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VARIATIONS ON LOG SARKISOV PROGRAM FOR SURFACES

ADRIEN DUBOULOZ AND STÉPHANE LAMY

Abstract. Let (S, BS) be the log-pair associated with a compactification of a given smooth
quasi-projective surface V . Under the assumption that the boundary BS is irreducible, we pro-
pose an algorithm, in the spirit of the (log) Sarkisov program, to factorize any automorphism
of V into a sequence of elementary links in the framework of the logarithmic Mori theory. The
new noteworthy feature of our algorithm is that all the blow-ups and contractions involved in
the process occur on the boundary.

Introduction

Let V be a smooth quasi-projective surface. We plan to describe the automorphisms of V
when there exists a compactification V ⊂ S where S is a (possibly singular) projective surface
with S \ V equal to an irreducible curve. More precisely, we look for a decomposition in the
framework of logarithmic Mori theory for automorphisms of V that do not extend as biregular
automorphisms on S. In this introduction we suppose the reader has some familiarity with the
basics of Mori theory ([15] is an agreeable introductory book); let us recall simply that a Mori
fibration X is a Q factorial normal variety with at most terminal singularities endowed with a
fibration g : X → Y with connected fibers above a normal variety Y of a dimension strictly less
than X, such that all the curves contracted by g are numerically proportional and of negative
intersection with the canonical divisor KX : a Mori fibration should be thought as a “simplest
possible” representative in its birational class.

The Sarkisov program, written out in dimension 3 by Corti in 1995 [3], is an algorithm to
decompose a birational map f : Y 99K Y ′ between Mori fibrations into so-called elementary
links. The algorithm works in principle in arbitrary dimension (as soon as the MMP = “minimal
model program” is proved); the general idea is that one decomposes f with the help of a sequence
of intermediate varieties between Y and Y ′, and that we have control of the complexity of
these varieties in the sense that, modulo isomorphism in codimension 1, at most one divisorial
contraction is sufficient to come back to a Mori fibration. Here is a brief description of the

algorithm. We start by taking a resolution Y
π
← X

π′

→ Y ′ of the base points of f , where X
is a smooth projective variety, and we choose an ample divisor H ′ on Y ′. We note HY ⊂ Y
(or HX ⊂ X, etc...) the strict transform of a general member of the linear system |H ′|, and
Ci ⊂ X the irreducible components of the exceptional locus of π. We write down the ramification
formulas

KX = π∗KY +
∑

ciCi and HX = π∗HY −
∑

miCi
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and we define the maximal multiplicity λ as the maximum of the λi = mi

ci
. On the other hand

we define the degree µ of f as the rational number HY .C
−KY .C

where C is any curve contained in

a fiber of the Mori fibration on Y . In the case λ > µ, that we feel is the general case, the
algorithm predicts the existence of a maximal extraction Z → Y (we take the terminology from
[4], in [15] the same operation is called a maximal divisorial blow-up), which by definition is an
extremal divisorial contraction whose exceptional divisor realizes the maximal multiplicity λ.
Then either Z is itself a Mori fibration, or there exists another extremal divisorial contraction
on Z (possibly preceded by a sequence of log flips, that are isomorphisms in codimension 1) that
brings us back to a Mori fibration. These operations done, one shows that we have simplified f
in the sense that : either µ went down; or µ remained constant but λ went down; or µ and λ
remained constant but the number of exceptional divisors in X realizing the multiplicity λ went
down. As we can see the algorithm is quite complex, not to mention the case λ ≤ µ which is
also intricate, and that we do not detail further.

In 1997 Bruno and Matsuki [2] published a logarithmic version of this algorithm : the log-
Sarkisov program. In this new situation there exist some distinguished divisors BY and BY ′ on
the varieties Y and Y ′ : this arises naturally when Y and Y ′ are compactifications of a fixed
quasi-projective variety V ; by analogy with this case we say in general that BY is the boundary
divisor of Y . The idea is that the algorithm remains formally the same, where KY +BY now plays
the role of the canonical divisor KY . The degree µ in this context is defined as µ = HY .C

−(KY +BY ).C ,

where C is in some fiber of the log Mori fibration on Y . In addition to the ramification formulas
for KX and HX we now have a similar formula for the boundary :

BX = π∗BY −
∑

biCi

and the maximal multiplicity is defined as the maximum of the λi = mi

ci−bi
. Bruno and Matsuki

worked out a log-Sarkisov algorithm in two cases :

(1) In dimension 3, for boundary divisors whose all coefficients are strictly less than 1 (the
precise technical condition is (Y,BY ) klt, for kawamata log terminal);

(2) In dimension 2, for boundary divisors whose coefficients are less or equal to 1 (the
technical condition is dlt, for divisorially log terminal).

The expressed hope is that a refinement of such an algorithm could allow us to understand
the structure of polynomial automorphisms of C3. We have in mind to compactify C3 by the
projective space P3, and to apply the algorithm to the birational map from P3 to P3 induced by
an automorphism of C3. A technical problem is that the boundary in this situation is the plane
at infinity, with coefficient +1, and therefore we are not in the klt framework. Nevertheless in
dimension 2 this obstacle disappears, and we might feel free to think that everything is done in
the case of surfaces.

Now here is the example that initially gave us the motivation to write on the log-Sarkisov
program in dimension 2 in spite of the existence of the results by Bruno-Matsuki. Let us consider
an affine quadric surface V , for instance we can take V = {w2 + uv = 1} ⊂ C3. Such a surface
is isomorphic to P1 × P1 minus a diagonal D. Let f be the rational map

f : (x, y) ∈ C2
99K

(

x +
1

x + y
, y −

1

x + y

)

∈ C2.

This map preserves the levels x + y = cte, extends as a birational map from S = P1 × P1 to
S′ = P1×P1, and induces an isomorphism on V = P1×P1\D where D is the diagonal x+y = 0.
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The unique base point is the point p = [1 : 0], [1 : 0], and the unique contracted curve is the
diagonal D. We can resolve f by performing 4 blow-ups that give rise to divisors C1, · · · , C4

arranged as on figure 1 (all these claims are not difficult to check by straightforward calculations
in local charts; the reader may also look in [14]).

C0

−1

gggggggggggggg
C3

−2 WWWWWWWWWWWWWW
C4

−1

gggggggggggggg

C2
−2

�����������

C1
−2

***********

Figure 1. Resolution of f .

The divisor C0 is (the strict transform of) the diagonal on S, and C4 is the diagonal on S′. Let
us choose H ′ = D as an ample divisor on S′, then we compute the coefficients in the ramification
formulas :

KX = π∗KS +
∑

ciCi, BX = π∗BS −
∑

biCi and HX = π∗HS −
∑

miCi,

in order to deduce the λi = mi

ci−bi
. The ci and bi are easy to compute; for the mi it is sufficient

to check that in this particular example the strict transform HS of a general member of |D| is
a smooth curve. We obtain the following results :

ci bi mi λi

C1 1 0 1 1
C2 2 1 2 2
C3 3 2 3 3
C4 4 2 4 2

Thus the maximal multiplicity is realized by the divisor C3. We can construct the maximal
extraction of the maximal singularity in the following way : blow-up three times to produce
C1, C2 and C3, then contract C1 and C2 creating a singular point (this is a so-called Hirzebruch-
Jung singularity, noted A3,2). We obtain a surface Z that compactifies the affine quadric V by
two curves : C0 and C3 (the latter supporting the unique singular point on the surface). After
this maximal extraction is made we notice that there exists 4 curves on Z that correspond to
K + B negative extremal rays :

• The strict transforms of the 2 rules D+ and D− crossing at p : it is one of these two
curves that the Bruno-Matsuki’s algorithm imposes to contract (precisely : the one that
was a fiber for the chosen structure of Mori fibration on P1 × P1);
• C3, which is the exceptional divisor associated with the maximal multiplicity (that we

have just constructed);
• C0, which is the strict transform of the diagonal on S : it is this curve that our algorithm

will impose to contract.

This elementary example shows that the log-Sarkisov algorithm proposed by Bruno-Matsuki is
not fully satisfying in the sense that there is no reason why it should respect the surface V (the
two authors were well aware of this fact, see [2, problem 4.4]). It would be natural to hope for
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an algorithm where all the blow-ups and contractions occur on the boundary divisor. This is
such an algorithm, “a variation on the log-Sarkisov theme”, that we propose in this paper.

Our main result reads as follows, where the notion of “admissible compactification” will be
defined and discussed on paragraph 1.1 below.

Theorem 1. Let f : V
∼
→ V ′ be an isomorphism of smooth quasi-projective surfaces, and let

S, S′ be admissible compactifications of V (or equivalently of V ′) such that the boundary divisors
BS , BS′ have irreducible support. Then if the induced birational map f : S 99K S′ is not an
isomorphism, we can decompose f into a finite sequence of n links of the following form

Zi

}}{{
{{

{{
{{

��
@@

@@
@@

@

Si−1 Si

where S0 = S, S1, · · · , Sn = S′ are admissible compactifications of V with an irreducible bound-
ary, Zi is for all i = 1, · · · , n an admissible compactification of V with two boundary components,
and Zi → Si−1, Zi → Si are the contractions associated with one of the two K + B negative
extremal rays contained in the boundary BZi

.

1. The factorization algorithm

1.1. Admissible surfaces. Here we discuss the class of admissible compactifications, and show
that the hypothesis made on the singularities and the geometry of the boundary are, in a sense,
optimal. Let us mention that it is relevant to consider quasi-projective surfaces V and not only
affine ones; for instance P1 × P1 minus a fiber is a non affine surface with a rich group of auto-
morphisms.

Singularities. First of all an automorphism of a quasi-projective normal surface V extends as an
automorphism of the minimal desingularization of V ; this remark allows us to restrict without
loss of generality to the case of a smooth surface V . On the other hand it is natural to allow
some kind of singularities on the compactifications S of V , indeed the log-MMP can produce a
singular variety after an extremal contraction even if the variety we started with was smooth
(this is true even for surfaces). The widest framework where the Mori Program is (essentially)
established in arbitrary dimension is the one of pairs (Y,BY ) with dlt (divisorially log terminal)
singularities. For the general definition of dlt singularities we refer the reader to [12, def. 2.37];
in the case of a pair (S,BS) with S a projective surface, BS =

∑
Ei a non empty reduced divisor

(i.e. all the coefficients of the Ei are equal to 1) and S \BS smooth this is equivalent to ask for
the following properties :

• Any singular point p of S is a point of BS which is not a crossing Ei ∩Ej ;
• The Ei are smooth irreducible curves with normal crossings;
• A singular point p is locally isomorphic to a quotient of C2 by a cyclic group, that is

to say the Hirzebruch-Jung singularities An,q are the only ones allowed (the reader may
find a discussion of these classical singularities for instance in [1, p.99]). Furthermore if
C1, · · · , Cs is the minimal chain of rational curves (each with self-intersection ≤ −2) that
desingularizes p, this is the first curve C1 that meets transversaly the strict transform of
BS.
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With the same notation, in the ramification formula

KS̄ + BS̄ = π∗(KS + BS) +
∑

aiCi

we have ai > 0 for all i (this is in fact the definition of p being a log terminal singularity).
The characterization above comes from [12, prop. 2.42] and from the local description of log
terminal singularities when the boundary is reduced and non empty, that can be found in [11,
see in particular p.57, case(3)]. The interested reader may consult chapter 3 of [5] by Fujino for
a complete discussion on the diverse existing definitions of log terminal singularities.

Geometry of the boundary. A first observation is that it is unreasonable to try to extend the
statement of the theorem to the case of surfaces with reducible boundary. Let us suppose
indeed that f : S 99K S′ is a birational map with BS reducible. Let g : Z → S be a birational
morphism whose exceptional locus E is irreducible. Then either the image g(E) is located at
the intersection point of two components of BS, and the remark 4 (see further, at the end of
paragraph 1.2) implies that g can not be a K +B negative contraction ; either g(E) is a general
point of a component Ei of BS , and this time the same argument forbids the contraction of Ei

to be K + B negative. A very simple explicit example is given by the identity map C2 → C2

viewed as a map from P1×P1 to P2 : it admits an unique base point located at the intersection
of the two rules at infinity, and the blow-up of this point is not a K + B negative contraction
(it is only a K negative contraction).

A second observation is that the existence of a birational map that is not a morphism f :
S 99K S′ imposes strong constraints on the irreducible boundary E0 = BS. Let us introduce
some notations that will also serve in the proof of the theorem. Let π : S̃ → S and π′ : S̃′ → S′

be minimal resolutions of the singularities of S and S′ respectively; from the characterization of
dlt singularities we deduce that the total transforms of BS and BS′ are simple normal crossing

divisors of S̃ and S̃′ respectively. Let S̃
σ
← X

σ′

→ S̃′ be a minimal resolution of the base points
of f view as a birational map between S̃ and S̃′.

X
σ

yyssssssssssss
σ′

%%LLLLLLLLLLLL

S̃

π

��

S̃′

π′

��

S
f

//____________ S′

We still denote by E0 the strict transform of BS in X or in S̃. Remember (see [10, th. 5.2
p.410]) that in general if h : M →M ′ is a birational map between normal surfaces, and p ∈M
is a base point of h, then there exists a curve C ⊂M ′ such that h−1(C) = p. This implies that
at every step of the resolution σ of f there is only one base point, which is the preimage of BS′ .
Thus the last blow-up of the sequence σ produces a divisor which is the strict transform of BS′ ,
and the last blow-up of the sequence σ′ produces E0 = BS . That is to say the curve E0 in X
can be contracted to a smooth point. Therefore E0 is rational (as are all the other components

of BX , by construction), and in S̃ we have E2
0 ≥ 0 because the self-intersection of E0 should

become −1 in X after a (non-empty) sequence of blow-ups whose at least the first is located
on E0. Furthermore, after the contraction of E0 from X the boundary is still a simple normal
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crossing divisor. In consequence, E0 admits at most two neighboring components in BX . This
implies that BS supports at most two singularities, and if BS contains exactly two singularities,
then the base point of f must coincide with one of these singularities.

Admissible class. We suppose given a smooth quasi-projective surface V . In view of the obser-
vations above, it is natural to define the class of admissible surfaces as the set of pairs (S,BS)
with the following properties :

• S is a projective compactification of V , that is we have a fixed isomorphism S \BS
∼
→ V ;

• BS =
∑

Ei is a reduced divisor with each Ei isomorphic to P1;
• (S,BS) admits only dlt singularities;
• If BS is irreducible then S admits at most two singularities.

We allow the possibility of a reducible boundary mainly in order to include the surfaces Zi with
two boundary components that appear in the theorem. In this case, we will observe in the course
of the demonstration that each boundary component supports at most one singularity.

Remark 2. The class of admissible surfaces we just defined contains in particular the class of
affine surfaces that admit a compactification by a chain of smooth rational curves, which has
been studied by Danilov-Gizatullin [8, 9]. Our theorem thus applies to these surfaces. Indeed,
each surface of this kind admits at least one compactification by a chain of rational curves
C0, C1, . . . , Cr, r ≥ 1, whose self-intersections are respectively 0, a1, . . . , ar, where a1 ≤ −1 and
ai ≤ −2 for all i = 2, · · · , r. After contracting the curves C1, . . . , Cr, we obtain an admissible
compactification S with an irreducible boundary BS = C0. These surfaces always admit a very
rich automorphism group. In particular, it acts on the surface with an open orbit of finite com-
plement (see [7]).

1.2. Proof of the theorem. As above, let π : S̃ → S and π′ : S̃′ → S′ denote the minimal

resolutions of the singularities and let S̃
σ
← X

σ′

→ S̃′ be a minimal resolution of the base points of
f . The divisor BX is then a tree of rational curves, whose irreducible components are exceptional
for at least one of the two morphisms π ◦ σ or π′ ◦ σ′, thus they have all a strictly negative self-
intersection. Since BX is a tree, there exists a unique sub-chain E0, E1, . . . , En of BX such that
E0 and En are the strict transforms of BS and BS′ respectively. The minimality hypotheses
imply that E0 and En are the only irreducible components with self-intersection −1 in BX . The
demonstration proceeds by induction on the number n of components in the chain joining the
strict transforms of BS and BS′ , which will also be the number of links necessary to factorize f .

We use the same notation for the curves Ei, i = 0, . . . , n and their images or strict transforms
in the different surfaces that will come into play. The self-intersection of E0 is positive in S̃
by hypothesis. By definition of the resolution X, the divisor E1 is produced by blowing-up
successively the base points of f as long as they lie on E0, E1 being the last divisor produced by
this process. Let Y → S̃ be the intermediate surface thus obtained. By construction, the image
of the curves contracted by the induced birational morphism X → Y are all located outside
E0. The self-intersections of E0 in X or in Y must in particular be equal (to −1). The divisor
BY is then a chain that looks as in figure 2. The wavy curves labelled “Sing” correspond to
the (possible) chains of rational curves obtained by desingularization of S, and the wavy curve
labelled “Aux” corresponds to the (possible) chain of auxiliary rational curves, each one with
self-intersection −2, obtained by resolving the base points of f before getting E1.
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Y

E0

gggggggggggggg E1
WWWWWWWWWWWWWWSing

T�
T�
T�
T�
T�
T�
T�

Aux

J

J


J

J

J


J

J


Sing

T�
T�
T�
T�
T�
T�
T�

Figure 2. The boundary divisor of Y .

The lemma 3 ensures that running the K + B MMP we can successively contract all the
components of the boundary BY with the exceptions of E0 and E1. Indeed at each step,
the extremities of the boundary chain support at most one singularity and thus are K + B
negative, with negative self-intersection. This implies that they give rise to divisorial extremal
contractions. We note (Z,E0 + E1) the dlt pair obtained from the pair (Y,BY ) by this process.

X

Y

Z

S S′

S̃ S̃′

σ

}}||
||

||
||

||
||

σ′

!!
BB

BB
BB

BB
BB

BB

��

ttiiiiiiiii

��

ttiiiiiiiii
π

��

π′

��

f
//__________

By construction, Z dominates S via the divisorial contraction of the K +B negative curve E1.
Again by the lemma 3, E0 is K + B negative, with self-intersection strictly negative in Z. So
there exists a K + B divisorial extremal contraction Z → S1 contracting exactly E0. We obtain
the first expected link and the map f : S 99K S′ factorizes via a birational map f1 : S1 99K S′

for which it is straightforward to check that the length of the chain defined at the beginning of
the proof is equal to n− 1.

Z = Z1

yyssssssssss

##GG
GG

GGG
GG

S = S0

f

33Y Z [ \ ] ^ _ ` a b c d e f//_________ S1
f1

//______ S′

We conclude by induction that we can factorize f by exactly n links. �

Lemma 3. Let (S,BS) be an admissible surface.

(1) A curve C ⊂ BS with only one neighboring component in BS and supporting at most
one singularity of S is KS + BS negative.

(2) For a curve C ⊂ BS supporting exactly one singularity p of S to satisfy C2 < 0, it is
sufficient that its strict transform C̄ in the minimal resolution of p satisfies C̄2 < 0.
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Proof. (1) If C does not support any singularity of S, we have

(KS + BS) · C = (KS + C) · C + 1 = −2 + 1 = −1

by adjunction. Otherwise, let π : S̄ → S be a minimal resolution of the unique singularity
supported by C. Let E be the unique exceptional curve of π that meets the strict transform C̄
of C. We write KS̄+BS̄ = π∗(KS+BS)+aE+R, where R (here and further in the proof) denotes
an exceptional divisor for π, whose support does not meet C̄, and all of whose coefficients may
vary. We have then

(KS + BS) · C = (KS + C) · C + 1 = π∗(KS + C) · π∗C + 1

= (KS̄ + C̄ + (1− a)E + R) · C̄ + 1 = π∗(KS + C) · C̄ + 1

= (KS̄ + C̄).C̄ + 1− a + 1 = −2 + 2− a

= −a < 0

because (S,BS) dlt pair implies a > 0.
(2) Let π : S̄ → S be as above. We write C̄ = π∗C − bE−R and KS̄ = π∗KS − cE−R where

c ≥ 0 (otherwise p would be a smooth point) and b > 0. We have

C2 = (π∗C)2 = (C̄ + bE + R)2 = C̄2 + 2b + (bE + R)2

= C̄2 + 2b + (bE + R) · (π∗C − C̄) = C̄2 + 2b− bE · C̄

= C̄2 + b

On the other hand, in the logarithmic ramification formula above, we have a = 1 − b − c > 0
because (S,BS) is a dlt pair. So 1 > b, and therefore C2 < C̄2 + 1 : this gives the assertion of
the lemma. �

Remark 4. The lemma contains what is strictly necessary for the demonstration of the theo-
rem. Nevertheless an easy refinement of the first assertion of the lemma leads to a more precise
caracterisation of a KS+BS negative boundary component C of a dlt pair (S,BS). In particular :

A curve C in BS with at least two neighboring components in BS can never be KS + BS

negative.

Indeed, if we note n the number of neighbors of C in BS and p1, . . . , pr the singular points of
S supported along C, the same argument as in the proof of the lemma shows that

(KS + BS) · C = −2 +
r∑

i=1

(1− ai,1) + n,

where for all i = 1, . . . , r, ai,1 > 0 is the log discrepancy of the unique exceptional divisor Ei,1 in
the minimal resolution of the singular point pi that meets the strict transform of C. As above
we can show that the log discrepancies ai,j > 0 of the irreducible components Ei,1, . . . , Ei,ri

of
the chain of exceptional divisors in the minimal resolution of pi are all strictly less than 1 (write
ai,j as ai,j = 1 − bi,j − ci,j as in the end of the proof of the lemma). If we note π : S̄ → S the
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surface obtained by taking the minimal resolution of all the singular points pi, we have

ai,1E
2
i,1 + ai,2 = (π∗(KS + BS) +

∑

i,j

ai,jEi,j) ·Ei,1

= (KS̄ + BS̄) · Ei,1 = (KS̄ + C̄ + Ei,1 + Ei,2) · Ei,1

= −1 + Ei,2 · Ei,1

where, by convention, ai,2 = Ei,2 ·Ei,1 = 0 if pi admits a resolution by a blow-up with a unique
exceptional divisor Ei,1. In all cases we have ai,1 ≤ 1/2 because E2

i,1 ≤ −2 and ai,2 < 1 . Finally
we get

n− 2 + r > (KS + BS) · C ≥ n− 2 +
r

2
.

For n = 2, this gives the assertion above. For n = 1 and r = 1 we get again the first assertion
of the lemma. For n = 0 and r = 2 we obtain : if BS = C is irreducible and supports two
singularities then C is K + B negative (possibly without being extremal).

The inequalities above do not a priori exclude the possibility for a curve C without a neighbor
and supporting three singularities to be KS+BS negative. But in this case the singularities could
no longer be of an arbitrary type. For instance, the computations above shows that an isolated
component C supporting exactly three A3,1 singularities (i.e., each one admits a resolution by a
unique exceptional rational curve with self-intersection −3) satisfies (KS + BS) ·C = 0. On the
other hand, let us remember from the paragraph 1.1 that if S admits more than two singularities
then any birational map S 99K S′ induced by an automorphism of V is in fact a morphism.

We should finally remark that neither the lemma nor the above argument tell something
about the possible K + B negative curves that do not belong to the boundary : in the example
given in the introduction, we had four K + B negative extremal rays, only two of which were
within the boundary.

1.3. Comments and complements. Here we discuss additional properties of our algorithm
which may lead to a better understanding of the construction and give an insight of the possible
generalizations in higher dimensions.

Let us first consider again the subchain E0, · · · , En of rational curves in the boundary BX of
X defined in the proof. Lemma 3 guarantees that all the irreducible components of BX except
the ones contained in that chain can be successively contracted by a process of the K +B MMP.
The surface W obtained by this procedure has boundary BW =

∑n
i=0 Ei and dominates both

S and S′ by a sequence of K + B negative divisorial contractions : see figure 3 (note that W
is in general singular). It follows that the pairs (S,BS) and (S′, BS′) considered in the theorem
are always log-MMP related in the sense of Matsuki [15, p.128]. This leads to the following result.

Proposition 1. The birational morphism Z → S with exceptional divisor E1 constructed in the
proof of the theorem is a maximal extraction .

Proof. A maximal extraction (see [15, prop. 13-1-8] and [2, p.485] for the logarithmic case) is
obtained from a surface which dominates S and S′ by a process of the K + B-MMP. So we
may start with the surface W just constructed. The precise procedure consists in running a
K + B + 1

λ
H-MMP over S, where λ and H have been defined in the introduction. The crucial

observation is that each extremal divisorial contraction of this log-MMP is also a one of the
genuine K + B-MMP (this is obvious for surfaces as H is nef, but this property actually holds
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X

E0
jjjjjjjjjjj

E1

TTTTTTTTTTT
En

jjjjjjjjjjj

////////

��������

////////

��������
��������

W
E0

⋆jj

jjjjjjjj
E1

TTTTTTTTTTT
⋆ ⋆

En
jjjjjjjjjjj

S

⋆jj
E0

jjjjjjjj

S’
En

TTTTTTTTTTT

K+B MMP

��

�� ��K+B MMP
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K+B MMP
%%LLLLLLLLLLL

Figure 3. Log-MMP relation between S and S′.

in any dimension). The fact that we are running a MMP over S guarantees that the only curves
affected by the procedure are contained in the boundary. By virtue of lemma 3 and remark 4,
the only K + B negative extremal rays contained in a chain are its terminal components. So
there exists a unique sequence of K +B negative divisorial contractions from W to S. It follows
that the last one Z → S, which has for exceptional divisor E1, is a maximal extraction. �

The Sarkisov program has been initially designed as an algorithm to factorize birational maps
between a class of varieties as simple as possible in the context of the Minimal Model Program,
namely, Mori fiber spaces. Here we replaced Mori fiber spaces by another class of very simple
objects : dlt pairs (S,BS) with an irreducible boundary BS. It may happen that certain pairs
(S,BS) also admits a structure of a log Mori fiber space. This holds for instance for admissible
compactifications of the affine plane C2 by a smooth rational curve. Indeed, the latter admits
a trivial Mori fibration S → pt, due to the fact that their Picard group is of rank one. Using
Proposition 1 above, it is not difficult to check that for such surfaces our algorithm coincides
with the log-Sarkisov program of Bruno-Matsuki. Furthermore, the factorization enjoys the
following property.

Proposition 2. Let S and S′ be admissible surfaces equipped with a structure of trivial Mori
fibration and let f : S 99K S′ be a birational map extending an automorphism of V . Then each
link of our algorithm strictly decreases the log-Sarkisov degree µ.
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Proof. Letting µS and µS1
be the degrees of f : S 99K S′ and f1 : S1 99K S′ respectively (see the

proof of the theorem for the notation), the ramification formulas read

KZ + BZ +
1

µS
HZ = g∗(KS + BS +

1

µS
HS) + (c− b−

m

µS
)E1

= g′
∗
(KS1

+ BS1
+

1

µS

HS1
) + ⋆E0,

where λ = m/(c− b) is the maximal multiplicity and where ⋆ is a coefficient which plays no role
in the sequel. By definition, KS + BS + 1

µS
HS ≡ 0 and due to the fact that all the curves in S1

are numerically proportional, we have µS1
< µS provided that (KS1

+BS1
+ 1

µS
HS1

).C < 0 for an

arbitrary curve in S1. Since f is not an isomorphism the logarithmic version of the Nœther-Fano
criterion [15, prop. 13-1-3] guarantees that λ > µS. Thus, given a curve C ⊂ Z intersecting E1

but not E0, one checks that its image in S1 satisfies

(KS1
+ BS1

+
1

µS
HS1

).C = (g′
∗
(KS1

+ BS1
+

1

µS
HS1

) + ⋆E0).C

= (c− b) (1 − λ/µS)
︸ ︷︷ ︸

<0

E1.C
︸ ︷︷ ︸

>0

< 0

as desired. �

2. Examples

2.1. Automorphisms of C2. Since our hope is that a possible generalization of our results
in higher dimension could help to understand the structure of the automorphism groups of the
affine space C3, at least we would expect that the well-known structure of the automorphism
group of C2 can be recovered using our algorithm. It turns out that this property holds true as
expected. Here we just describe without proof the links which appear in the decomposition of an
automorphisms of C2. For the details we refer the reader to [13] and [15], which contain proofs
of Jung’s Theorem derived from the philosophy of (log)-Sarkisov program (but not formulated
in the language of Mori Theory in the former).

Let f be a polynomial automorphism of C2 and let f = a0e1 · · · enan be a decomposition
of f into a product of affine automorphisms ai and triangular automorphisms ej . Up to the
composition by the affine automorphism a−1

n , we may write

f = j1 · · · jn = a0e1a
−1
0

︸ ︷︷ ︸

j1

a0a1e2(a0a1)
−1

︸ ︷︷ ︸

j2

· · ·

where each automorphism ji preserves a foliation of C2 by parallel lines. These automorphisms
are called de Jonquières automorphisms. Applying our theorem to each ji, which is assumed to
be of degree di ≥ 2, leads to a factorization in 2di − 2 links of the form

P2 ←→ P2(2)←→ P2(3)←→ · · · ←→ P2(di)←→ · · · ←→ P2(2)←→ P2

where each ←→ denotes an elementary link, and where P2(d) denotes the weighted projective
plane P2(d, 1, 1), obtained from the Hirzebruch surface Fd → P1 by contracting the section with
self-intersection −d. The automorphism ji extends to an automorphism σi of P2(di), and the
above decomposition can be thought as a conjugation ji = ϕ−1σiϕ, where ϕ : P2

99K P2(di)
denotes the birational map induced by the identity on C2.
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If the decomposition of f in Aut(C2) is reduced, then two successive automorphisms ji and
ji+1 do not preserve a common foliation. Therefore, the base points of ji+1 et j−1

i considered
as birational endomorphisms of P2 are distinct. Under this hypothesis, one verifies that our
algorithm produces a factorization of f which coincides with the one obtained by concatenating
the respective decompositions of the ji’s.

P2 · · ·P2(d1) · · ·
︸ ︷︷ ︸

j1

P2 · · ·P2(d2) · · ·
︸ ︷︷ ︸

j2

P2 · · · · · ·P2 · · ·P2(dn) · · ·
︸ ︷︷ ︸

jn

P2

︸ ︷︷ ︸

f

2.2. Automorphism of the affine quadric surface P1 × P1 \ D. We again consider the
birational map f : P1×P1

99K P1×P1 given in the introduction. With the notation of the proof
of the theorem, the union of the boundary of the resolution X constructed in the introduction
and of the strict transforms D+ and D− of the members of the standard rulings on P1 × P1

passing through the base point p = ([1 : 0] , [1 : 0]) of f is described by the figure 4.

E0

−1

gggggggggggggg
E1

−2 WWWWWWWWWWWWWW
E2

−1

gggggggggggggg

Aux 2
−2

�����������

Aux 1
−2

***********

D+

D−

Figure 4. Resolution of f .

Our algorithm gives a factorization f : P1 × P1 ↔ S1 ↔ P1 × P1, where the surface S1 is
obtained from X by contracting the curves E0, E2 onto smooth points and the two auxiliary
curves onto a singularity of type A3,2 supported on E1. The Picard group of S1 is isomorphic
to Z2, generated by the strict transforms of D+ and D−, and the latter also generate the only
K +B-negative extremal rays on S1. One checks further that S1 dominates P2 via the divisorial
contraction of any of these two curves. So, in contrast with the situation in the log-Sarkisov
program of Bruno-Matsuki, S1 does not admit a Mori fiber space structure.

We may identify the affine quadric V =
{
w2 + uv = 1

}
⊂ C3 with P1 × P1 \D via the open

immersion (u, v,w) 7→ ([u : w + 1] , [u : 1− w]). Then, the automorphism of P1×P1 \D induced
by f coincides with the unique automorphism of V lifting the triangular automorphism (u,w) 7→
(
u,w + u2/2

)
of C2 via the birational morphism V → C2, (u, v,w, ) 7→ (u,w). The latter

triangular automorphism uniquely extends to a biregular automorphism φ of the Hirzebruch
surface F2 → P1 via the open immersion of C2 in F2 as the complement of the union of a fiber
E1 and of the section Aux 2 with self-intersection −2. In turn, the birational morphism V → C2

lifts to an open immersion of V into the projective surface V̄ obtained from F2 by blowing-up
the two points q± = (0,±1) ⊂ C2 ⊂ F2 with exceptional divisors D± respectively. The boundary
BV̄ consists in the union of the strict transforms of Aux 2, E1 and of the fiber Aux 1 of F2 → P1

containing the points q±.
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F2

E1

Aux 2

Aux 1

V̄

E1

Aux 2

Aux 1

D+
D−

S1

⋆
E1

D− D+

wwnnn
nn

''PPPPP

Figure 5. Sequence of blow-ups and contractions from F2 to S1.

The automorphism φ of F2 lifts to an automorphism of V̄ which restricts on V to the au-
tomorphism induced by f . The latter descends to a biregular automorphism with the same
property on the surface isomorphic to S1 obtained from V̄ by contracting the curves Aux 1 et
Aux 2.

More generally, similar arguments show that every automorphism f of V induced by a bira-
tional transformation

(x, y) 7→

(

x + P

(
1

x + y

)

, y − P

(
1

x + y

))

,

of C2, where P is a polynomial of degree d ≥ 1, extends to a biregular automorphism of the
projective surface P̂2(d) obtained from the Hirzebruch surface Fd, with negative section C, by
first blowing-up two distinct points in a fiber F \C of Fd → P1 and then contracting successively

the strict transforms of F and C. By construction, P̂2(d) dominates the weighted projective
plane P2(d) via the the divisorial contraction of any of the strict transforms of the exceptional
divisors of the first blow-up. One checks further that the factorization of f : P1×P1

99K P1×P1

given by our algorithm consists of 2d links

P1 × P1 ↔ P̂2(1)↔ P̂2(2)↔ · · · ↔ P̂2(d)↔ · · · ↔ P̂2(1)↔ P1 × P1

The automorphism group of V admits the structure of an amalgamated product analogous to
the one of Aut(C2), in which the above automorphisms play the role of triangular automorphisms
(see [14]). By conjugating by automorphisms of V which extend to biregular automorphisms
of P1 × P1, one obtains the analogues of de Jonquières automorphisms (see paragraph 2.1).
Similarly as in the case of automorphisms of C2, every automorphism f of V admits a reduced
decomposition into a sequence of automorphisms of de Jonquières type with the property that
every two successive automorphisms appearing in this decomposition have distinct base points
on P1 × P1. It follows again that the factorization of f given by our algorithm is obtained by
concatenating the decompositions of its de Jonquières type factors.

2.3. Chain inversions. It is known that if a smooth quasi-projective surface V admits a smooth
compactification by a chain of rational curves with self-intersections (−e1, · · · ,−ek,−1, 0), where
ei ≥ −2 for every i = 1, . . . , k, then it also admits one by a chain of the same length but with
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reversed self-intersections (−ek, · · · ,−e1,−1, 0) (see e.g. [7]). Furthermore two such compact-
ifications are always related by a sequence of elementary transformations with centers on the
boundary (see e.g. [6] for explicit log-resolutions of these maps). Starting from such chains one
can always produce an admissible compactification of V by first contracting as many successive
−1-curves as possible to smooth points and then contracting the remaining curves with negative
self-intersection to a singular point supported on the strict transform of the initial 0-curve, which
becomes the boundary.

Here we consider an example which illustrates how these inversions of chains enter the game
when one considers a same automorphism of a quasi-projective surface V as a birational trans-
formation between various admissible compactifications. We let V be the smooth affine surface
in C4 defined by the equations







xz = y
(
y3 − 1

)

yu = z (z − 1)

xu =
(
y3 − 1

)
(z − 1)

One checks that the birational morphism π0 : V → P2, (x, y, z, u) 7→ [x : y : 1] lifts to
an open immersion of V into the smooth projective surface V̄0 obtained from P2 with ho-
mogeneous coordinates [t0 : t1 : t2] by first blowing-up four distinct points on the affine line
L0,0 \ {[0 : 1 : 0]} = {t0 = 0} \ {[0 : 1 : 0]} with exceptional divisors D0,0,D0,1,D0,2,D0,3, and
then blowing-up a point on D0,0 \ L0,0 with exceptional divisor D0,4. The boundary V̄0 \ V
(pictured with plain lines on fig. 6) consists of the union of the strict transforms of L0,0, D0,0

and the line at infinity L0,∞ = {t2 = 0} on P2. By contracting the strict transforms of L0,0 and
D0,0, we obtain an admissible compactification S0 of V , with a unique singularity of type A5,2

supported on its boundary BS0
= L0,∞.

P2

+1 L0,∞

+1

L0,0

V̄0

+1 L0,∞

−3

L0,0

−2

D0,0

��
��
��
��
��
��
�

D0,3D0,2D0,1

D0,4 S0

⋆

L0,∞
D0,1

D0,2

D0,3

D0,4
wwnnnn ''PPPP

Figure 6. Sequence of blow-ups and contractions from P2 to S0.

A second admissible compactification S2 of V can be obtained in a similar way starting from
the birational morphism π2 : V → P2, (x, y, z, u) 7→ [u : z : 1]. Indeed, one checks that π2

lifts to an open immersion of V into the smooth projective surface V̄2 obtained from P2 with
homogeneous coordinates [w0 : w1 : w2] by first blowing-up two distinct points on the affine
line L2,0 \ {[0 : 1 : 0]} = {w0 = 0} \ {[0 : 1 : 0]} with exceptional divisors D2,0,D2,4, and then



VARIATIONS ON LOG SARKISOV PROGRAM FOR SURFACES 15

blowing-up three distinct points on D2,0 \ L2,0 with exceptional divisors D2,1, D2,2 and D2,3.
The boundary V̄2 \ V consists of the union of the strict transforms of L2,0, D2,0 and the line
at infinity L2,∞ = {w2 = 0} on P2. By contracting the strict transforms of L2,0 and D2,0, we
obtain an admissible compactification S2 of V , with a unique singularity of type A3,1 supported
on its boundary BS2

= L2,∞.

P2

+1 L2,∞

+1

L2,0

V̄2

+1 L2,∞

−1

L2,0

−4D2,0

��
��
��
��
��
��
�

D2,4

D2,1

D2,2

D2,3

S2

⋆

L2,∞
D2,1

D2,2

D2,3

D2,4
wwnnnn

''PPP
PP

Figure 7. Sequence of blow-ups and contractions from P2 to S2.

The identity morphism id : V → V induces a birational map σ : S0 99K S2. The relations
{

z = x−1y
(
y3 − 1

)

u = x−1
(
y3 − 1

)
(z − 1) = x−2

(
y3 − 1

) (
y

(
y3 − 1

)
− x

)

in the function field of V imply that there exists a commutative diagram

S0

��
�
�
�

σ
//___ S2

��
�
�
�

P2
g

//___ P2

where the vertical arrows denote the natural birational morphisms obtained from the construc-
tion of S0 and S2 and where g : P2

99K P2 is the birational map defined by

g : [t0 : t1 : t2] 99K [w0 : w1 : w2]

=
[(

t31 − t32
) (

t1
(
t31 − t32

)
− t0t

3
2

)
: t0t1t

2
2

(
t31 − t32

)
: t20t

5
2

]

The point p = [1 : 0 : 0] ∈ L0,∞ is a unique base point at infinity of g and a resolution of
g is obtained by first blowing-up p with exceptional divisor Aux, then blowing-up the point
Aux∩L0,∞ with exceptional divisor E1 and finally blowing-up Aux∩E1 with exceptional divisor
E2. This resolution lifts to a log-resolution of σ : S0 99K S2 by performing the same sequence of
blow-ups over a nonsingular point of BS0

= L0,∞ and then taking a minimal resolution of the
singularity A5,2 of S0 by a chain of two rational curves C1, C2 (see figure 8).

It follows that the factorization of σ : S0 99K S2 consists of two links S0 ↔ S1 ↔ S2. Note that
the intermediate surface S1 has two singularities of type A3,2 and A2,1 respectively. By successive
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E0=L0,∞

−1 gggggggggggggg

E1

−2 WWWWWWWWWWWWWW
E2

−1

gggggggggggggg

C1
−3

�����������

C2
−2

***********
Aux −3

***********

Figure 8. Resolution of σ : S0 99K S2.

blow-ups, one can obtain from S0 and S2 two distinct compactifications of V by chains of type
(−2,−4,−1, 0) and (−4,−2,−1, 0) respectively. The birational map σ : S0 99K S2 corresponds
by construction to an inversion of these chains.

Now let h : V
∼
→ V be the unique automorphism of V lifting the triangular automorphism

(u, z) 7→
(
u, z + u2

)
of C2 via the birational morphism V → C2, (x, y, z, u) 7→ (u, z). The

birational map h2 = h : S2 99K S2 admits a resolution by four blow-ups with the first one on
the singularity. From this, we get a factorization into two links S2 ↔ S3 ↔ S2. One checks that
the intermediate surface S3 is obtained from the weighted projective plane P2 (2) by performing
a sequence of blow-ups and contractions similar to the one used to construct S2 from P2, and h
extends to a biregular automorphism of S3.

One can also consider h as a birational transformation h0 = h : S0 99K S0. Using again the
fact that h0 can be interpreted as a lifting via the natural birational map S0 99K P2 of a suitable
birational transformation of P2, one checks that the boundary of a minimal log-resolution of h0

has the structure pictured on figure 9.

E0

−1

gggggggggggg
E1

−2 WWWWWWWWWWWW E2

−4

gggggggggggg
E3

−2 WWWWWWWWWWWW E4

−4

gggggggggggg
E5

−2 WWWWWWWWWWWW E6

−1

gggggggggggg

−3

����������

−2

**********
−2

����������

−2

**********

−4

����������

−3

**********

−2

����������

Figure 9. Resolution of h0 : S0 99K S0.

We deduce from this description that the factorization of h0 consists of six elementary links

S0↔ S1 ↔
︸ ︷︷ ︸

σ

S2↔ S3 ↔
︸ ︷︷ ︸

h2

S2↔ S1 ↔
︸ ︷︷ ︸

σ−1

S0

︸ ︷︷ ︸

h0

obtained by concatenating the factorizations of σ : S0 99K S2, h2 : S2 99K S2 and σ−1 : S2 99K S0.
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