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Adhesive elastic contacts – JKR and more

E. Barthel‡
Surface du Verre et Interfaces, CNRS/Saint-Gobain, UMR 125, 93330, Aubervilliers

Cedex France.

Abstract. Since the early 90s, adhesive contact mechanics has emerged as an area

of considerable interest in nano- and bio-sciences. Here we review the methods which

have been developed in the past 75 years to account for adhesive interactions in elastic

contact problems. Emphasis is given to the connexion between the local, physical

mechanism of adhesion and the macroscopic, mechanical loading. The discussion

centers on the contact equations. In an attempt to provide a broad view of the

field, we outline the key concepts and their progressive developments, starting from

the approximate calculation by Derjaguin in 1934 and ending with recent results for

coated systems and time dependent materials, through the well established DMT and

JKR models.

Introduction

Adhesive contacts play a central role in many technological areas. Efficient

manufacturing processes require a tight control over the contamination of surfaces

by particles: wafer cleaning for example is a key technology in semi-conductor

technology [1]. Energy efficient mechanical devices [2] and reliable micromechanical

systems [3] demand better control over friction and lubrication. Key phenomena such as

particle immobilization or release in filtration [4], controlled positioning in reproduction

devices [5], settling of bio-organisms on surfaces in health [6] or bio-technologies must

be better understood for further progress.

Such an ambitious program offers at least two facets. The first issue is the

physical and chemical properties of the surfaces – how do two surfaces interact ? –

and their engineering by surface modification. The second issue is the impact of surface

interactions on the global mechanical response of the particle: for a given loading,

will the particle be captured, can it be released ? Here, one of the core problems is

the adhesive contact and the rising impact of the JKR model (Johnson, Kendall and

Roberts [7], Fig. 1), starting in the 90s’, reveals the steeply growing relevance of small

scale adhesive contact theories in physics and biology.

‡ etienne.barthel@saint-gobain.com
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Figure 1. Number of citations to the JKR model.

Method In the adhesive contact problem, the issue is to account for the attractive

coupling between surfaces in mechanical terms. In this paper, we review some of the

methods which have been developed over the last 75 years. Except in section 3.2.3,

the discussion is limited to linear elastic systems and their immediate extensions. For

clarity it is focused on a restricted set of models. They are all somehow evolved from

the Hertz model for adhesionless contact [8] and revert to it in the proper limit. We

think these models are simpler and more likely to be of practical use. They are also

easier to generalize to more complex responses. In fact our selection of models is also

directed by the underlying derivation method. They are readily amenable to the Hankel

transform method pioneered by Sneddon [9, 10, 11]. However we did not try to provide

a rigorous derivation of each result but the interested reader will find hints in a small

technical appendix.

In a typical elastic contact, the three macroscopic contact variables (load F ,

penetration δ and contact radius a, Fig. 2) obey two relations called the contact

equations. These relations delineate the specific behavior of each model. We will not

detail the features of each model, for which ample literature is available. The single

distinctive feature we will mention is the pull-out force. In contrast, we focus on the

form adopted by the contact equations. In this way we can both stress the key ideas

common to all models and show how they differentiate in relation to the underlying

physical assumptions. Finally, the relevance of the theoretical developments is evidenced

by specific experimental results which have been selected for illustration purposes.

Outline Section 1 is mostly a brief account of the standard models but we first discuss

an early method by Derjaguin [12]. It is simple but suitable for order of magnitude

calculations only. The bulk of the section is devoted to the DMT [13] and JKR [7]

models. Typical experimental applications of the JKR model are also detailed.

The applicability of the DMT or JKR models is restricted to specific types of

interactions between surfaces. Expanding on these interactions to account for arbitrary

adhesive coupling, Section 2 provides an overview of more recent developments. The
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Figure 2. Top: The geometry of the Hertzian contact. Bottom: interaction between

curved surfaces before contact (Derjaguin approximation).

experimental motivations are described. The general contact equations are formulated

and a very simple but efficient solution is suggested. More generally, we provide

an account of the more technical self-consistent calculation of the ensuing surface

deformations, insisting on the common threads and trends encountered in the various

versions. The practical implications for data analysis are discussed.

Section 3 develops this approach beyond homogeneous, time independent materials.

Complex systems feature mechanical responses which depend upon either lengthscale

(thin film) or timescale (viscoelastic). We show how the local mechanical response

triggered by the adhesive stresses may differ from the macroscopic response and discuss

implications for adhesive contacts: the impact is minor for non-homogeneous materials

but in many cases it is very significant for time-dependent materials.

1. Level 1 – Basic Results

1.1. Interactions – Contact

The first adhesive contact models appeared in the 1930s. The topic emerged out of

steady progress in surface physics and chemistry and sharper perception of the nature

of the interactions between surfaces (for a short account see [14]). Bradley [15] and
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Figure 3. Typical interaction potential between flat surfaces (Bradley, full self-

consistent model) and approximation (dashed) to the repulsive part (Derjaguin,

restricted self-consistent model)

Derjaguin [12] almost simultaneously proposed models for the adhesion of spheres.

Interestingly the main contrast between the Derjaguin and Bradley approaches is still

echoed in present day researches. Let us denote V (z) the interaction potential between

flat surfaces of unit area separated by a distance z (Fig. 3). Bradley considered the

full interaction potential V (z) between two surfaces, including attractive and repulsive

contributions to the potential. Summation of the interaction stresses over the curved

bodies, assumed rigid, provide the interaction force [15]. When surface deformation is

taken into account, the Bradley method evolves into the so-called full self-consistent

method [16]. Derjaguin also considered the attractive part of the potential but treated

the repulsive part differently [12]. He assumed that this repulsive contribution is so

steep that the surfaces cannot interpenetrate. As a result [17] the boundary conditions

specify the surface normal displacement – instead of the surface normal stress – inside

the contact zone, exactly as in the Hertz model for the adhesionless elastic contact [8].

The Derjaguin approach is the prototype of the so-called restricted self-consistent

method [16]. This approximation is the background of the present paper. We will

only occasionally refer to fully self-consistent results or to Finite Element calculations.

1.1.1. Contact problems Starting with the adhesionless contact model, we consider

an axisymmetric punch pressed against a rigid flat surface (Fig. 2). In the restricted

self-consistent method:

(i) the contact problem involves mixed boundary conditions: the normal surface stresses

are prescribed outside the contact zone while the normal surface displacements are

prescribed inside (Fig. 2 top).

(ii) the contact radius a is not prescribed directly but depends upon the loading: it

grows with increasing load F and increasing penetration δ. The contact problem

is geometrically non linear.
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A solution is an equilibrium stress field (and its associated displacement field) which

matches the boundary conditions. It provides the set of two relations between the

three macroscopic contact variables (contact equations). Before we discuss the impact

of adhesion, we first identify expressions for the contact equations in the absence of

adhesion.

Adhesionless contact equations – Hertz For a sphere of radius R, the punch shape f(r)

is approximately

f(r) =
r2

2R
(1)

Hertz [8] demonstrated that an ellipsoidal distribution of contact stresses, inside the

contact zone, flattens this elastic sphere. The relation between penetration and contact

radius§ is

δH(a) =
a2

R
(2)

and the relation between the force and the contact radius is

FH(a) =
4E⋆a3

3R
(3)

E⋆ is the reduced modulus E/(1 − ν2) where E is the Young’s modulus and ν the Poisson

ratio. Equations 2 and 3 are the contact equations for an adhesionless elastic contact of

spheres. A more detailed account of the Hertz results and their generalizations to other

shapes can be found in Appendix A.2.1.

The gap, denoted hH(r) in the adhesionless contact theory, is the distance between

opposite surfaces outside the contact zone. The gap shape results from the deformation

of the punch shape f(r) (Eq. 1) by the non local elastic response to the contact stresses

(see Appendix A.2.1) and adhesive interaction stresses if present. Indeed, the gap will

be of considerable significance when the interactions between surfaces are included in

the contact theory.

1.2. Adhesive contact of an elastic sphere

The question is now: how can we include adhesion in such a contact problem ?

1.2.1. Derjaguin 1934 – Adhesion The first model was proposed in the lesser-known

second part of the otherwise famous 1934 paper [12] by Derjaguin. There he assumes

that the contact stresses and the gap shape are given by the Hertz predictions. Adhesion

is very simply included as the adhesion energy w expended in separating a unit area of

§ It is sometimes argued that Eq. 2 is geometric in nature because it does not involve mechanical

parameters. Notwithstanding it is a mechanical relation as will be shown when non homogeneous

materials will be considered (section 3.1.1).
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contacting surfaces (Fig. 2 top). Denoting EH the elastic energy for the Hertz contact,

the total energy of the system is now

E(δ) = EH(δ) − w(πa2) (4)

and the force is calculated as

F =
dE
dδ

(5)

By assumption, the Hertz relation between contact radius and penetration is preserved.

Thus the hertzian force is simply offset by a constant −πwR. The contact equations

(Eqs 2 and 3) become

δD = δH(a) (6)

FD = FH(a) − πRw (7)

Pull-out force The pull-out force is defined as the force required to separate the surfaces.

As tensile forces are counted negative, it is the minimum of the force-penetration curve.

It is a useful characteristics of the various adhesive models. For the Derjaguin 1934

model,

Fpullout = −πRw (8)

and pull-out occurs at a = 0.

Relevance The Derjaguin 1934 model for the adhesive contact (Eqs. 6-8) is

not exact but, as noted by Johnson and co-workers [7], it is useful for order of

magnitude estimates of elastic adhesive contact properties.

Orders of magnitude Eq. 8 demonstrates that adhesion effects are not negligible for

externally applied loads of the order of πwR or less. If this adhesion force is compared

to the gravity force, adhesion will become significant for smaller particle radii, namely

R <

√

w

ρg
(9)

where ρ is the density and g the acceleration of gravity. For typical values (w = 0.1 Jm−2,

ρ = 1 103 kgm−3) this cross-over radius, which is similar to a capillary length, will be

of the order of millimeters. Surface energy terms must be considered at smaller scales;

larger particles remain negligibly affected by adhesive contributions.

In this regime, the typical contact radius can be calculated assuming zero externally

applied load (FD = 0). Then compressive and tensile stresses balance each other and

(Eq. 3 and 7)

a ≃
(

πwR2

E⋆

)1/3

(10)

and the magnitude of the contact stresses is

σc ≃
(

wE⋆2

π2R

)1/3

(11)
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For a soft material (E⋆ = 10 MPa), this means a contact radius of the order of 30 µm

and contact stresses σc ≃ 0.5 MPa. A full normalization scheme has been developed by

Maugis [18] (Appendix A.3) while interesting alternative schemes have been proposed

by Triadis [19].

1.2.2. Derjaguin approximation The pull-out force predicted by Derjaguin (Eq. 8) is

at variance with another expression derived in the very same paper. In the first part

of [12], Derjaguin calculated the force acting between a sphere and a plane at small

separation but before actual contact (Fig. 2 bottom). Although it does not involve

actual mechanical contact, this model is of interest here for the manner the attractive

interactions between surfaces are introduced.

The surfaces are at close proximity, but not touching. They are separated by a

distance δ > 0 and attract each other by a radial distribution of surface stresses σz(r).

The total force is simply

Fext = 2π
∫

+∞

0

drrσz(r) (12)

Interaction Potential Following Derjaguin [12] we assume that the adhesive stresses

derive from an interaction potential V (z), as in section 1.1 (Fig. 2 b). The characteristic

features of this interaction potential are its amplitude, typically

V0 = −V (0) (13)

and its decay length δint. The stress between these flat surfaces is

σ(z) = −dV

dz
(z) (14)

We denote σ0 the amplitude of the attractive interaction stresses. Then

σ0 ≃
V0

δint

(15)

The Derjaguin approximation Assuming that the surfaces are rigid, and neglecting the

impact of the curvature of the surface on the interaction, the radial stress distribution

is

σz(r) = σ(h(r)) = −dV

dz
(h(r)) (16)

where h(r) denotes the gap. Since here we have no surface deformation but a simple

rigid body displacement δ, the gap is h(r) = f(r) + δ. Then, for the sphere (Eq. 1),

Eq. 12 becomes

Fext(δ) = 2πRV (δ) (17)

This is the famous Derjaguin approximation [12] which has found widespread use in

surface forces measurements [20]. It states that the force between the sphere and the

plane is proportional to the interaction potential between flat surfaces at the same

distance. The proportionality coefficient is the sphere radius.
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Figure 4. The geometry of the DMT adhesive contact. The attractive interactions

act over the cohesive zone, an annulus (radius c) surrounding the contact zone (radius

a). The DMT model applies if c ≫ a.

Taking the separation between surfaces δ = 0, we obtain an evaluation of the

pull-out force

Fpullout = −2πRV0 (18)

Now, from the definitions of w (section 1.2.1) and V , assuming V (+∞) = 0, it is clear

that w = V0. As a result the pull out forces resulting from Eqs. 8 and 18 differ by a factor

of 2 as already noted in [12]. As a first step towards understanding this discrepancy we

now investigate how the attractive force exerted on the sphere by the plane is affected

when the surfaces are actually pressed against each other and develop a contact zone.

1.2.3. Another model – DMT In 1983, Derjaguin and coworkers proposed another

adhesive contact theory called DMT [21, 22], which is the ”natural”‖ extension of the

Derjaguin approximation (section 1.2.2) when contact stresses are included. As with the

Derjaguin 1934 model [12], the authors assume that the Hertzian stress distribution and

deformation fields apply but that the adhesive interaction stresses (Fig. 4) result in an

additional force, which is now computed in the manner of the Derjaguin approximation.

Then the set of contact equations (Eq. 2 and 3) becomes

δDMT = δH(a) (19)

FDMT = FH(a) + Fext(a) (20)

where the outer force term

Fext(a) = 2π
∫

+∞

a
drrσz(r) (21)

is the direct extension of Eq. 12. This additional force term can be evaluated as follows.

Assuming that the adhesive interaction stresses derive from the interaction potential

‖ Starting in 1974 [13], the development of the DMT theory is a muddled issue. For a detailed account

see [23]
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V (z) as in the Derjaguin approximation (section 1.2.2, Fig. 3), the spatial distribution

of attractive stresses is expressed as

σz(r) = −dV

dz
(hH(r)) (22)

where hH(r) is the gap of the Hertz contact (section 1.1.1). For a given potential V (z)

the adhesive force Fext(a) can be calculated numerically [22]. However, as we will show

below, this step usually turns out unnecessary.

The pull out force for the DMT theory is

Fpullout = −2πRw (23)

because at a = 0, by assumption, the DMT theory merges with the Derjaguin

approximation (section 1.2.2).

Validity In the DMT theory, the compressive contact stresses result in the surface

deformation necessary to match the boundary conditions inside the contact zone. In

contrast it is assumed that the attractive stresses do not bring about deformation. This

consideration places a restriction on the interaction stresses: σ0 must be small compared

to the contact stresses and we infer that the DMT theory is valid for σ0 ≪ σc (Eq. 11)

which leads to the condition (Eq. 15)

δint ≫
(

π2w2R

E⋆2

)1/3

(24)

For exemple, for a small rigid sphere (R = 100 µm, E⋆ = 1 1011 GPa) the cross-over

decay length over which DMT applies is a reasonable δint = 1 nm. The DMT model

will typically be relevant for small and rigid spheres.

Note that the right-hand side of inequality 24 is actually the penetration for zero

applied load (use Eqs. 6 and 10). Denoting c the extent of the region over which the

attractive interaction stresses act (the so-called cohesive zone – Fig. 4) we can compare

c and the contact radius a. Indeed δint ≃ c2/2R while δ = a2/R. Then a condition

of validity for the DMT model equivalent to Eq. 24 is that the contact zone is much

smaller than the cohesive zone [24]:

c ≫ a (25)

The sphere – DMT in the Maugis manner As a result the contact zone has little impact

on Eq. 21 and a simple and accurate version of the DMT theory proposed by Maugis [18]

is to take Fext constant:

Fext(a) = −2πRw (26)
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a) b)

Figure 5. Schematic illustration of the neck formed at the contact edge. In a thought

experiment, an adhesionless contact has been formed. When adhesion is switched on

the contact area spreads out (a). The contact radius is preserved if a (negative) flat

punch displacement restrains contact growth (b).

Puzzling facts about the DMT theory Similar considerations developed for other punch

shapes must now be mentionned. Assuming punch shapes of the form

f(r) =
rn

Kn

(27)

the pull out force for low stress values (small σ0) obeys a power low behavior σm
0 with

m = (n−2)/n [19, 25]. For instance, if n = 1 (cone) Fpullout → +∞ and if n > 2 (cubic)

Fpullout → 0 [26]. As a result, in this weak interaction regime, except for the paraboloid

(sphere), the pull out force is remarkably sensitive to the interaction range.

Status of the adhesion energy in the DMT model As these more general results

demonstrate, the DMT model relies on the interplay between interaction potential and

punch shape. The pull-out force is not controlled by contact area creation or destruction

as assumed in the Derjaguin 1934 model. The adhesion energy w as a thermodynamic

variable coupled to contact area is not the relevant concept: in the DMT model

the pull out force derives from the motion of the punch in the long range

interaction potential. Strictly speaking, the parameter relevant for adhesion

is the amplitude of the interaction potential V0 rather than the adhesion energy w.

In the DMT theory the punch displacement directly couples to the interaction potential.

1.2.4. Surface energy transfer – JKR Performing experiments on rubber friction in

the Cavendish laboratory in Cambridge, Roberts distinctly observed the formation of a

neck around the contact area of adhesive hemispheres [7].

The phenomenon can be understood in analogy with wetting. Imagine a thought-

experiment performed with a soft rubber-like sphere. Let us start from an adhesionless

contact (section 1.1.1) and turn the adhesive interactions on. At constant penetration δ

the contact area increases (Fig. 5, a). Alternatively, to keep the contact area constant,

one needs to pull the sphere back some distance (Fig. 5, b). This pull-back motion

at fixed contact radius is a flat punch displacement δfp which accounts for the neck

experimentally observed. Indeed the flat punch solution is singular at the contact edge
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(Appendix A.2.2): the surface displacement exhibits a square root singularity outside,

the surface stress an inverse square root singularity inside.

Now if the neck height δfp is large enough, which is typically the case for soft

materials, then it spans the full interaction range, of order δint (Fig. 3). Then a contact

radius variation da results in a transfer of work w d(πa2) from the contact zone, in

complete analogy with a peel test for example. The neck singularity is precisely the

energy transfer mechanism which is lacking in the original Derjaguin 1934 method

(section 1.2.1). The energy transfer is controlled by the neck height δfp: energy

minimization [7, 27] shows that the neck height δfp must obey

2πaw = E⋆δ2

fp (28)

This equation, which will be proved in 3.1.2, is the core of the original JKR model [7].

As a result of the local treatment of the adhesive process, the neck height depends

upon the elastic response and adhesion energy but not upon the punch shape. In the

JKR model the relevant thermodynamic variable is the contact radius, coupled to the

adhesion energy.

In summary, in the JKR model, the flat punch term contributes a peeling

action at the contact edge. The adhesive parameter involved is indeed the

adhesion energy w, the energy required to create surfaces.

Validity of the JKR model Combining Eqs. 10 and 28 we observe that the JKR flat

punch displacement is

δfp ≃
(

πw2R

E⋆2

)1/3

(29)

Tabor [28] suggested to introduce a parameter comparing this flat punch displacement

to the decay length of the interaction potential δint (Eq. 15). Denoting this parameter

λ, we have

λ ≡ δfp

δint

≃ σ0

(

wE⋆2

πR

)1/3
(30)

This parameter is identical to the stress ratio introduced earlier (section 1.2.3). It

measures the impact of the interaction stresses on the surface deformations ¶. The

JKR case is obtained for large λ while small λ values characterize the DMT regime

(section 1.2.3). In contrast to DMT, the JKR theory is likely to apply when interaction

stresses are large and the materials compliant.

Contact equations Linear superposition of the adhesionless contact and the flat punch

solutions (Appendix A.2.2) provides the contact equations

δ(a) = δH(a) + δfp (31)

F (a) = FH(a) + Ffp(a) (32)

¶ Tabor called this parameter µ. For a detailed listing of the equivalent definitions of the Tabor

parameter see [29]
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Figure 6. Contact relations for Hertz, DMT and JKR models. Also shown are

Double-Hertz models with different values of the Tabor parameter λ.

In contrast to the previous models the flat punch term offsets both hertzian force and

penetration. The correction to the hertzian force, the flat punch force term, is given by

Ffp(a) = δfpS(a) (33)

It is linear in δfp because for a flat punch the contact radius a is constant: the flat punch

contact problem is geometrically linear. The flat punch (or contact) stiffness (Appendix

A.2.2) is

S(a) = 2aE⋆ (34)

The form adopted in the set of equations Eqs 31- 32 is quite general and can be

used for different punch shapes [25, 30, 31], although the sphere is the shape of choice

for most experiments.

The case of the paraboloid – Pull out force For the specific case of the contact of

a homogeneous elastic sphere (approximated by a paraboloid as in section 1.2.2) the

contact equations result from Eqs. 2, 3, 28, 31 and 32:

δJKR(a) =
a2

R
−

√

2πaw

E⋆
(35)

F (a)JKR =
4E⋆a3

3R
− 2

√
2πE⋆wa3 (36)

which is the original JKR result [7]. The pull-out force can be calculated by minimization

of the total force (Eq. 36), which results in

Fpullout = −3

2
πwR (37)

Note however that in contrast to previous models pull out occurs at a finite contact

radius with a characteristic size given approximately by Eq. 10.

The contact relations in the JKR and the DMT models are plotted on Fig. 6 along

with other cases which will be described later. Normalization has been carried out

according to Appendix A.3: in particular the force is normalized to πwR. Observe how
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the DMT model is obtained by a translation of the Hertz force curves by -2 along the

force axis while the JKR flat punch term induces shifts both along the force and the

displacement axis.

1.3. The JKR model – Some applications

1.3.1. The JKR test The various adhesive contact theories are often identified by the

relation they provide between pull-out force and adhesion energy. In practice however,

the direct use of relations such as Eqs. 21 or 37 to infer adhesion energies, although widely

spread, is suspect. Indeed rupture occurs at a point of instability. The consequences

are twofold. Fluctuations will significantly affect the results [32] while the dynamics of

the interfacial response will impact the pull-out force in a non-trivial manner [33].

It is much more powerful to actually record data in the stable adhesive contact

region (i.e. before contact rupture) and analyze them with a given contact model. In

the line of the JKR test, various experimental devices have been developed where the

contact radius can be monitored as a function of the applied load to infer the adhesive

properties of various types of surfaces [34, 35, 36]. The main application of such devices

is to characterize surface modification through adhesion.

1.3.2. The dynamics of adhesive contact rupture As an exemple of JKR experiment we

reproduce a typical curve for contact radius vs load by Deruelle and coworkers [37] for

PDMS lenses on a rigid substrate (Fig. 7). This curve should be compared to Fig. 6 b.

Clearly the loading and unloading paths do not superimpose. In addition the system was

unloaded stepwise: after a displacement step the system is held at constant displacement

for some time during which the contact radius decreases gradually.

These results evidence irreversibility and also kinetic effects: after each step the

contact radius decreases and then slows down to a nearly equilibrium value. It has been

shown [35, 37, 38] that the experiments can be rationalized if the notion of a velocity

dependent adhesion is substituted to the thermodynamic notion of (reversible) adhesion

energy w. The macroscopic deformation of the PDMS lens very accurately conforms

to JKR theory so that one can use JKR theory to extract an effective adhesion energy

which depends only upon the contact radius velocity ȧ = da/dt but not upon the contact

radius a. The equilibrium JKR theory as described in section 1.2.4 is perfectly adequate

here because the behavior of the bulk of the system is elastic and the time dependent

and irreversible phenomena are lumped into the contact edge response.

1.4. Energy release rate

Since the simple adhesion energy picture must be abandoned we take a broader point

of view and consider the problem under the mechanical angle. We calculate the elastic

energy released when the contact edge recedes. This quantity, called the energy release

rate and denoted G is the driving force for contact edge propagation [35]. If equilibrium

holds, then G = w. More generally the energy release rate characterizes the time
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Figure 7. JKR experiment: note the large hysteresis between contact formation and

rupture. Pull-out was carried out step by step (dashed arrows) whereby it is shown

how the effective adhesion measured depends upon the contact edge velocity (after [37]

with permission).

dependent adhesion phenomena: the dynamics of G and its dependence upon waiting

time reveal the interfacial adhesion processes.

A more powerful method to calculate G will be introduced in section 3.1.2. Here

G is simply inferred from the contact equations Eqs. 35 and 36, substituting G to w.

Combining Eqs 28 and 32 results in

G (ȧ) =
E⋆

2πa

(

F (a) − FH(a)

S(a)

)2

(38)

In practice a, ȧ and F (a) are measured directly; FH(a) and S(a) can be calculated from

a through Eqs 3 and 34 to assess G(ȧ).

A relation similar to Eq. 38 can be constructed from the penetration equation

Eq. 31. The full series of homologous relations can be found in [31] for other punch

geometries as well. Note however that in practice the force-based energy release rate

(Eq. 38) is the more robust (section 3.2.3).
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2. Level 2 – The contact edge – a closer view

2.1. JKR and DMT do not fit all

Atomic force microscopy (AFM) is often used to probe surface interactions at the

local scale. Indeed AFM measurements provide good examples of the growing effect

of surfaces as the size of the system decreases [39]. Extensive reviews have considered

many aspects of AFM surface measurements (see for instance [40] for force measurements

and [41] for friction). Consider an AFM tip with a radius of curvature ca 10 nm: it is

clear that the range of the interactions is no longer very small compared to the system

size. Simultaneously the stiffness of the material (silica or silicon nitride) is much larger

than for PDMS spheres. As a result the conditions of application of the JKR model,

which requires significant local deformation of the surfaces under the action of the

interaction stresses (Eqs. 24 or 30), may not be fulfilled. AFM experiments are a good

playground to find a non JKR adhesive contact.

More generally, AFM force measurements call for extensive modeling. Indeed,

AFMs are easy to operate, but provide only limited information in contact experiments.

Because of the very low stiffness of the cantilever, the deflexion at contact contains

only information on the force and does not allow for an accurate measurement of the

penetration. Of course the contact radius cannot be measured directly either and one

is usually left with a single contact variable, the force, a shortcoming which precludes

more elaborate fitting procedures such as exemplified in section 1.3.2: with AFM the

bare use of pull-out forces, with all the drawbacks mentioned above (section 1.3.1), is

widespread.

This situation has been circumvented in certain cases by the measurement of the

lateral stiffness [42, 43, 44] which is proportional to the contact radius. Measuring the

friction force is also a way to assess contact area. A typical example is shown in Fig. 8

where attempts have been made to fit a contact curve by a DMT or a JKR model [32].

Although the system explored in this specific example is complex, such results stress

the need for more involved modeling of the adhesive contact.

2.2. Adhesive contact models for interactions of intermediate range

Macroscopic equations Here we assume that the interactions have intermediate range,

comparable to the flat punch displacement. Alternatively, the magnitude of the

attractive interaction stresses is comparable to the contact stresses. Then the interaction

stresses contribute to surface deformations but without reaching fully into the JKR

regime. In this case the contact equations are a plain superposition of JKR and DMT

terms [45]:

δ(a) = δH(a) + δfp (39)

F (a) = FH(a) + Ffp(a) + Fext(a) (40)
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Figure 8. AFM friction force measurements as a function of normal load. The JKR

and DMT best fits are shown. In these experimental conditions it seems necessary to

take into account the finite range of the interactions (After [32] with permission).

Fext obeys Eq. 21 as for DMT and Ffp Eq. 33 as for JKR. However, because we are

not in a full JKR regime, the flat punch displacement is not determined by Eq. 28.

Similarly, because we are not in a full DMT regime, Fext is not given by Eq. 26. A

standard solution will be presented in section 2.3 but we first mention an interesting

and very simple solution.

A mixed model Following Schwarz [46], we assume the attractive interaction results

from the superposition of a very short range interaction in the JKR manner (adhesion

energy w1) and a very long range interaction in the DMT manner (adhesion energy

w2). The total adhesion energy is w = w1 + w2. From the results in section 1, linear

superposition allows us to conclude that in Eqs. 39 and 40

2πaw1 = E⋆δ2

fp (41)

and

Fext(a) = 2πRw2 (42)

With Eq. 33 these two equations completely specify the solution. The resulting

behaviour for varying ratios of the adhesive contributions w1/w2 has been studied in

details by Schwarz [46] who has shown that it compares favorably with the results of

more classical interaction models.

2.3. Inside the cohesive zone – Accounting for the interactions

We now deal with more orthodox attractive interactions which inevitably entail more

elaborate calculations. Indeed, once the functional form of the attractive interaction
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has been given, it is usually difficult to compute the details of the cohesive zone.

Two methods will be briefly described. The generic features of the solutions will be

highlighted in a specific example. The impact of finite range interactions will then be

reviewed and their practical relevance discussed.

2.3.1. Exact self-consistency equation An equation similar to Eqs. 16 or 22 may be

used:

σz(r) = σ(h(r)) = −dV

dz
(h(r)) (43)

Here, because the elastic response is non local, the gap h(r) results from the compressive

contact stresses and the tensile adhesive interaction stresses (Eq. A.18). Since the latter

in turn depends upon the gap (Eq. 43), the result is a strongly non-linear equation.

Strictly speaking a self-consistent calculation of the full deformation and stress fields

inside the cohesive zone is called for [17].

2.3.2. Approximate self-consistency equation A more interesting form for the self-

consistency equation emerges from the definition of the surface stresses Eq. 14. Then

w =
∫

+∞

a
drσz(r)

∂

∂r
h(r) (44)

Eq. 44 provides opportunities for useful approximate models because it does not

explicitly involve the full functional form of the interaction potential (as in Eq. 43) but

only the adhesion energy [17]. We assume a given spatial distribution for σz(r); more

complex distributions may occur but typically its amplitude is σ0 and it extends over

the cohesive zone (i.e. between a and c, Fig. 9b). For adequate choices of the functional

form of σz(r), the analytical integration of Eq. 44 can be carried out. Typically σ0 is

a parameter, a the running contact variable, and the self-consistent calculation needs

only determine the cohesive zone size c so that force and penetration may be calculated.

Thus, for each value of a, a single scalar c has to be determined instead of the full stress

distribution field inside the cohesive zone. This weak formulation of the self-consistency

equation leads to incomparably lighter numerical calculations than exact self-consistency

(section 2.3.1).

2.3.3. Double Hertz As an exemple of self-consistency equation (weak formulation), we

briefly comment on the so-called ”Double-Hertz” model as proposed by Greenwood [47].

In this model the spatial distribution of attractive stresses obeys an ellipsoidal

distribution

σ(r) =







−σ0

√

c2−r2

c2−a2 if a ≤ r ≤ c

0 if c < r
(45)

Then

δfp = −σ0

π

2E⋆

√
c2 − a2 (46)



Adhesive elastic contacts – JKR and more 18

3

2

1

0

-1

g
a

p

3.02.52.01.51.00.50.0

radius

 Hertz
 undef. sphere

 

 λ=0.1

 λ=0.3

 λ=1
 JKR

 

Hertz, DMT

JKR
-1.0

-0.5

0.0

0.5

1.0

s
u

rf
a

c
e

 s
tr

e
s
s

3.02.52.01.51.00.50.0

contact radius

 Hertz, DMT

 λ=0.1

 λ=0.3

 λ=1
 JKR

JKR

Hertz, DMT

Figure 9. Normalized gap (left) and stress distribution (right) as a function of Tabor

parameter λ for a normalized contact radius a = 1 (Double-Hertz model). The arrows

point to the cohesive zone radius for λ = 1 and 0.3. The gaps all converge to the

undeformed sphere (dashed) at large radii. The penetration required to maintain

contact radius turns from positive to negative as λ increases from 0. Note also how

the finite interaction range regularizes the JKR singularity.

and

Fext(a) =
πσ0√
c2 − a2

(

−2

3
c3 − 1

3
a3 + c2a

)

(47)

For a given magnitude of the interaction stresses σ0, the cohesive zone radius c can

be determined as a function of the contact radius a with the self-consistency equation

(Eq. 44) which in this case reads [47]

w =
1

3

(

1

R
+

πσ0

2E⋆
√

c2 − a2

)

σ0√
c2 − a2

IH(c, a) (48)

where IH(c, a) = (c − a)2(c + 2a).

General considerations The structure of this particular self-consistency equation Eq. 48

is generic. The right hand member of Eq. 48 consists of two terms. The first term

is linear in the interaction stresses and depends only upon the shape of the punch

(radius R). It originates from the work of the adhesive interaction stresses in the surface

displacement induced by the contact stresses (Wcontact). The second term is quadratic

in the interaction stresses and originates from the work of the interaction stresses in

the displacements they themselves induce Wself . This ”self-energy” of the interaction

stresses does not depend upon the shape of the punch. The governing parameter is

the ratio of these two terms Rσ0/E
⋆
√

c2 − a2 which determines the relative weight of

Wcontact and Wself . Using Eq. 10, we can consistently identify this normalized interaction

stress with the Tabor parameter λ (section 1.2.4).

Limit cases The first term has DMT character while the second term is reminiscent

of JKR. Indeed from Eqs. 39-40 and 46-48 we can derive the DMT and JKR limits.

When σ0 → 0, Wcontact is dominant, c is large compared to a, σ0c
2 → 3Rw, δfp → 0
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and Fext → −2πRw. The gap is unaltered by the interaction stresses and the solution

to the self-consistency equation 44 is the Hertzian gap: this is the DMT limit.

When σ0 → ∞, Wself is dominant, c−a is small compared to a, σ2
0(c−a) → 4E⋆w/π,

δfp → −
√

2πaw/E⋆ and Fext → 0. This is the JKR limit. Beyond this specific exemple,

the limit can actually be demonstrated quite generally [17, 19]: for large λ and if there

is one single decay length δint, Eq. 28 is recovered.

Gap – Surface stress Exemples of gap and surface stress distributions for various values

of λ are displayed on Fig. 9. Note how the finite size of the interaction zone regularizes

the typical JKR flat punch singularity at the edge of the contact. The finite interaction

range plays a similar role in wetting problems [48]. For an identical normalized contact

radius, the penetration turns from positive to negative as the interaction becomes more

and more JKR like (large λ). The corresponding force curves are plotted on Fig. 6.

As λ goes from zero to infinity, a continuous transition between DMT and JKR is

followed. In particular the pull-out force evolves continuously from 2πwR to 3/2πwR.

This transition can be followed in more details by plotting the flat punch displacement

δfp and the outer force contribution at pull out as a function of the normalized attractive

interaction stress (i.e. the Tabor parameter) (Fig. 10). δfp saturates at the JKR limit

(−2(2/3)1/3 which is about -1.747) for large λ and slowly goes to zero as λ decreases.

The outer force is zero for large λ, decreases with decreasing λ and practically reaches

−2 when λ < 0.02.

2.3.4. The DMT-JKR transition The continuous transition between DMT and JKR

configurations suggested by Tabor [28] has been first explicitly demonstrated by

Muller [49]. Subsequently, more refined calculations have confirmed the transition [18,

19, 23, 47, 50, 51]. A complete map of the domains of validity of the various models has

been proposed [52]. The wealth of theoretical evidence for the transition is paralleled

by a paucity of experimental demonstrations. The reason is the difficulty in tuning the

characteristic interaction stress at fixed adhesion energy. The most convincing results

have been obtained through SFA experiments which demonstrated the impact of the

adhesive stresses on the shape of the surfaces [53, 54, 55].

Impact of the decay length In the course of the transition between DMT to JKR,

the contact equations are primarily affected by the decay length of the interactions as

defined by Eq. 15 and encapsulated in the Tabor parameter λ. The finer details of

the interaction potential do not affect the contact equations to first order [17]. This

consideration explains: 1) why the weak formulation of the self-consistency equation is

effective; 2) why a model such as Schwarz’ mixed model can easily be matched to very

different solutions such as Maugis’[18], as demonstrated by Carpick [56]. In fact, the

details of the interaction between surfaces is often only moderately well known. Then

we do not need to bother about a model which consistently takes these details into

account. The most adequate model will be the simplest; in this respect Schwarz’mixed
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Figure 10. Adhesive contributions to the contact equations (Eqs. 39 and 40) with

finite interaction range: outer force term (left axis) and flat punch displacement at

pull-out as a function of the Tabor parameter λ (Double-Hertz model).

model [46, 56] and Greenwood’s Double-Hertz [47] are good candidates. Note however

that the type of interactions assumed in [46] is somewhat physically unorthodox. Worse

still one cannot (explicitly or even implicitly) define an exact interaction potential from

which the ”Double-Hertz” model could possibly derive [47]. This impossibility results

from the approximation involved in the weak formulation of the self-consistency.

2.4. When there is more than one decay length

In some rare cases however, we do know enough about the interaction potential for more

elaborate models to be valuable, as when the combined measurement of both the contact

and the non-contact parts of the force-distance curve (in the surface forces manner of

section 1.2.2) is carried out. Information derived from the non-contact part of the

curve can then be fed into the contact model. Experimentally, however, the consistent

measurement of both contact and non-contact parts is demanding as it requires a very

stiff and very sensitive measuring system.

A good exemple of such combined measurements were obtained on a stiff SFA

developped in LTDS (Lyon, France) [57]. In this original device, the force and the

penetration are measured but not the contact radius. The contact and interactions

between silica surfaces (radius 2 mm) in a dry environment has been measured [58].

The plot (Fig. 11) should be compared to Fig. 6 a for its contact part (δ > −1). The

non-contact part (δ < −1) reveals a linear interaction potential i.e. a constant Laplace

pressure resulting from a liquid meniscus. The slope directly provides a measurement

of the interaction stress σ0 ≃ 6 MPa resulting in λ ≃ 0.3. However a striking feature is

the force jump between the contact and the non-contact parts of the curve. Indeed a

simple meniscus model such as developed by Maugis [18, 59] implies continuity between

the two parts of the curves for λ = 0.3 and rules out such a jump.
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This experimental result reveals that another attractive interaction is present in

addition to the meniscus force. This additional interaction has a very short range. A

model has been developed to take both contributions into account [60]: the long range

interaction (the meniscus force, described as in the Maugis model by a constant stress

zone with λ ≃ 0.3) accounts for two-third and the short range interaction (similarly

described, but with a very large λ arbitrarily taken as 10) for one-third of the total

adhesion. Thus the simultaneous fit of both contact and non-contact parts of the

curve [26], involving two very different kinds of interactions, allows a clear breakdown

of the total adhesion energy into each contribution.

In fact similar situations are not unfrequent. In particulr, in many cases a long range

repulsion is added to a short range attraction. This is the case for charged surfaces in a

polar liquid. Both contributions can be taken into account in a convincing assessment

of the adhesion force [61].

In summary, finite range interactions

(i) introduce a flat punch term as in the JKR model, but with reduced

amplitude

(ii) introduce an outer force term as in the DMT model, but with reduced

amplitude

(iii) regularize the JKR singularity at the contact edge

If the interaction features a single decay length, the relative weight of the JKR

and DMT contributions is set by the Tabor parameter λ and a transition

from DMT to JKR is followed as λ increases from zero to infinity. In the

description of this transition, many models have been proposed which appear quite

equivalent. It is only with a detailed knowledge of the interaction that specific models

need be considered.

3. Level 3 – Adhesive contact – Size effects, Time effects

The previous developments are relevant for homogeneous time-independent systems.

We now want to push the theory further and take into account more advanced surface

responses: non-homogeneous or time dependent systems. Such extensions are relatively

simple in the DMT limit because the attractive interaction stresses do not bring about

surface deformation so that the adhesive case is directly derived from the adhesionless

solution. In other cases, the mechanical responses of the cohesive zone and the contact

zone may differ because of the different lengthscales or timescales involved. We must

now consider the relation between local adhesive phenomena and macroscopic contact

variables in this more general context.

3.1. Adhesive contact – Non homogeneous/Non linear

3.1.1. Non-homogeneous materials – thin films As soon as the JKR test was applied to

the investigation of polymer interfaces the limitations due to finite sample sizes became
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Figure 11. Contact and long range interactions between silica surfaces in dry air. Th

model fits both parts of the curve: contact and interaction simultaneously. For that

purpose it must include two interaction potentials with very different decay length.

After [60] with permission.

apparent. Indeed approximately spherical lenses are more easily fabricated if thin.

More importantly surface modification by coating deposition is a major field in polymer

science and technology. Investigations with thin lenses [38, 62, 63] and characterization

of thin films [38, 64, 65] necessarily question the assumption of homogeneous material

response. Indeed in Fig. 8, the system presented a thin organic film at the surface, the

impact of which has not been explicitly assessed. With such finite size issues in mind, a

closer investigation of the relation between flat punch displacement and cohesive zone

parameters must be carried out. We first examine the impact of an elastic coating on

the relation between adhesion and flat punch displacement. Here we follow Shull [65]

and resort to the compliance method.

3.1.2. Compliance method In complete analogy with fracture mechanics methods, we

first proceed [27, 65] to calculate the total elastic energy E for a given loading. In the

spirit of the JKR model, we split the total surface stress and surface displacement fields

into their non-adhesive (σH and uH(r)) and adhesive (flat punch) components (σfp and

ufp(r)). Since ufp(r) = δfp is uniform over the contact zone and surface stresses are

zero outside the contact zone, the total elastic energy [66] is

E(a, δfp) = EH(a) +
1

2
S(a)δ2

fp + FH(a)δfp (49)

where δfp is negative.

The energy release rate G as defined in section 1.4 is the differential of the total

energy E(a, δfp) with respect to contact area A = πa2 at constant total penetration

δ = δH(a) + δfp. We have

dE
da

∣

∣

∣

∣

∣

δ

=
∂E
∂a

+
∂E
∂δfp

dδfp

da
(50)
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and

dEH = FH(a)dδH (51)

dFH = S(a)dδH (52)

Eq. 52 holds because the stress distribution goes to zero at the edge of the contact

(adhesionless contact) [66].

We obtain

2πaG =
1

2
δ2

fp

dS

da
(53)

a result independent of the punch shape. With G = w, Eq. 53 is the proper

generalization of Eq. 28 which is recovered by inserting the contact stiffness of a

homogeneous system (Eq.34).

3.1.3. Thin film – contact equations The contact equations for the adhesive contact of

a punch of arbitrary shape is

δ(a, t, [E]) = δH(a, t, [E]) + δfp (54)

F (a, t, [E]) = FH(a, t, [E]) + S(a, t, [E])δfp (55)

where the adhesionless contact variables δH(a, t, [E]), FH(a, t, [E]) and S(a, t, [E])

depend upon the film thickness t and the various elastic parameters [E] (moduli and

Poisson ratios of the film and the substrate). The flat punch displacement δfp is

determined by Eq. 53.

The functions FH(a, t, [E]), δH(a, t, [E]) and S(a, t, [E]) may be calculated by the

Finite Element Method (FEM) [63, 65, 67, 68, 69]. Direct quasi analytical methods

have also been proposed [70, 71]. They are based on the analytical calculation of

the Green’s function through Hankel transform. The numerics is then limited to a

combination of a Fourier transform and the solution of a linear system of equations [71]:

a considerably lighter task than FEM. Moreover the generalization to a multilayer can

be carried out [72].

A representative behaviour for these quantities are plotted on Fig. 12 for a film ten

times more compliant than the substrate. When the contact radius a is much smaller

than the film thickness t the system is dominated by the film elasticity E1
⋆. When

a ≫ t, the force Πs and the compliance Eeq are dominated by the substrate response

E0
⋆. A transition between these two regimes is evidenced for a ≃ t. Interestingly, the

penetration ∆s also deviates from the simple hertzian result a2/R during the transition.

As alluded to earlier this result attests to the mechanical origin of Eq. 2.

Pull-out force We may expect the transition from film-dominated to substrate-

dominated regimes around a ≃ t to affect the pull-out force strongly. In fact this

is not the case and we now explore why. Let us first assess the impact of the film

on the adhesive response when the characteristic adhesive contact radius (Eq. 10) is

large compared with the film thickness [67, 73]. The elastic response relevant to the
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adhesionless force term FH and to the contact stiffness S is the substrate modulus E0
⋆.

From Eqs. 53 and 55, minimizing as in section 1.2.4, we obtain the typical JKR pull-out

force Eq. 37. As a result identical pull-out forces are expected in the two limit cases

(very small or very large contact radii). More generally the same characteristic size

is involved in the Hertz term and the flat punch term so that the stiffnesses involved

observe a parallel evolution. As a result the pull-out force is overall little affected by

the presence of a film, even in the transition regime where the adhesive contact radius

is close to the film thickness [66, 68, 69]. A typical deviation is in the 10-30 % range.

In the absence of sizeable impact on the contact equations, we now examine the

local stress field at the contact edge. In this respect, coated systems are quite different

from homogeneous half spaces. To illustrate this concept we now introduce the relevant

mechanical parameter, the stress intensity factor which characterizes the elastic field

close to the contact edge.

3.2. The stress intensity factor

In the context of the adhesive contact we call stress intensity factor+ the quantity:

g(a) =
∫

+∞

a

sσz(s)√
s2 − a2

ds (57)

+ In terms of linear elastic fracture mechanics, g(a) has the meaning of a mode I stress intensity factor

K for an outer circular crack [74] when the adhesive contact is viewed as a crack opening or closing

around the contact zone [35]. The exact relation between g(a) and K is actually

K =
2g(a)√

πa
(56)
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Note that g(a) depends only upon the attractive interaction stresses which operate inside

the cohesive zone.

3.2.1. The JKR model and the stress intensity factor As shown in the appendix

(Eq. A.13), for homogeneous, time-independent systems,

w =
2g(a)2

πE⋆a
(58)

The stress intensity factor is also directly related to the flat punch displacement by

(Eq. A.34):

g(a) =
E⋆

2
δfp (59)

These two relations exemplify the role of the stress intensity factor g(a) which provides

the connexion between the macroscopic contact variables (Eq. 59) and the local physical

process of adhesion (Eq. 58). As with the flat punch displacement, g(a) characterizes

the amplitude of the singularity at the contact edge (section 1.2.4).

In the JKR model, the pivotal relation (Eq. 28) actually lumps together these two

relations which must be analyzed separately in cases more elaborate than homogeneous

time-independent systems.

3.2.2. Local response – thin films Usually, it can be assumed that the cohesive zone

is small compared to the film thickness t [66, 67]. Then the local relation Eq. 58 is

preserved. However, it is the film modulus E1
⋆ which is involved:

G = w =
2g(a)2

πE1
⋆a

(60)

The more general case where cohesive zone size and film thickness are comparable has

also been considered [75].

For our purpose, the major impact is on the relation between stress intensity factor

and flat punch penetration: if a coating is present the same stress intensity factor is

obtained for a different flat punch displacement than if the material is homogeneous

(Eq. 59). One can define the function Γ such that

g(a) = Γ(a, t, [E])
E1

⋆

2
δfp (61)

In the line of the compliance method [65], comparison between Eqs. 53, 58 and 61

demonstrates that Γ can be derived from the contact stiffness as

Γ2 =
1

2E1
⋆

dS

da
(62)

In fact Sridhar and Johnson [67, 68, 69] actually calculated the stress intensity factor

by FEM. Interestingly the derivative method [76] they used is closely connected to the

compliance method [65]. The quasi analytical method, on the other hand, is actually

based on the g function so that the stress intensity factor is calculated directly in addition

to the stiffness [66]. Eq. 62 can then be checked directly.
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A representative behaviour for the function Γ is also displayed on Fig. 12 where

it is indeed seen to track the contact stiffness according to Eq. 62. As a result of

Eq. 62, the local field at the contact edge is significantly affected by the film. For

a ≫ t, S = 2aE0
⋆, Γ =

√

E0
⋆/E1

⋆ and compared to the homogeneous substrate, g(a)

is multiplied by a factor
√

E1
⋆/E0

⋆. On the mechanical side, this alteration of the local

stress field at the contact edge is the main impact of the film, which otherwise does little

to alter the macroscopic response. Similar relations between remote loading and crack

tip field are found in other systems [77].

3.2.3. Material non-linearity and finite size effects Even homogeneous systems will

exhibit finite size effects if pushed into a large deformation regime. Elastomers, which

are often used with the JKR test, may undergo such large deformations.

As with thin films (section 3.1.1) the Hertz result no longer applies. A connection

can still be made with JKR theory if the adhesive solution is calculated as a

linear perturbation to a non-linear solution. For these cases of comparatively weak

adhesion, the compliance method (3.1.2) has been shown to be appropriate by Lin

and coworkers [78]. Using FEM, they computed the adhesionless force, penetration and

compliance in the non-linear regime. The energy release rate is calculated by Eq. 53 and

with linear superposition the flat punch response is added to the non-linear adhesionless

contact solution as in Eqs. 31 and 32.

The present paper is mainly based on linear elasticity. We also assume that the

response of flat surfaces apply to moderately curved punches. The results by Lin et al.

provide insight into the limitations incurred by this standard theory. For instance the

large deformation calculations evidence that the two following configurations are quite

different:

(i) rigid sphere on hyper-elastic flat

(ii) hyper-elastic sphere on rigid flat

Let us normalize the contact stiffness by the linear result (Eq. 34). In these specific

calculations [78], the normalized contact stiffness of a hyper-elastic sphere pressed

against a rigid surface increases by about a factor of two when a ≃ R/2 while it

decreases by a small amount when a rigid sphere is pressed against a hyper-elastic

half-space. This contrasted behavior results from the more constricted volume available

for deformation in the case of the (hyper)-elastic sphere. The standard (linear) theory

does not differentiate these two cases.

Remarkably the force dependence upon contact radius is moderately perturbed

when going over to the non linear regime [78, 79], in contrast to the penetration. Similar

considerations apply to finite size effects in the linear regime (section 3.1.3) as can

be checked on Fig. 12 where the force is seen to deviate from the film limit at larger

contact radii than the penetration. The rationale is that the force is an integral quantity

(Eq. A.8) and the correction comes out as a second order term. The penetration, which

directly results from the stress boundary conditions (Eq. A.6), is affected by a first order
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correction. More detailed studies would improve our understanding of these questions

but the results strongly suggest that in practice, the force vs contact radius plot is less

sensitive to non-linear effects than the penetration plot. Fortunately this is the most

frequent experimental set-up.

3.3. Adhesive viscoelastic contact – Time dependent response

Time dependence is another type of interesting material response. It is mainly relevant

for polymers close to their glass transition temperatures. Silicate glasses are also

concerned. Molding viscoelastic materials is a process which can benefit from a better

understanding of the viscoelasic adhesive contact [80, 81].

Referring to the mixed boundary conditions (section 1.1.1 and Fig. 4), we can

observe that a time dependent response will affect both the cohesive zone and the

contact zone but through different processes: creep is involved in the cohesive zone

(under stress boundary conditions) while stress relaxation is relevant in the contact

zone (under displacement boundary conditions).

We use the simplest time dependent linear response. Assuming a constant Poisson

ratio, the stress σ and deformation ǫ obey:

σ(t) =
1

2

∫ t

0

dτψ(t − τ)
d

dτ
ǫ(τ), (63)

ǫ(t) =
1

2

∫ t

0

dτφ(t − τ)
d

dτ
σ(τ), (64)

where the stress relaxation function ψ(t) ≡ E⋆
0ψ̃(t) and the creep function E⋆

0
−1φ̃(t) ≡

φ(t) are inverse for this product of convolution. The instantaneous modulus is denoted

E⋆
0, the long time modulus E⋆

∞. The characteristic creep time is T and the stress

relaxation time is E0
⋆T/E∞

⋆.

For significantly viscoelastic materials the ratio E⋆
∞/E⋆

0 is typically much smaller

than unity; the characteristic time scales for creep and relaxation differ markedly so that

it often occurs that only creep, the slowest of these two processes, is operative within

the experimental timescale [82]. We consider first the issue of creep in the cohesive zone

(section 3.3.1), then couple it to stress relaxation in the contact zone (section 3.3.2).

3.3.1. Time dependent materials – creep in the cohesive zone This process is central

to the viscoelastic crack tip theory developed by Schapery in the 70s [24, 83, 84, 85]. It

requires a cohesive zone with finite size (section 2.3) to avoid infinite strain rates [86].

Because it involves specific cohesive zone behaviour, the stress intensity factor g(a) is

the adequate mechanical variable (section 3.2).

Several equivalent expressions have been developed for arbitrary [45, 87] or

small [24, 83, 86] cohesive zone sizes ǫ ≡ c − a. In the latter case the stress intensity

factor g(a) may be approximated [88] by

g(a) ≃ −π

4
σ0

√
2aǫ (65)
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For an elastic cohesive zone (Eq. 58), the zone size is

ǫ0 =
4

π

wE⋆
0

σ0
2

(66)

The stress intensity factor at the crack tip, for a receding contact radius (similar to an

opening crack), is determined by [88]

w =
2g(a)2

πaE⋆
0

φ̃op(tr) (67)

which is the direct extension of Eq. 58. The characteristic time for the cohesive zone

(Fig. 13) is the dwell time

tr =
ǫ

ȧ
(68)

i.e. the time for the cohesive zone to move across its width ǫ. The effective compliance

is

φ̃op(t) =
2

t2

∫ t

0

τ φ̃(τ)dτ (69)

If φ̃ is exponential with characteristic time T , φ̃op(t) has an exponential-like behavior

with a characteristic time T̃ ≃ 3/2 T .

The cohesive zone involves the material response at a characteristic time tr. Two

limit cases appear: at very low velocities the solution is elastic with the relaxed modulus.

At very high velocities the crack tip is also elastic with the instantaneous modulus: the

stress intensity factor is larger by a factor
√

E⋆
0/E⋆

∞. In the intermediate regime, the

strain rate depends upon the contact edge velocity ȧ and the cohesive stress σ0. The

transition occurs around

ȧ0 ≃
ǫ0

T
(70)

so that the ȧ dependence of g(a) is strongly affected by the cohesive stress σ0 since the

crossover velocity scales with σ0
−2 (Eq. 66).

3.3.2. Time dependent materials – stress relaxation in the contact zone The crack

tip viscoelasticity has now been accounted for. Here, in addition, we consider stress

relaxation within the contact zone. The adhesionless viscoelastic contact problem

has been intensively studied in the 60s [89, 90, 91]. The difficulty is mainly to take

into account the time dependent residual deformation for a decreasing contact radius.

Similar issues must be overcome when adhesion is present. The full solution is of some

complexity [45] but can be considerably simplified in many practical cases [81, 88]. Here,

in the spirit of the previous sections, we emphasize the features of the theory in relation

to the contact equations, focussing on contact rupture.

The exact expressions for contact rupture are cluttered with ancillary terms which

often contribute little to the final result. Here for simplicity we assume that the loading

to the initial contact radius a0 is instantaneous. Also we consider the final phase of

pull-out where the contact radius at t, a(t), is smaller than a0 (Fig. 13). We denote F̃H
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Figure 13. Viscoelastic contact: contact radius history and definition of the cohesive

zone parameters.

the geometrical factor in the hertzian force i.e. FH = E⋆F̃H (Appendix A.1.3). Then

the contact equations are

g(a(t), t) =
E⋆

0

2

∫ t

0

dτψ̃(t − τ)
∂

∂τ
(δ(τ) − δH(r)) (71)

F (t) = E⋆
0ψ̃(t)F̃H(a(t)) + 4a(t)g(a(t), t) (72)

Put g(a) = 0 and you recover the adhesionless results [91]. Eq. 71 is the generalization

of Eq. 31 (with Eq. 59).The force equation Eq. 72 generalizes Eq. 32 (with Eq. 59).

Most evident is the relaxation of the contact stresses embodied by the first term, the

Hertz-like term with timescale t. The second term 4ag(a) is exactly the flat punch term

S(a)δfp (Eqs. 34 and 59). The characteristic timescale for this second term is therefore

the cohesive zone dwell time tr (Eq. 67).

Fast relaxation Macroscopic equations such as Eqs. 71 and 72 can be coupled with

the ȧ-dependence of g(a) (section 3.3.1) into a time differential equation for the contact

radius a. Integration provides a solution to the full adhesive contact of viscoelastic

solids [88].

More qualitatively, following Johnson [82] we can consider the case where the

experimental timescale t is long compared to the relaxation time E0
⋆T/E∞

⋆.

During contact rupture, under the same conditions as Eqs. 71 and 72

g(a(t) ≃ E⋆
∞

2
(δ(t) − δH(a(t)) (73)

F (t) ≃ E⋆
∞F̃H(a(t)) + 4ag(a(t)) (74)

Here the penetration depends upon the relaxed modulus, as does the hertzian term in

the force. However the flat punch force term remains controlled by the cohesive zone
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response with characteristic timescale tr.

If the contact edge moves slowly, the characteristic response is the relaxed modulus,

φ̃0(tr) = E0
⋆/E∞

⋆, 2g(a)2 = πawE∞
⋆ and the elastic case reappears, with the relaxed

modulus.

If the contact edge is fast, as expected during pull-out, the contact edge elasticity is

set by E0
⋆, φ̃0(tr) = 1 and 2g(a)2 = πawE0

⋆. Inserting into Eqs. 73-74, we can compare

the dynamic contact rupture to the static contact (infinitely slow). Then for a fast

crack, the apparent energy release rate for contact rupture is enhanced to

Gapp,op =
E0

⋆

E∞
⋆ w (75)

and the stress intensity factor g(a) is multiplied by
√

E0
⋆/E∞

⋆ as noted above.

During pull out, the relevant compliances for the contact and the flat punch terms

are different: in this limit case, the relaxed modulus is relevant for the contact zone, the

instantaneous modulus for the cohesive zone resulting in an enhancement of the pull-out

force by a factor of E⋆
0/E

⋆
∞.

Application to cyclic loading of dissipative contacts A direct application of the

viscoelastic response of the contact edge has been suggested by K. Wahl and

coworkers [92]: in dynamic adhesive contact experiments performed with a nanoindenter,

where the punch is oscillated at various frequencies, they have evidenced a transition

from JKR contact response at low frequency to flat punch response at high frequency

(Fig. 14). The transition can be explained [93] as follows. At low frequency the effective

elastic modulus of the cohesive zone is the long time modulus E⋆
∞ and the dynamic

stress intensity factor g(a) is small (Eq. 67). For a large enough dynamic flat punch

displacement δfp (Eq. 59 in which E⋆ is typically the long time modulus E⋆
∞), the

conditions are met for peeling and contact edge motion. Then the linear response is the

differential dF/dδ, the JKR contact stiffness. At larger frequencies the effective cohesive

zone elastic modulus is larger (Eq. 67): for an identical dynamic δfp, g(a) is too large for

the contact radius to move and the contact edge is effectively pinned. Then the linear

response is dF/dδ|a, which is the flat punch stiffness.

In summary, for non-homogeneous systems such as coated substrates,

limited impact on the pull-out force is incurred because the hertzian and

flat punch force terms eventually depend upon similar elastic responses. For time

dependent systems, by contrast, the relevant time scales during contact rupture are

the contact duration for the hertzian term and the cohesive zone dwell time for the flat

punch term. This disparity typically results in a strong contrast in characteristic

elastic response and significant pull-out force enhancement. In both cases the

mechanical response relevant for the cohesive zone differs from the macroscopic contact

response.
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Figure 14. Normalized contact stiffness vs. load for a sphere contacting a PDMS flat.

The stiffness is measured from the AC response at varying frequencies. A transition

from JKR stiffness to flat punch stiffness is evidenced as the frequency increases. After

[92] with permission.

4. Conclusion

The original adhesionless elastic contact model by Hertz has been gradually augmented

to account for adhesive interactions. In this review, we have surveyed the different

methods developed for that purpose. We have focused the discussion on the structure

of the contact equations because they directly reveal the underlying mechanism for

adhesion and their limitations.

The initial attempt by Derjaguin in 1934 to incorporate adhesion energy in the

Hertz model is inaccurate but provides a qualitative answer through an elementary

derivation. In the DMT model, for weak adhesive interaction stresses, the cohesive zone

extends widely around the contact zone and the energy is transferred through the work

of the interaction stresses in the (”rigid body”) displacement of the punch; actually not

exactly that of a rigid body because elastic deformation occurs but it is solely due to

contact stresses and it is only marginally coupled to the adhesive process. The resulting

outer force term, which is added to the hertzian contact term, depends primarily upon

the interplay between interaction decay length and undeformed punch shape. In the

special case of the sphere, it can usually be approximated by a constant −2πV0R. In

the JKR model, for strong adhesive interaction stresses, adhesion energy is transferred

during the motion of the contact edge as in a fracture tip. This situation is reflected in

the presence of a neck at the contact edge. In the model the neck translates into a flat

punch displacement. The flat punch displacement induces the required peeling action

at the edge of the contact. It adds corrective terms both to the penetration and the
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force equations.

For intermediate values of the interaction stresses the contact equations feature

both the outer force term and the flat punch contribution resulting in the well known

transition from DMT to JKR. The transition parameter is the ratio of the adhesive

interaction stresses to the contact stresses (the Tabor parameter) and the transition is

spanned when the parameter goes from 0 to infinity. In the intermediate regime a self

consistent calculation is called for. However the transition is very moderately dependent

upon the details of the interactions and simple approximations have been developed to

avoid extensive calculations. Only when a detailed description of the interaction stresses

exist are more elaborate models useful.

The most recent results have focused on non-homogeneous or time dependent

systems. In these more complex systems the cohesive zone and contact zone experience

different mechanical responses due to the different length- or time-scales. The impact

of this disparity on the contact equations can be assessed, comparing the characteristic

responses of the hertzian term and the flat punch term. For a coated substrate the

relevant elastic responses are similar so that little impact is registered on the pull out

force. This result applies even to the transition region where the typical adhesive contact

radius is of the order of the film thickness. By contrast for time dependent systems,

the elasticity of the hertzian term is ruled by the contact time while the flat punch

displacement is controlled by the cohesive zone dwell time. The latter is typically much

shorter, leading to a strong enhancement of the pull-out force.

Important issues have been left out of this review. The impact of roughness [94, 95],

which is of paramount experimental significance, has not been considered here, even

though interesting issues arise: because the contact problem is non-linear, roughness

offsets the balance between compressive and tensile stresses and strongly affects

adhesion. Plastic deformation, with more limited literature available, also certainly

needs consideration in practice [96, 97, 98]. Here the strategy is similar to the non-

linear adhesive contact (section 3.2.3). Finally the wide area of elastic contacts under

tangential loading and friction, another area with significant practical momentum, is

also amenable to the Hankel transform technique and could be considered as a different

but adjacent perspective.
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Appendix A. Level 4 – Calculation Methods

Appendix A.1. The stress method
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Appendix A.1.1. Abel transforms and equilibrium Adequate transforms facilitate the

investigation of linear elastic axisymmetric contacts formulated as integral equations [10,

99].

Following Sneddon [10, 17, 45, 60, 88], we use g(r), which is an Abel transform of

the normal stress distribution at the surface σz. It is defined by

g(r) =
∫

+∞

r

sσz(s)√
s2 − r2

ds (A.1)

Similarly θ(r) is a transform of the normal surface displacement uz [88, 100]. It is defined

by

θ(r) =
∂

∂r

∫ r

0

suz(s)√
r2 − s2

ds (A.2)

These relations are suited to the adhesive contact problem because g(r) is expressed

as a function of normal surface stresses at radii values larger than r and θ(r) as a function

of surface normal displacement at radii values smaller than r, in agreement with the

adhesive contact boundary conditions (Fig. 4). For instance, for an adhesionless contact,

g is zero outside the contact zone (r ≥ a). Similarly, inside the contact zone (r ≤ a),

uz(r) = δ−f(r) where f(r) is the shape of the indenter. Integration by parts transforms

Eq. A.2 into

θ(r) = δ − δ0(r) (A.3)

where δ is the penetration and δ0 depends only upon the shape of the indenter f(r)

through

δ0(r) = r
∫ r

0

f ′(s)ds√
r2 − s2

(A.4)

Appendix A.1.2. Equilibrium – Application to the adhesive contact The full power of

these transforms appears when it is recognized [45, 88] that in the linear elastic case

and for a homogeneous substrate, mechanical equilibrium results in

g(r) =
E⋆

2
θ(r) (A.5)

Assuming continuity of the stress distribution at a (a condition similar but stronger

than the postulated cancelation of inner and outer stress intensity factors in [18])

g(a) =
E⋆

2
θ(a) (A.6)

For an adhesionless contact g(a) = 0. Then the penetration δ is equal to the

function δ0(a).

For an adhesive contact g(a) 6= 0 and

δ = δH(a) +
2

E⋆
g(a) (A.7)

which is Eq. 59.
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Appendix A.1.3. Integral quantities – force and energy The force can be obtained

through [60]

F = 4
∫

+∞

0

g(s)ds (A.8)

For an adhesionless contact the force F is equal to

FH(a) = E⋆F̃H(a) (A.9)

where (Eqs. A.3 and A.5)

F̃H(a) = 2
∫ a

0

(δH(a) − δ0(s))ds (A.10)

For an adhesive contact g(a) 6= 0 and

F = FH(a) + 4ag(a) + 4
∫

+∞

a
g(s)ds (A.11)

Inserting Eq. A.1 and changing the order of integration shows that the last term is

indeed equal to Fext (Eq. 21) resulting in Eq. 40.

In addition the total mechanical energy E as a function of the normal surface stress

distribution is [60]

E =
4

E⋆

∫

+∞

0

ds g2(s) = E⋆
∫

+∞

0

ds θ2(s) (A.12)

Then if δ is constant and g(r) = 0 for r > a,

1

2πa

∂E
∂a

∣

∣

∣

∣

∣

δ

=
2g2(a)

πE⋆a
(A.13)

which is Eq. 58.

Appendix A.1.4. Inverses – gap and contact stress distribution The inverse relations

to Eqs. A.1 and A.2 are:

sσz(s) =
2

π

d

ds

∫

+∞

s
dr

rg(r)

(r2 − s2)1/2
(A.14)

or

σz(s) = − 2

π

[

∫

+∞

s
dr

g′(r)

(r2 − s2)1/2

]

(A.15)

and

uz(r) =
2

π

∫ r

0

θ(s)

(r2 − s2)1/2
ds (A.16)

One can derive a useful expression for the gap [45]:

h(r) ≡ u(r) − δ + f(r) (A.17)

=
2

π

{

∫ r

a
ds

δ0(s) − δ0(a)√
r2 − s2

+
∫ r

a
ds

θ(s) − θ(a)√
r2 − s2

}

(A.18)

Let us investigate the behavior of the gap h(r) for r → a(t). For r = a(1 + ǫ), one

can show that, for a differentiable function j(s),
∫ r

a
ds

j(s)√
r2 − s2

= (2ǫ)1/2j(a) + O(ǫ3/2) (A.19)
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Thus, continuity of θ at a entails that the second term in Eq. A.19 behaves as ǫ3/2 at

a. The Hertz term hHertz(r, a) behaves similarly, since it as the same form (Eq. A.26),

and therefore the O(ǫ3/2) behaviour applies to the total gap (Fig. 9).

Appendix A.2. Applications

Appendix A.2.1. The sphere (a paraboloid) For the adhesionless sphere, the boundary

conditions are

uz,H(r) =
r2

2R
for r < a (A.20)

σz,H(r) = 0 for r > a (A.21)

From Eq. A.4 one obtains

δ0,H(r) =
r2

R
(A.22)

The equilibrium equation Eq. A.5 results in

θH(r) = 0 for r > a (A.23)

gH(r) =
E⋆

2
(δ − δ0,H(r)) for r < a (A.24)

Due to continuity of the normal stress at the edge of the contact zone,

δ = δ0,H(a) (A.25)

which results in the Hertzian penetration Eq. 2. The force is calculated through Eq. A.8

which results in Eq. 3. Finally the gap results from Eq. A.18 using Eqs. A.22 and A.23:

hH(r, a) =
2

π

1

R
h̃H(r, a) (A.26)

where

h̃H(r, a) ≡
∫ r

a
ds

(s2 − a2)√
r2 − s2

=

{

a

2

√
r2 − a2 +

(

r2

2
− a2

)

arccos
(

a

r

)

}

(A.27)

Appendix A.2.2. flat punch The boundary conditions are

uz,fp(r) = δfp for r < a (A.28)

σz,fp(r) = 0 for r > a (A.29)

From Eq. A.4 one obtains

δ0,fp(r) = 0 (A.30)

so that

θfp(r) = δfp for r < a (A.31)

gfp(r) = 0 for r > a (A.32)

The equilibrium equation Eq. A.5 results in

θfp(r) = 0 for r > a (A.33)

gfp(r) =
E⋆

2
δfp for r < a (A.34)
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Continuity of the normal stress at the edge of the contact zone does not apply due

to the punch singularity. The contact radius is equal to the punch radius and the flat

punch solution is linear in δfp.

The force is calculated through Eq. A.8 which results in

Ffp(r) = 4
∫ a

0

gfp(s)ds = S(a)δfp (A.35)

where S(a) is the contact stiffness Eq. 34.

The gap is not defined but the surface displacement outside the contact zone can

be evaluated (Eq A.16 and A.31) as

uz,fp(r) = δfp

(

1 − 2

π
arccos

(

a

r

))

(A.36)

with a singular behaviour at a:

uz,fp(r) ≃
2

π
δfp

√

2(r − a) (A.37)

Similarly, using Eqs. A.15, A.32 and A.34 we obtain

σz(r) = −E⋆δfp

π

1√
a2 − r2

(A.38)

with a singular behaviour at r = a

σz(r) ≃ −E⋆δfp

π
√

2a

1√
a − r

(A.39)

Appendix A.3. Normalization

In the case of the spheres, following [18], we normalize F by πwR, and introduce

P =
F

πwR
(A.40)

A =
a

(

3πwR2

4E⋆

)1/3
(A.41)

∆ =
δ

(

9π2w2R
16E⋆2

)1/3
(A.42)

λ =
2σ0

(

16E⋆2πw
9R

)1/3
(A.43)
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