropy curveS(E)
(these correspond to different phases)?

- what are the possible singular points of a gen&() curve (these correspond to
phase transitions)?

 what are the possible singular points on8E) curve, when an external parameter
is varied in addition to the energy (that is how phase trarstevolve when a
parameter is varied)?

We address these different levels in the following paragsapsing results fronf [BF, ]26].
These results are obtained by adapting to the dual varatigmoblems [(5) and[}6)

ideas that lead to the Landau classification of phase transitin the long range case
however, there is no approximation involved, so the clasgifin does not suffer from

the problems of standard Landau theory (wrong critical egmbs for instance).
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FIGURE 3. The three types of generic points; on the left: entr8(f) curve, on the right: calorif (E)
curve. Thick, thin and dashed lines correspond respegtieahe three types of points. The dotted lines
shows the Maxwell construction giving the canonical soluiin the inequivalence range.
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FIGURE 4. The three types of phase transitions (Codimension O sintjalg, for a system with no
symmetryA: canonical 1st order transitioB: canonical destabilization (a local minimum ﬂf (6) becomes
a saddle point)C: microcanonical 1st order, temperature jump.

2.4.1. Generic points of an entropy curve

There are three types of generic points on the entropy ceeeeFig[B3:

« Concave points (that S, > 0) where canonical and microcanonical ensembles are
equivalent.

« Concave points where ensembles are not equivalent.
« Convex pointsCy < 0), where ensembles are always inequivalent.

2.4.2. Singular points of a generic entropy curve: phasagittons

Generic points as described above define segments of erduopgs, separated by
singular points, that can be of several types. These pant/stems without symmetry
are classified in Fid] 4.
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FIGURE 5. Classification of singularities, when one external par@méet varied (codimension 1
singularities). The first two columns give the singularitigtn and name; the third one gives its status in
the canonical ensemble: invisible means it has no conseguemnthe canonical solution; the six following
plots are entropic and caloric curves showing the crosditftessingularity when the external parameter is
varied. One recovers the usual phase transitions (trigh,mxzeotropy, critical point) in both ensembles.
What is new is the list of the possible links between the biiiawn each ensemble, and the associated
appearance of ensemble inequivalence. PIeaseEee [26irforeadetailed explanation, and singularities
associated with symmetry breaking.

2.4.3. Singular points on a singular entropy curve

When an external parameter is varied, the entropy curve difrad. Some special
values of the parameter correspond to qualitative charggabd phase transitions. All
these possible qualitative changes are classifigdn [26]Bsummarizes the results.

All types of phase transitions and ensemble inequivalefm@sd in the literature
so far are reproduced in the classification. In addition, dlassification predicts the
possibility of new phenomenologies, and new routes to ebfeimequivalence, that
have not so far been observed in any specific model.

2.5. Examples of new phase transitions

In the previous section we explained the existence of matynabserved appearance
of ensemble inequivalence, associated to phase trarsitsndescribed i JR6]. More
recently the new finding of two such examples have been regdB0]: bicritical
points (a bifurcation from a first order phase transitiondods two second order phase
transitions) and second order azeotropy (the simultanappsarance of two second
order phase transitions at a bifurcation). We present hmgetnew phase transitions;
they are associated with equilibrium states of the two dsi@ral Euler equation, when
there is a linear relation between vorticity and stream ftionc This was first studied
by Chavanis and Sommerip [51] in the context of the Roben8eria-Miller (RSM)



statistical mechanics of 2D flow$ ]15,]14]. They found a ciite for the existence
of a transition from a monopole to a dipole above a criticagrgy, for all (closed)
domain geometry. In this section, we present an alternatiethod providing the same
criterion, which generalizes to a large class of models,thnd shows the universality
of the phenomenon. More interestingly this new methodfodsrthe nature of the phase
transitions involved in this problem and makes the link vifith existence of an ensemble
inequivalence region. Those results are presented in a gereral context in[]$0],
where we note the interest of these phase transitions fgrsieple ocean models.

Euler equation and associated variational probleniet us consider the 2D Euler
equation in a closed domain. It can be written as a transport equation for the vorticity
w=Ay: dw+u.lw = 0. The velocity fieldu is related taw via the stream functiog:
u=e;x Oy, with y =0 ondZ. We introduce the projectiong of the vorticityw on a
complete orthonormal basis of eigenfunctierns, y) of the LaplacianAe = A;e, where
the A; (all negative) are in decreasing order. The stationarestaf this equation are
prescribed by a functional relatian= f (). In the following we consider the solutions
of the variational problem:

SE,lN = ma?x{y[w] | &lw=E & €lw] =T} (7)

The variational problen{|7) is similar to the generic probl@) studied above, with two
constraints instead of one.

« % is the entropy of the vorticity fieldv; we restrict ourselves to a quadratic
functional:.” [w] = —3(w?), =-33 a)f.

« & is the total energyé[w] = 3 <(D(,U)2> 7 =—33i AN
- ¢ is the circulation?’[w] = (w) , = 5 (&) w where(e) = [, (X, y)dxdy

To compute critical points of the variational problefh (7 imtroduce two Lagrange
parameter$ andy, associated respectively with the energy and the ciranatonserva-
tion. Those critical points are stationary solutions fa thitial transport equation with
f () = BY —y. The solutions of the variational problem will thus provitie equilib-
rium states of the Euler equation that present a linearioelstiip between vorticity and
stream function, for a given energy and circulation.

The aim of the following paragraphs is to determine whichsoamong the critical
points are solutions of](7). It will then be possible to draphase diagram in the plane
(I",E) for those equilibrium states.

Dual quadratic variational problems. The problem([(7), with two constraints, will be
referred to as the microcanonical problem. As already expthearlier, it is sufficient
to study the easier unconstrained ensembles, unless shaeguivalence of ensembles.
The strategy is then the following. Start with the easiesbfam:

J(B,y) = ming{—~[w] +B &w]+ Y€ [w]} (grand canonical). Check if all
possible values ofE or ' correspond to a grand canonical solution; if yes
the problem is solved, otherwise, we turn to the more com&da problem:
F(B,I) =ming{—~[q] +B &[q] | €[q] =T} (canonical).



In principle we could eventually have to solve the microcdnal problem. However,
in this case, we will see that the microcanonical ensemt#gusvalent to the canonical
one: the whole range & andl” will be covered by canonical solutions.

We notice first that’, & are quadratic functionals and thatis a linear functional.
We will thus have to look for the minimum of a quadratic fuocial with a linear part.
Let us callQ the purely quadratic part aridthe linear part of this functional. Then we

have three cases

1. The smallest eigenvalue &fis strictly positive. The minimum exists and is achieved by a
unique minimizer.

2. At least one eigenvalue @) is strictly negative. There is no minimum.

3. The smallest eigenvalue @ is zero (with eigenfunctiomy). If Leg = 0 (case 3a), the
minimum exists and each state of the neutral direcfiory} is a minimizer. IfLey # O,
(case 3b) then no minimum exists.

The grand canonical ensembleln that case the quadratic opera@associated to
g =—-% +B &+ y¢ is diagonal in the Laplacian eigenvector basis. The vaia
problem admits a unique solution if and onlydf> A1 (case 1. above). |8 = A;(case
3. above), a neutral direction exists if and onlyyi= 0. By computing the energy
and circulation of all those states, we prove that there iigue solution at each
point in the diagram(E,"), below a parabola?? (see figureg]6 anfl] 7-a). Because
the values of energies above the parab#taare not reached, we conclude that there
is ensemble inequivalence for parameters in this region.thWga turn to the more
constrained canonical problem to find solutions in this area

The canonical ensembleThe circulation is now fixed. We first transform this prob-
lem into an unconstrained variational problem. By usingdineulation constraint, we
express one coordinate in term of the othevs= (I' — S w(g))/ (e1). This expres-
sion is then injected in the functions# = —. + &. The problem is now to find a
minimizer{a },~, of this functional, without constraints. This case reggimeore com-
putations that the previous one since the oper@associated to the quadratic part of
Z is no more diagonal in the bass; }.

We first notice that if the domain geometry admits one or mgnersetries, it gener-
ically exists eigenfunctions having the propertty) = 0. In the subspace spanned by
all those eigenfunction® is diagonal, and its smallest eigenvalue is positive as long
asp > B{’, whereﬁf is the greatesi; on this subspace. Then we look for the value of
B such that the smallest eigenvaluefs zero in the subspace spanned by eigenfunc-
tions with (g) # 0. Let us callB* this value, andv* the corresponding eigenfunction:
Q[w’] = 0. We find after some manipulation th@t is the greatest zero of the func-
tion f(x) = 1—xJF;=1(a)2/(x— A;). We conclude that there is a single solution to the
variational problem if and only iB > max(BY, B*). WhenB = max(B?, B*), we dis-
tinguish two cases according to the sigrﬁé‘f— B* to discuss the existence of a neutral
direction:

)] Bf < B* we then conside8 = 3*. There is a solution (case 3a)if= 0 and no solution
(case 3b) fol” # 0.
« i) BY > B* we then consideB = BY. There is a solution (case 3a) for all values of
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FIGURE 6. Case i) Phase diagram for a domain having no symmetry, oraviymmetry axis in the
casef* < Bf. a) Internal parameters are circulatibrand energye. Straight line: first order transition.
Parabola?’: above this line there is no grand canonical solutions; @alyonical and microcanonical
solutions exist. It corresponds to an ensemble inequicaleegion. b) examples of flow. ¢) Equilibrium
entropyS as a function off andl". We see clearly a region where the concave envelo§(BfI) is
not equal toS(E,I"), which includes the first order transition line; @)= dS/JE at fixedl": there is
no singularity. e)y = dS/drl at fixed E: there is a discontinuity of at " = O (first order transition).
The Maxwell construction shows that the ensemble inegenad region is associated with a first order
transition in the ensemble where the value of the energyeéslfix

We thus obtain a criterion, namely the signﬁﬂ— B*, that provides two classes of
phase diagrams. This criterion depends only on the domamggy. If the domain
admits a symmetry axis, and is sufficiently stretched in adadion perpendicular to this
axis, thenB? > B*. For an ellipse, this is always the case. However, there @meaihs
with a symmetry axis for which one can find a critical aspetibrg. that separates the
two cases. This is for instance the case of rectangular d@mBort > 1., case ii) is
realized B > B*) and fort < 1, case i) is realizedd® < *). To conclude, we find
two classes of phase diagrams:

« i) Domain without symmetry, or with symmetry with aspecioat < 1. (see figure
B). If I # 0, all energy values are reached in the canonical ensenmalghare is a
single solution for each poirf ,E). If I = 0 (straight line on figur§]6), two states
coexist for each energy valle andf = 3*.

- ii) Domain with symmetry and with an aspect ratio- 1. (see figurd]7). Thereis a
unique canonical solution at each point of the diagram ba@arabola’y in the
plane(E, ") (see the dashed line figute 7). Above this paratﬁ)la,Bf, and there is
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FIGURE 7. Case ii) Phase diagram for a domain having a symmetry axissafiiciently stretched

in a direction perpendicular to this axis (cg8e > Bf). a),b),c),d),e): see figurﬂ (6). Dashed parabola
Py second order transition line. Above this lii#/dE = B, and the choice of one state among two
possibilities breaks the system’s symmetry. We seedifatdE is discontinuous at poin®, as well as
dy/dr at pointsB andC, which is the signature of a second order phase transition.

two canonical solutions at each point of the diagram. Thégrdbnly by the sign of
the contribution of the Laplacian eigenvector associaiete eigenvaluﬁf (itisa
dipole). Below the Parabola, this eigenmode has no cortimibto the solution. The
choice of one solution among the two possibilities breakssystem’s symmetry
when % is crossed. At high energy, the contribution of the dipoléasinant.

In both cases we find that all circulation and energy valueg Heeen reached by
canonical solutions. We conclude that microcanonical aaabnical ensembles are
equivalent: all microcanonical solutions are also caralrgolutions.

Description of phase transitions.The difference between the two classes of flow
Is the existence of either first or second order phase transjtcorresponding respec-
tively to case i) and ii). The main observation is that firsde@rand second order mi-
crocanonical transitions always take place in the ensemblguivalence area. In that
respect, those transitions are signatures of ensembleiuaence for this class of two-
dimensional flows, which could be observed in laboratoryeexpents on quasi two
dimensional flows.

The transition from systems of type i) to systems of typevihen the geometry
is modified, leads to one of the predicted, but yet unobsephede transition of the
classification [26], described here in sectiBlassification of Phase Transition®n



FIGURE 8. Bicritical point (from Ref. ]) for a rectangular domairittv aspect ratia. Bifurcation
from a first order transition line to two second order phasedition lines. Insets are schematic projections
of the Entropy.#[w] in a plane(w?, w*), by taking into account the constraints. M: maximum. m:
minimum. s: saddle.

figure[8, we consider a fixed energy, and present the phaseadiag the(", ) plane,
whererT is an external parameter characterizing the aspect ratibeoflomain. In the
microcanonical ensemble, there is a bifurcation from a @rder transition line to two
second order transition lines at a critical value- t.. Such a bifurcation is referred to
as a bicritical point.

2.6. Challenges in the equilibrium statistical mechanics

It seems fair to say that the equilibrium statistical meat&af long range interacting
systems is well understood at a fundamental level, desmtatportant differences with
the short range case. However, some challenges and qussioain open; we mention
here some of them.

A first issue is the relevance for natural phenomenon or Eboy experiments: is
it possible to identify situations where equilibrium sssital mechanics satisfactorily
describes the structures observed (like in Jovian atmosfbé])?

The main challenge is probably to observe negative speafit &and ensemble in-
equivalence in experiments or in real physical systems.dJpotv, this has not been
possible. A first possibility would be to observe naturalpdr@ena corresponding to sta-
tistical microcanonical equilibria, which are characted by negative specific heat, like
for instance geophysical flows in microcanonical situagiohnother possibility would
be to achieve this in the lab. One should consider a physisgm sufficiently simple in
order to be able to characterize ensemble inequivalentceeaomputation of negative
specific heat. Moreover, exchanges of energy with the enmemnt have to be negligible
over a sufficiently long time, in order to make sure that theroganonical ensemble is
the relevant one; this imposes severe constraints on aoydtadry setup. Several can-
didates have been considered. One of the most popular ondentybuild synthetic



magnetic systems with long range interactions. Anothesipdgy could be to design

simple two dimensional flow experiments or two dimensiorilabma experiments, in
order to reproduce the recently predicted ensemble inabpnee, as briefly describe
in [5Q].

There also several theoretical issues :

+ Could we find physical examples of the new phase transitiomsd in the classifi-
cation?

« The structure of the dual variational problerfis (5) dihd (@eaps in other physical
contexts. Could the results described here, like for insahe classification of
phase transitions, have an interest, when applied to thiseedt situations? For a
step in this direction, see for instan¢e][52].

- A very interesting and difficult challenge would be to make tfassification[[36]
rigorous. This implies to give a precise mathematical dedinito the notion of a
normal form for a mean field variational problem.

3. KINETIC THEORIES OF SYSTEMS WITH LONG RANGE
INTERACTIONS

The previous section provided a brief summary of old and results for long range
interacting systems at equilibrium. Unfortunately, itrtsiout that the coherent structures
these systems form, and the stationary states they reageeeally out of equilibrium.
Although knowledge of equilibrium is a useful benchmark,ietthusually yields a
qualitative understanding of the physics, some new teclesicare needed to really
understand the phenomena at hand. Clearly, we have toagéude the time in our
framework and study the dynamics of the systems.

We have seen that for systems with long range interactiomgan field approach is
usually exact in the limit of a large number of particles, win@e wants to describe the
equilibrium macrostates. This is valid thanks to an averggif the potential over many
particles. In the following we explain that a similar meandiapproach is also valid
for the dynamics: at each time the potential and the forcebeaexpressed with a very
good approximation from the one particle distribution fime, and thus the BBGKY
hierarchy can be safely truncated.

This well understood fact is the base of the kinetic theony tfee dynamics of
systems with long range interaction. This led to the claddimetic theories of self
gravitating stars, plasmas in the weak coupling limit, omp@ortex models in two
dimensional turbulence. In the limit of a large number oftjgles, such dynamics is
well approximated by kinetic theorigs [93] $4] 6], B5.[58; &leading order in 1/N
the dynamics is of a Vlasov type; after a much longer time, rilaxation towards
equilibrium is governed by Lenard-Balescu type dynamicstgoapproximation by the
Landau equation).

In the next subsection, we introduce briefly the Vlasov dyicamand the issue of
its time of validity. For a large numbet of particles, these systems may exhibit quasi-
stationary states (QSY) J98] 59] (in the plasma or astrapalysontext see for instance
[60, 53]). We give a kinetic interpretation of such statestable stationary solutions of



the Vlasov dynamics.

An interesting question is whether we can predict such Qitsionary States, from
the initial condition of the Vlasov equation, using statiat mechanics. In the following
subsection, we present recent studies on the equilibriatistal mechanics of the
Vlasov equation (and not of the N particle dynamis) [61 B3, in the spirit of Lynden-
Bell's work [f]] in the context of self-gravitating stars.

We then turn to the kinetic theory of these systems beyonditie of validity of
Vlasov equation, which leads to the Lenard-Balescu equaifibis allows to address
the important question of the time scale for the relaxatmoeduilibrium: this time scale
may be of ordelN/logN (this is a classical result by Chandrasekhar for relaxation
equilibrium of self-gravitating stars, or of a plasma), olerN (for a smooth potential),
or much larger thahl (this is related to the recent result that the Lenard-Baleperator
identically vanishes for one dimensional systefng [55])isTast result explains the
striking numerical observation of ai'’ time scale in the HMF mode[Th9].

In the following subsection, we explain how a classical kmeapproach allows to
describe the stochastic process of a single particle infadmahposed by a large number
of other particles. This stochastic process is governedisyal Fokker-Planck equation.
In classical papers, this bath is at equilibrium. We strese that this bath can also be a
bath of particles in an out of equilibrium Quasi Stationatgts. We explain recent new
results [5p] proving that this Fokker Planck equation haspectral gap, and lead to
long time algebraic correlations and anomalous diffusidns provides a quantitative
prediction for the algebraic autocorrelation function ambmalous diffusion indices,
previously observed in some numerical computatidng [6}4 683 These theoretical
predictions have been numerically checked[i [67]. Someemecent related results
have also been reported ih [68]. We note that an alternakp&eation, both for the
existence of QSS and for anomalous diffusion has been pedpwsthe context of
Tsallis non extensive statistical mechanicq [69, 66] (&8 &nd [5b,[70] for further
discussions).

The last subsection is devoted to describe some remairsngssand challenges in
the context of the classical kinetic theory for systems withg range interactions.
We also note that we do not describe many other existing dig@properties which
are common to systems with long range interactions: vamgshyapounov exponents
[PY, [71], breaking of ergodicity [T4, ¥8.]74], ans so on. Alitike common dynamical
properties of systems with long range interactions aretressimilar collective (self-
consistent) dynamic§ JJ75].

3.1. Vlasov dynamics and Quasi-Stationary states

As for the equilibrium statistical mechanics, one needshmose a scaling to study
the kinetic theory; again, the scaling described in thelggiiim context, which ensures
that each particle experiences a force of order 1, is theogpjate one. The goal is now
to approximate the dynamics bf ordinary differential equations for the discrete parti-
cles dynamics by a single Partial differential equationtfar one-particle distribution
function.



For definiteness, we consider the following Hamiltonianeys

X = pi
{Di = —§ iz G —X)) ®)

The range of the potenti& is supposed to be of the same order of magnitude as the
total size of the system: this is our definition for "long rarigteraction®.
Consider the following continuous approximation of thegoial:

q>(><,t>=/V(y—x)f(y, p,t) dy dp; (9)

and the corresponding equation for the one-particle Oigion functionf (this is the
Vlasov equation):

of of odof 0
ot Pox axap
Replacing the true discrete potential®yneglects correlations between particles and

finite-N effects. However, as each particle interacts at any time avitextensive number
of other particles, one may hope that this mean field approadiectly reproduces the
potential experienced by a particle, and becomes exacteinnfinite N limit. Under
some regularity assumptions for the potentlalhis is indeed correct, and it has been
rigorously proved (se€ 6] for a very reguMr [[74] for a mildly singular potential).
To be more precise, these theorems state the followingaakscreteN-particles initial
condition and an initial continuous one-particle disttibo function f (x, p,0) which is
close, in some sense, to the former; evolveNhearticles according td](8), and evolve
f(x, p,0) according to [(9) and[(10); then thé-particles dynamics and(x, p,t) will
remain close for a time at least of the order ofMdSeveral remarks are in order:

(10)

1. Thisimplies that if thé — oo limit is taken for a fixed\, finite-N effects will come
into play; the evolution will then depart from the Vlasov egjon, and we expect
the system to eventually reach the statistical equilibritiowever, for any finite
time T there exists soml such that the system approximately follows the Vlasov
equation up to timd .

2. The logN is optimal in the sense that there exist initial conditionshsthat the
discrete [[B) and Vlasoy{ (J10) dynamics diverge on such a ticaeqsee[[48] for
further discussiony.

3. However, this "coincidence time” may in some cases be nuader: for instance,
discrete initial conditions close to a stable stationagesbf the Vlasov equation
stay so for a time algebraic N (see [5P] for a numerical observation afd| [80] for
a mathematical investigation of the phenomenon).

1 Albeit rather general, equatior|} (8) do not include the 2ivdlanor the wave-particles models; most of
the following discussion does apply to these cases too,swithll modifications.

2 A recent consideration of the thermodynamic stability of eam field Ising model with stochastic
dynamics has found the relaxation time to be logarithmid fiff'd].



4. The analogous result for 2D flows is the convergence of yimamhics of discrete
vortices to the corresponding continuous partial difféedrequation for the vor-
ticity field (Euler, Quasi-geostrophic...). For 2D flows rexer, the fundamental
equation is the PDE, contrary to the classical particles.casnathematical proof
of convergence is given it [B1]. For wave-particles systehesanalogous theorem
is given in [82].

5. The mathematical proofs cited above do not include theitgtaonal and electro-
static I/r cases. It seems however reasonable to believe that somergence
result towards the Vlasov equation still holds in this cadasov equation is rou-
tinely used by physicists for these potentials.

In the light of the previous remarks, and if the number ofiplagN is big enough, the
following dynamical scenario now seems reasonable:

« Starting from some initial condition, tHe-particles system approximately follows
the Vlasov dynamics, and evolves on a time scale of order 1.

« It then approaches a stable stationary state of the Vlasoatien; the Vlasov
evolution stops.

- Because of discreteness effects, the system evolves oreastiale of ordeN?
for somea, and slowly approaches the full statistical equilibriungvimg along a
series of stable stationary states of the Vlasov equation.

In this scenario, th&l-particles system gets trapped for long times out of equiiib,
close to stable stationary states of the Vlasov equatiasethare then called “quasi
stationary states” in the literature. This is the basislier‘wiolent relaxation” theory of
Lynden-Bell [1]; Refs.[[61] 39, 83] give examples of thisisago for wave-particles, the
HMF and astrophysical models. The next problem is then tdystine stable stationary
states of the Vlasov equation, that is the candidates fofdhasi stationary states”.
Before turning to this in the next paragraph, let us notettiee is however no reason for
this scenario to be the only possibility: for instance, thasév dynamics may converge
to a periodic solution of the Vlasov equatidn][84].

The Vlasov equation (as well as the Euler equation and it&uves) has many in-
variants: beside the energil{ f| (and possibly the linear or angular momentum), inher-
ited from the discrete Hamiltonian equations, the follagvgquantitie<Cs[ f], sometimes
called Casimirs, are conserveat any function s

Cslf] = [s(1xp.t) dx dp. (11)

Using these invariants, it is possible to construct mangicstary states of the Vlasov
equation. Consider the following variational problem, &zoncave functios:

Slpr{/S(f(X,p)) dxdp | /f dxdp=1, H[f]:e} : (12)

Any solution of this variational problem yields a statiopaolution of the Vlasov
equation. In addition, the variational structure of thestaunction is very useful to study
the stability of such states (s€e][29] 85] for more detallhre is no constraint on the



concave functiors, so that we have very many stable stationary states of theoVia
equation. As a consequence, many numerical or experinrestats can be fitted with a
good choice 08§; this is also a serious limit of the theory: without a recipehoose the
right stationary state, the theory is not predictive. Weradsl this problem in the next
paragraph.

We have explained that any Vlasov stable stationary salua Quasi Stationary
State. Then, because inhomogeneous Vlasov stationaeg statexist, one should not
expect Quasi Stationary States to be homogeneous. Thisisgréted in the case of
several generalizations of the HMF model in RET] [78].

The issue of the robustness of QSS when the Hamiltonian iarped by short range
interactions[[86] or when the system is coupled to an extdrath [8] has also been
addressed, and it was found that while the power law behaunorives, the exponent
may not be universal.

3.2. Lynden Bell statistical mechanics

Under the Vlasov dynamics, the distribution functibins advected, by a field which
itself depends orf. The conservation of Casimirs amounts to the conservatidheo
area of all level sets

llap) = {(x, p) such thal < f(x, p,t) <b} ;

as time goes by the sets are filamented down to a finer and fialer, and the filaments
get interwoven. Understanding the long time behavior of d@mplicated dynamics is
not an easy task, analytically or numerically. Assuming theends to one of the many
stable stationary states of the Vlasov equation, the LysRidhstatistical mechanics
is a recipe to choose the right one. In a nutshell, at fixedggn@nd possibly linear
or angular momentum), it selects the most mixed state cabipatith the Casimirs
conservation. It is a maximum entropy theory; the Lyndeli-8guilibrium is given by
the solution of a problem likg (12), the functisbeing determined by probability theory
and the initial distributiorf (x, p,t = 0) 3.

The idea goes back to a pioneering work of Lynden-Bell in thaext of astrophysics
in 1967 [1]; the problem was later revisited by Chavanis aaliaborators [88], in
connexion with the statistical mechanics of 2D flows. Let oserthat the analog of
Lynden-Bell theory for the Euler and Euler-like equatiori2® flows is the Robert-
Sommeria-Miller theory[[89, 19, 14]: it relies on the veryrmideas.

The Lynden-Bell and Robert-Sommeria-Miller theories Haad important successes;
let us mention here the descriptions of the core of elliptgalaxies, and the giant
vortices in Jupiter's atmospherg J17]. However, this is #xeeption rather than the
rule. A lot of works have been devoted to checking these tesan different contexts,
to which we do not do justice here. To summarize them venyflgrithe rule is that

3 We have to mention that the determination of the Lynden-8gliilibrium is in general a difficult task;
the calculations are usually practical only for two- or gtevels initial distributions.



the phase space mixing induced by the Vlasov equation istramgs enough, so that
the theoretical predictions are in general at best quiadggt correct (see[J§3] for a
discussion of these issues; see [90]).

3.3. Order parameter fluctuations and Lenard-Balescu equabn

In this section, we explain briefly how one classically obsagxact expressions for
the 1/+/N fluctuations of the order parameter, for a system with lomgezinteractions
close to a Quasi Stationary State. In order to make this ggson as simple as possible,
we treat the case of the HMF model, a one dimensional systémavsmooth two
body potentiaV. We follow [E3], and refer to[[91] for a plasma physics treatr to
[P, B1,[16] for the case of point vortices and to RETf] [92]delf-gravitating stars.

One could use an asymptotic expansion of the BBGKY hieranehgre 7+/N is the
small parameter, and obtain the same results. TRéNLfluctuations would then have
been obtained by explicitly solving the dynamical equafmrthe two point correlation
function, while truncating the BBGKY hierarchy by assumimg@saussian closure for
the three point correlation function. Such a procedure ssifjad in the largeN limit
(see Ref.[[34]). Our presentation rather follows the Klinowich approach.

The state of théN-particles system can be described by digcretesingle particle
time-dependent density functidg (t,x, p) = & z’j\':l 3 (x—xj(t))d(p—pj(t)),where
0 is the Dirac function(x, p) the Eulerian coordinates of the phase space (ang;)
the Lagrangian coordinates of the particles. The dynansdhus described by the
Klimontovich’s equation[[54].

oty 9fs dValy
at Poax “dxap

(13)

where the potential/ that affects all particles i¥(t,x) = — [Zdy['>dp cogx —
y) fa(t,y, p). This description of the Hamiltonian dynamics derived fr{ipis exact : as
the distribution is a sum of Dirac functions it contains thérmation on the position
and velocity of all the particles. It is however too precise disual physical quantities
of interest but will be a key starting point for the derivatiof approximate equations,
valid in the largeN limit and describing average quantities.

WhenN is large, it is natural to approximate the discrete dengjtypy a continu-
ous onef (t,x, p). Considering an ensemble of microscopic initial condgi@iose to
the same initial macroscopic state, one defines the statistveragg fg) = fo(Xx, p),
whereas fluctuations of probabilistic properties are oot /N. We will assume that
fo is any stable stationary solution of the Vlasov equatiore @iscrete time-dependent
density function can thus be rewritten &gt, x, p) = fo(x, p) + 8 f(t,x, p)/v/N, where
the fluctuationd f is of zero average. We define similarly the averaged potefMiaand
its corresponding fluctuationdV (t,x) so thatV (t,x) = (V) + dV(t,x)/+/N. Inserting
both expressions in Klimontovich’s equatidn](13) and tgkime average, one obtains

ofg, 0fo_d\V)afo _ 1 /dov st
dx dp /°

gt pdx dx adp N (14)



The lhs is the Vlasov equation. The exact kinetic equafid) $liggests that the quasi-
stationary states of sectiops]3.1 gnd 3.2 do not evolve amdales much smaller than
N; this would explain the extremely slow relaxation of theteys towards the statistical
equilibrium.

Let us now concentrate on stable homogeneous distributigp$, which are station-
ary since(V) = 0. Subtracting Eq[(14) from Eq_{13) and usifig= fo+ df/v/N, one
gets

o0f 0ot _ dovofy 1 [dOV ot /doV 9of
ot Pax dx ap _VN| dx ap \dx ap /|

For times much shorter thayiN, we may drop the rhs encompassing quadratic terms
in the fluctuations. The fluctuating pa¥f are then described, by the linearized Vlasov
equation (this is another result of the Braun and Hepp tmeoff&,[93]). This suggests
to introduce the spatio-temporal Fourier-Laplace tramsfof 6 f anddV. This leads to

— (&t &-1) [+, 8f(0,kp)
V{wk) = £(w, k) /oo d i(pk— )’ (15)
where it
Y
e(w,k) = 1+M((5K,1+d<,—1) /_J:odpwffpw) (16)

is the dielectric permittivity. The evolution of the potettautocorrelation, can therefore

be determined. For homogeneous states, by symm@(cw;,ki)dV (awp,kz)) = 0
except ifky = —ko = £1.

3.3.1. Autocorrelation of the potential

One gets, after a transitory exponential decay, the geresalt

fo(w)

7-[ .
BV (ty, £1)8V (to, 71 :—/dwe'w<t1‘2> .
OVt =)oV (1) = | FoT

(17)

This is an exact result, no approximation has been done yet.

3.3.2. Lenard Balescu equation

A similar, but longer, calculation allows to compute the.iisEq. (T4), at order AN.
This is very interesting as it gives access to the slow eimiunf the distributionfy
due to the “collisional” effects. This is, for systems wittn range interactions, the
analogue of the Boltzmann equation for dilute system wittristange interactions. We
do not describe the computation in details (Jeé [91, 54]weagust want to discuss



qualitatively the collision operator. This collision opéor is called the Lenard Balescu
operator and it leads to the Lenard Balescu equation.

For system of particle with long range interactions givenabiwo body potential
LV (x1 — x2), the Lenard Balescu equation reads :

dfo(p,t 10 Kk dfo dfo

o0t San | [ Ak Bk (1) G200~ 1o () 00 ) (k. (- 9))]
(18)

wherek is a wave vectorp(k) is the Fourier transform of the potentidl(x), and

le(k,k.p’)| is the dielectric permittivity. One note that this is a quair operator, as

for the Boltzmann equation. Moreover, this operator ineadvresonance condition in

the Dirac distributiord (k. (p —p’)).

>From this equation one clearly expects a relaxation tosvaguilibrium of any
Quasi-Stationary state with a characteristic time of ofdekVe note that for plasma
or self gravitating systems, due to the smatlivergence of the interaction potential,
the Lenard Balescu operator diverges at small scales. $megularized by close two
body encounters, fixing a small scale cutoff. This leads tmarithmic correction to the
relaxation time, which is then the Chandrasekhar time pitapual to logN) /N.

One clearly sees on equatidn](18) that the mechanism foutolof the distribution
function is related to the resonances of two particles. Asemrsal point is that the
conditionk. (p—p’) = 0 cannot be fulfilled for one dimensionnal systems. It would
indeed implyp = p/, and because the Lenard Balescu operator is odd in the \ariab
p, it will vanish. Another way to obtain the same result, is tedtly compute the rhs
of Eq. (I4). We do not report such long and tedious computatibut it shows that it
identically vanishes at order/lN, for one dimensional systems.

This proves that Vlasov stable distribution function withtrevolve on time scales
smaller or equal tdN. This is an important resulgeneric out of equilibrium distribu-
tions, for one dimensionnal systems, evolve on time scaleb farger than N This is
in agreement with thal*-’ scaling law which was numerically reportdd][59].
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FIGURE 9. Panel (a) presents the temporal evolution of the magnitizdt(t), for the HMF model,
for different particles number®i = 10°(10%), 10°(10%), 2.10°(8), 5.10%(8), 10%(8) and 210%(4) from
left to right, the number between brackets correspondirtgeanumber of samples. The horizontal line
represents the equilibrium value lgf. Panel (b) shows the logarithmic timesch(&) as a function oN,
whereas the dashed line represents the lIa16- N*7. From Ref. [5p].



3.3.3. The stochastic process of a single particle in a bath

Let us now consider relaxation properties of a test-partiddexed by 1, surrounded
by a background system @¢N — 1) particles with a homogeneous distribution. The
fluctuation of the potential is thus

2 p+oo

BV (t,X) = _/ dy/ dp cosx—y)3F(ty,p) — ——cos(x—x1).  (19)
0 —o0 \/N

Using the equations of motion of the test particle and ongtthe index 1 for the sake
of simplicity, one obtaing(t) = p(0) —f(t)du(chV(u,x(u)))/(dx)/\/N. By introducing
iteratively the expression afin the rhs and expanding the derivative of the potential, one
gets the result at order/lN. The key point is that this approach does not use the usual
ballistic approximation. As a consequence, we obtain aotersult at order AN. This
Is of paramount importance here to treat accuratelydtiective effectsAs the changes
in the impulsion are small (of order/{/N), the description of the impulsion stochastic
process by a Fokker-Planck equation is valid. This last gopu#s then characterized by
the time behavior of the first two momenr({®(t) — p(0))"). Using the generalization of
formula (IT) when the effect of the test particle is takeo imtcount, one obtains in the
larget-limit

(p0-p0)) i (GP+ 1 5000 (20)
(p®) —p(0)?)  ~_ 2D(p), 21)

where the diffusion coefficied®(p) can be written as

oo
D(p) =2Re /[ dteP (6V(t,1)6V(0,-1)) = nsz(p)z. (22)
0 £(p. 1))
These results are the exact leading order terms in an exgpawsiere YN is the small

parameter.
Using time variabler =t/N as suggested by Eg$.]20) afd](21), the Fokker-Planck
equation describing the time evolution of the distributidithe test particle is

0f1('[, p) - 0 0f1(T,p> 1 dfy
2D 2 ow (PR - £ 0w ). (23)

We stress that this equation depends on the bath distribtgidt is valid both for equi-
librium and and out of equilibriunfy, provided thatfy is a stable stationary solution
of the Vlasov equation. In the limit — o (more precisely k< 7 << N), the bracket
vanishes: the PDF,; of the test particle converges toward the quasi-statiodistyibu-
tion fo of the surrounding bath. This is in complete agreement wighrésult thatfg is
stationary for time scales of ordhi.

All the results of this section, except the fact that the LkdnBalescu equation
vanishes for one dimensional systems, are classical seButhe next section we explain
recent results related to the very interesting and peqoit@verties of the Fokker-Planck

equation [(Z3).



3.4. Autocorrelation function with algebraic decay and anonalous
diffusion

In this subsection, we present recent resyli$ [55] whichlipted the existence of
non exponential relaxation, autocorrelation of the momenp with algebraic decay at
large time, and anomalous diffusion of the spatial or angdaablex. They clarify the
highly debated disagreement between different numerinallations reporting either
anomalous[[84] or norma[ [b5] diffusion, in particular bylidgting the time regime for
which such anomalous behavior should occur. We briefly félcat when the moment
of ordern of the distribution scales like"/2 at large time, such a transport is called
normal However,anomalougransport[[Q4[95], where moments do not scale as in the
diffusive case, were reported in some stochastic modelspirtinuous time random
walks (Levy walks), and for systems with a lack of statiotyaaf the corresponding
stochastic proces§ [96].

These results have been obtained by analyzing theorgtitadl properties of the
Fokker-Planck equatior (23). >From the physical point efwias particles with large
momentump fly very fast in comparison to the typical time scales of thetflations
of the potential, they experience a very weak diffusion amgstmaintain their large

momentum during a very long time (one sees from equafign (&X)g|e(p, 1)\2 o 1,

that the diffusion coefficient decays as fast as the battilaigion f (p) for large times).
Because of this very weak diffusion for large the distribution of waiting time for
passing from a large value qf to a typical value ofp, is a thick distribution. This
explains the algebraic asymptotic for the correlation fiomc From a mathematical
point of view, these behaviors are linked to the fact thafibleker-Planck equatiof (23)
has a continuous spectrum down to its ground state (withap}. g his leads to a non
exponential relaxation of the different quantities andituog-range temporal correlations
[PH, BT]. These results will generalize to the kinetic tlyeofrany system for which the
slow variable (here the momentum) live in an infinite space.

By explicitly deriving an asymptotic expansion of the eigaines and eigenfunctions
of the Fokker Planck equation, the exponent for the algeltadliof the autocorrelation
function of momenta has been theoretically compufed [GB., Bffis mechanism is
new in the context of kinetic theory. However, we have digred later that similar
Fokker-Planck equations, with a rapidly vanishing difusicoefficients obtained by
other physical mechanisms, had been studied[[98] 99, 106jore recent alternative
approach to the same phenomena has been propoged [68heiogeth interesting
discussions of kinetic applications.

Let us present the results in the context of the HMF modeltuich algebraic large
time behaviors for momentum autocorrelations had been riugterically observed
in Refs. [69,[66]. In its Quasi Stationary States, the thécaklaw for the diffusion
of anglesa?(t) has been also derived ifi |5B,]97]. The predictions for théusidn
properties are listed in Tab[¢ 1.

When the distributiorfo(p) is changed within the HMF model, a transition between
weak anomalous diffusion (normal diffusion with logaritttncorrections) and strong



TABLE 1. Asymptotic forms of initial distributiondo(p), and theoret-
ical predictions of correlation functior,(1) and the diffusioro?(t) in
the long-time regime. Asymptotic forms of the distributiand the pre-
dictions are assumed and predicted in the limi{s— « and7 — o re-
spectively, wherg =t/N is a rescaled time. The exponents given as
a = (v—3)/(v+2). See Ref.[[39, §7] for details.

Tails fo(p) Cp(1) o2(1)
Power-law [p|~Y ¢ 72-a
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FIGURE 10. Angles diffusion (< (x(t) — x(0))2 > as a function of time) in the HMF model, for a
quasi-stationary state. Points are from a N body numerioallation, the straight line is the analytic
prediction by the kinetic theory. For large timegx(t) — x(0))? > o t¥ with v # 1. Such an unexpected

anomalous diffusion is also observed at equilibrium (@T[«Sr more details)

anomalous diffusion is thus predicted. We have numeriaalyfirmed the theoretical
predictions [6]7]. For initial distributions with powerdaor Gaussian tails, correlation
function and diffusion are in good agreement with numerieallts. Diffusion is indeed
anomalous super-diffusidn the case of power-law tails, whiteormalwhen Gaussian.
In the latter case, the system is at equilibrium, but theudiin exponent shows a loga-
rithmically slow convergence to unity due to a logarithmicrection of the correlation
function. This long transient time to observe normal diibns even for Gaussian dis-
tribution and at equilibrium, suggests that one should lvg wareful to decide whether
diffusion is anomalous or not.

We note the existence of another interpretation of Quasidiay States and anoma-
lous diffusion : the algebraic behaviors for momentum aomtdations have been fitted
using g-exponential function§ [69,]66], derived from Tisalhon extensive statistical
mechanics. Our theoretical and numerical results are agdeement with this interpre-
tation (see[[70, 39, 67] for further discussions). By costiveth the use of non extensive



statistical mechanics, we think that our theory explairessghenomena of long range
temporal correlation and of anomalous diffusion from finshpiples.

3.5. Challenges in kinetic theories

Our main message in this section is that a classical kinlegiary approach for these
long range interacting systems already explains manyginttg behaviors of these
systems. However, in contrast with the equilibrium theorgny questions remain open;
we mention here some of them, without any pretention to bawestive:

« Can we find a better recipe than Lynden-Bell's theory to mtettie outcome of
the Vlasov evolution? This seems hopeless in a generatgésiee for instance the
discussion in[[G3]).

« Is it possible to explain the.1 exponent for the relaxation to equilibrium in the
HMF model, and does it have some universality? More geneialit possible to
extract other general features of the dynamics beyond tagovlequation, like the
anomalous diffusion, or the long relaxation times descrideove?

+ At the mathematical level: is it possible to improve ¢n|[80hcerning the lifetime
of QSS? Can the convergence theorems to the Vlasov equatexténded to more
singular potentials?

« The most important issue concerning kinetic theories issarainderstanding of
the limits of validity the different equations. Whereas;, fmaller times, kinetic
theory are based on solid theoretical arguments, the uiatkeliag of larger time
behavior of an ensemble of trajectories, initially closeote another, is not yet
understood. Numerical computations could be very useforder to understand
that. Very few direct numerical tests of the kinetic thesrig®ve been performed
up to now. The main reason is probably the difficulty for suests, because of the
long time needed for such test. We think it would be highlevaht to consider
such problem, in models as simple as possible.

4. OUT OF EQUILIBRIUM

4.1. Motivations

We have described the computation of equilibrium statesystems with long range
interactions in the first section, and addressed the probferelaxation to equilibrium
in the second one. These two types of problems concerneésblamiltonian systems,
systems which may be considered so on the relevant timessaaleystems in contact
with a thermal bath. In many cases of interest, the systerareqres random forces
and dissipation. Very often the mechanism for dissipatimhrandom forces are from a
different origin, and do not act as a thermal bath. As a camsece, detailed balance is
no more valid and the system is subject to fluxes of energy ssipty of other conserved
quantities; the average energy of the system is fixed by tlaba between forcing and
dissipation. The understanding of the properties of theesponding Non Equilibrium



Steady States (NESS) is thus of deep importance. We presenfirst studies of such
NESS in the context of systems with long range interacti®hs.most prominent result
is the finding of out of equilibrium phase transitions.

These first studies have been done in the context of two dimmalsflows. This
is indeed essential in this case, as in many applicationsuaf lynamics, one of the
most important problem is the prediction of the very high Regs’ large-scale flows.
The highly turbulent nature of such flows, for instance oagezulation or atmosphere
dynamics, renders a probabilistic description desirabltet necessary. At equilibrium,
a statistical mechanics explanation of the self-orgaiunatf geophysical flows has been
proposed by Robert-Sommeria and Miller (RSM). Out of etuilim, there are several
practical and fundamental problems to understand: Howrnbariants are selected by
the presence of weak forces and dissipation? What are tbeiated fluctuations? Are
all forcings compatible with RSM equilibria?

We will thus study the Navier Stokes equation with weak randdochastic forces
and dissipation:

Jw
Entu.Dw:vAw—aqufs (24)

wherew is the vorticity, fs is a random forceg w is the Rayleigh dissipation andis
the fluid viscosity.

4.2. Out of equilibrium phase transitions

In many turbulent geophysical flows, one can see transitianseandom times, be-
tween two states with different large scale flows. The mosbias example are probably
the time reversal of the earth magnetic field. We may cite algerimental studies of
such phenomena, for two dimensional magnetic flgws| [1013tireg tank experiment in
relation with weather regimes in meteorology [1102], or metgnfield reversal in MHD
[LTJ]. In all these examples, this generic phenomenon tplkee in systems with a
large number of degrees of freedom. The case of simple embiibws may be stud-
ied in much details theoretically and numerically; we fobese on the case of the two
dimensional Navier-Stokes equation with a random force.

Figure[TI]L shows the relaxation of the 2D Navier-Stokes éguab a statistically
stationary state. Itillustrates that, depending on theesatio of the domain, two types
of large scale flows are possibly observed, either dipolesiatirectional (zonal) flows.
We note that these two topologies are also predicted by thiélagum statistical theory.

As shown on figurg¢ 12, for some values of the control param(#her aspect ratio
of the domain), we observe the coexistence of these two flpeldgies: the system
switches back and forth, at random times, between dipolaiaitirectional flows. This
phenomenology is similar to what happens when noise is atdadbistable system. A
crucial difference here, is that the deterministic dynamoes not have two different
attracting states (there is no double well potential in tiaise).

These few figures show that NESS, for systems with long ranggactions, may
exhibit very interesting phenomena. We hope that this vp#ma large number of new
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FIGURE 11. Right panel: relaxation towards a statistically statignstate of the two dimensional
Navier Stokes equation. After a transient state with a @ipolrticity field, the flow switches to a zonal
(unidirectional) organization of the vorticity field. Legfanel: for a different value of the control parameter
(here the aspect ratio of the domain), we observe a dipobnizgtion in a statistically stationary situation.
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FIGURE 12. Rightpanel{z|, the modulus of the first Fourier mode of the vorticity fieldhe direction
parallel to the unidirectional flow (for unidirectional flewz | is close to 0, while for dipoles it oscillates
around 05. The flow thus switches randomly from dipole to unidirectibflows. Left panel: PDF of the
complex variable;.

fundamental works on the subject. Moreover, in a forthcanpaper, we will discuss
the application of these results to geophysical flows.

5. CONCLUSION

We have briefly reviewed in this contribution old and new tessan the old, but active,
subject of systems with long range interactions. We cleszknowledge that this review
is far from exhaustive and represents our personal interest

In conclusion, it seems to us that equilibrium statisticachmnics of these non addi-
tive systems is very well understood: a careful applicatibstandard tools allows one
to deal with the unusual non additivity condition, see thetise devoted to equilibrium.
The situation is somewhat similar as far as relaxation taliegum is concerned: in
this case also, classical tools, namely those of kinetiorthdave proved sufficient to
explain some unexpected phenomena. Thus, we fell that ihetepresent no obvious



need for an alternative theory describing the relaxatiaihee systems with long range
interacting.

Let us note that despite the successes of these well esitbliseories, standard sta-
tistical mechanics at equilibrium, classical kinetic theooncerning the relaxation to
equilibrium, there remains open questions and challeragesroom for new discover-
ies, especially concerning the relaxation; we have trieduttine a few of them along
the way. The most important are probably, on one hand the fpresnsemble inequiv-
alence, negative specific heat and phase transitions imahg@itienomena or laboratory
experiment, and on the other hand the understanding of itiies of kinetic theories.
However, we feel that the most relevant questions, bothrétieally and practically,
concern forced and dissipative systems, out of equilibriihee last section presents
very recent preliminary steps towards an undertandingexdlsituations, for which the
theory is far less developed.
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