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ABSTRACT

In this paper we focus on the software design of a multimodal

driving simulator that is based on both multimodal driver’s focus

of attention detection as well as driver’s fatigue state detection

and prediction. Capturing and interpreting the driver’s focus of

attention and fatigue state is based on video data (e.g., facial ex-

pression, head movement, eye tracking). While the input mul-

timodal interface relies on passive modalities only (also called

attentive user interface), the output multimodal user interface in-

cludes several active output modalities for presenting alert mes-

sages including graphics and text on a mini-screen and in the

windshield, sounds, speech and vibration (vibration wheel). Ac-

tive input modalities are added in the meta-User Interface to let

the user dynamically select the output modalities. The driv-

ing simulator is used as a case study for studying its software

architecture based on multimodal signal processing and multi-

modal interaction components considering two software plat-

forms, OpenInterface and ICARE.
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1. INTRODUCTION

In the context of a multimodal driving simulator, we study com-

ponent-based architecture using two platforms, namely OpenIn-

terface [1] [2] and ICARE [3], for combining multimodal signal

processing analysis and multimodal interaction. OpenInterface

is a component-based platform developed in C++ that handles

distributed heterogeneous components. OpenInterface supports

the efficient and quick definition of a new OpenInterface com-

ponent from an XML description of a program. By so doing,

any program can be included as an OpenInterface component

and can then communicate with any other existing OpenInter-

face component. As opposed to OpenInterface, ICARE is a

conceptual component model for multimodal input/output inter-

action [3]. One implementation of the ICARE model is defined

using JavaBeans components [4].

We study the software design and development of a multi-

modal interactive system using the OpenInterface platform while

the component architecture is along the ICARE conceptual mo-

del. The selected case study is a driving simulator. The project

is multi-disciplinary and we aim at studying the integration of

Signal Processing (SP) and Human-Computer Interaction (HCI)

research results for developing multimodal systems. More pre-

cisely, the contribution of the project is threefold:

• We explain the integration of existing code (SP and HCI)

as new components within the OpenInterface platform.

• We present the development of a new multimodal system

with the OpenInterface platform by assembling compo-

nents and by connecting them to an existing functional

core (a driving simulator).

• We explicate the compatibility of the OpenInterface plat-

form with the ICARE platform since some existing code

is developed using the ICARE platform.

The structure of the paper is as follows: first we present the

selected case study by explaining the rationale for selecting this

interactive system from a multimodal interaction point of view

and by giving an overview of the interactive system. We then fo-

cus on the hypo-vigilance analysis and prediction. Before pre-

senting the software architecture along the ICARE conceptual

model, we recall the key points of the two platforms, OpenInter-

face and ICARE. We finally detail the software architecture that

has been implemented followed by a discussion on the tradeoffs

and differences with the initial ICARE architecture.

2. CASE STUDY: DRIVING SIMULATOR

2.1. Rational for selecting a driving simulator

The case study is a driving simulator. Indeed, facing the sophis-

ticated sensing technology available in modern cars, multimodal

interaction in cars constitutes a very challenging domain. The

key issue in terms of interaction design is that the main task of

the user is the driving one, a critical task which requires a driver

to keep her/his eyes on the road. A driving task relies on local

guidance that includes sub-tasks involving control of the vehicle

and knowledge of the environmental situation. In this context of

a driving task, our goals are:

• to capture a driver’s focus of attention,
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• to capture a driver’s state of fatigue,

• to predict a driver’s state of fatigue,

• to design and develop an output multimodal user inter-

face for presenting alert messages to the driver.

Several projects focus on User Interfaces (UI) in cars and in-

volve various interaction technologies such as trackpad fixed on

the steering wheel [5], dedicated buttons, mini-screens as well

as head-up display (HUD) technology. For example HUDs are

used for displaying icons and texts, usually found on the dash-

board of a car, in the windshield as shown in figure 1.

Figure 1: In-car HUD (from [5]).

We distinguish two main classes of UI studies in cars: de-

sign of interactive dashboards that nowadays include a screen

(e.g., graphical user interface for controlling the radio and so

on) and Augmented Reality (AR) visualizations. Several on-

going projects focus on Augmented Reality (AR) visualizations

for the driver using head-up display (HUD) technology.

For example for displaying navigation information or for

guiding the driver’s attention to dangerous situations, transpar-

ent graphics (e.g., transparent path of the route) are directly pro-

jected onto the windshield [6] as shown in figure 2, making it

possible for the driver to never take her/his eyes off the road.

Figure 2: In-car Augmented Reality: Guiding driver’s attention

to dangerous situation. The arrow indicates the position of im-

minent danger (from [6]).

Complementary to these projects, our task focuses on sup-

porting the driving activity by monitoring and predicting the

state of the driver (attention and fatigue). Instead of focusing

on external dangers (e.g. a potential collision with a car coming

from behind as in figure 2), the project aims at detecting dan-

gerous situations due to the driver’s fatigue state and focus of

attention. The driver’s face is monitored with a video camera

in order to detect any sign of hypo-vigilance. This detection is

based on the use of bio-inspired algorithms in order to analyze

face movements, eyes blinking and yawning. A detailed analy-

sis of eyes motion allows assessment of sleep prediction.

From the Human-Computer Interaction point of view, we

focus on multimodal input and output interaction that combines

passive input modalities (implicit actions of the driver) for de-

tecting dangerous situations as well as active modalities (ex-

plicit actions of the driver) for perceiving alarms (output active

modalities) and for changing the output modalities (input active

modalities). From the Signal Processing domain point of view,

the study allows us to validate our bio-inspired algorithms for

any facial motion analysis in terms of efficiency and computa-

tional rate. We also focus on the definition of a robust data fu-

sion process in order to take a decision from head motion, eyes

motion and mouth motion information.

2.2. Overview of the driving simulator

Starting from the programs developed during a first workshop

at eNTERFACE 2005 [7], the overall hardware setting of the

driving simulator includes:

• 3 PCs: one under Windows for the driving simulator,

one under Linux for capturing and predicting the driver’s

states (focus of attention and state of fatigue), and one on

Windows for the output user interface developed using

the ICARE platform (JavaBeans component).

• 1 Logitech webcam sphere

• 1 Logitech force feedback wheel

• 1 video-projector

• 2 loudspeakers

Figure 3 shows the system in action. For software, the driv-

ing simulator that we used is the GPL program TORCS [8] and

the multimodal interaction is developed using the two platforms

OpenInterface and ICARE.

Figure 3: Multimodal driving simulator: demonstrator in use.

3. HYPO-VIGILANCE ANALYSIS AND PREDICTION

3.1. Hypo-vigilance detection with bio-inspired algorithms

At each time, the face of the driver is captured with a camera and

three signs of hypo-vigilance are tracked: yawning, blinking (or

eyes closure) and head motion. In order to do that, each frame

of the driver’s face video is processed:

• By a pre-filtering algorithm modeling the processes that

are occurring at the human retina level;

• By a data fusion algorithm that extracts and fuses the

information associated to each hypo-vigilance sign. A

spectral analysis modeling the process that is occurring

in the V1 visual area of the brain is used in order to ex-

tract the hypo-vigilance signs.
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Figure 4 presents a global scheme related to the processes

occurring at the retina level (first step) and at the V1 visual area

level (second step).

Figure 4: Model of the retina.

At the retina level, the visual information is double filtered.

A spatio-temporal filter removes the noise and enhances the con-

tours of the scene and a high pass temporal filter enhances the

moving contours only. Figure 5 presents the transfer function

of the spatio-temporal filter and figure 6 shows the impulse re-

sponse of the high pass temporal filter. Figure 7 presents the

results of the successive filtering steps on a sequence in which a

head is moving horizontally. The output of the spatio-temporal

filter shows the details of the image and in parallel, the output of

the temporal high-pass filter extracts only the mobile contours.

The expression of each transfer function is described in [9].

Figure 5: Transfer function of the spatio-temporal filter.

Figure 6: Impulse response of the temporal high-pass filter.

Figure 7: Example of filtering on a horizontally moving head

sequence (a), contours are extracted by the spatiotemporal filter

(b) and moving contours are extracted after temporal high pass

filtering (c).

At the V1 area level, the scene is decomposed into some

specific orientation and frequency bands in the Fourier domain.

The amplitude FFT of each moving contour frame (figure 7-c)

is computed in the log-polar domain. To compute the image

spectrum in the log-polar domain, log polar Gabor filters are

used:

Gik(f, θ) = 1

σ
√

2π
( fk

f
)2exp(−

ln( f
fk

)2

2σ2 )·cos( 1+cos(θ−θi)
2

)

In this formula, the GLOP (Gabor LOg-Polar) filter cen-

tered on frequency fk in the θi orientation and with the scale

parameter θ appears as a separable filter. Figure 8 gives an ex-

ample of a log polar FFT. Each “pixel” of that frame represents

the energy associated to a given band of orientation and energy.

On this example, the spectrum analysis is carried out on the eye

area in which the pupil is moving horizontally. The main energy

is located around orientation 180◦ which represents the moving

vertical contours of the analyzed area.

Figure 8: Log polar spectrum of the moving contours of the eye.

Figure 9 shows two other examples of results: the first one

is related to an eye blink which is made of a vertical eyelid mo-

tion. This vertical motion creates an important energy increase

on the horizontal orientations of the spectrum (90◦). The sec-

ond example shows the case of no motion which is related to a

minimum energy on the spectrum because no moving contours

are extracted.

As a consequence, the analysis of the log polar spectrum al-

lows detecting the presence of motion (when no motion occurs,

the global spectrum energy is null) and the direction of motion

(the contours perpendicular to the motion direction are the con-

tours with the highest energy in the log-polar spectrum) [10].

All the hypo-vigilance signs are derived from the analysis

of the log-polar spectrum. Indeed, three such spectra are com-

puted:

• one on a bounding box around the face,

• one bounding box around the eyes,

• one bounding box around the mouth.

As detailed in [11], in order to detect the eye blinks, the

temporal evolution of the total spectrum energy E(t) of each

eye bounding box is analyzed. This energy evolution (as shown
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in figure 10) presents energy drops when an eye motion occurs.

Then, by selecting the energy drops related to vertical motions,

eye blinks are detected, vertical motions being detected with the

help of the log polar spectrum (figure 9-a).

Figure 9: Log polar spectrum of an eye that is closing (a), log

polar spectrum of a static eye (b).

Figure 10: Temporal evolution of the energy of the spectrum in

an eye bounding box. Each energy increase is linked to an eye

movement, by selecting only vertical motions, each eye blink is

detected.

In order to make the analysis of the face motion more effi-

cient, the algorithm based on neuromorphic velocity filters de-

scribed in [12] is used in order to compute the optic flow asso-

ciated with the pixels of the face bounding box. As a result, the

horizontal and vertical velocities of the face are estimated.

3.2. Sleep prediction

The aim is to provide the driver with a warning several minutes

before he/she loses control of the vehicle due to extreme hypo-

vigilance or sleep. The prediction is based on the 20 second

eyelid activity history of the subject. Specifically the input of

the component is the start and end timestamps of the blinks as

these are registered by the video analysis system.

The output is a binary value 1 or 0 corresponding to warning

or no warning.

The prediction is calculated via the fuzzy fusion of sev-

eral features that characterize the blinking behavior of the driver

(Fuzzy Expert System). These features that were selected based

on literature review [13], [14] and the expertise gained in previ-

ous related projects such as AWAKE [15] are the following:

• Long blinks duration: the blinks in the 20 second window

are filtered and only the ones lasting more than 0,3s are

kept. If the number of long blinks is larger than 2, the

sum of their durations is the long blink duration feature.

• Maximum interval between blinks is defined as the inter-

val between the end of the current blink and the begin-

ning of the next (t1[blink + 1] − t3[blink]).

• Blinking rate.

Although these features are not the most efficient ones they

were the only ones that could be extracted given the input data

and the camera used for video acquisition (30fps). Features that

take into account velocity characteristics of the blinks are re-

ported to have greater accuracy [16], however for the extraction

of these features a high speed camera capable of 200fps and spe-

cial software is needed.

In figure 11, a schematic representation of the fuzzy sys-

tem’s premise space is shown. The features form a three di-

mensional space and their partitioning using three fuzzy sets per

input leads to the formation of 27 fuzzy rules. Each fuzzy rule

has a different output thus giving us the ability to model 27 dif-

ferent blinking behaviors prior to the sleep onset. The final out-

put/prediction of the system is calculated by combining the out-

puts of the fuzzy rules that are triggered by the eyelid activity

pattern (Long blink duration / Max interval / Blinking rate) on

real time.

Figure 11: A schematic of the FES premise space. Depending

on which fuzzy rules are triggered by the eyelid activity pattern

the output of the system is calculated in real time.

For the training of the fuzzy system’s parameters data from

30 drowsy drivers were used, namely the blinking history of the

subjects and the timestamps of the accidents during the driving

sessions.

The method that was used for training was a real-coded ge-

netic algorithm and the fitness function was chosen so as to max-

imize the correct predictions ratio and minimize the number of

alarms so as to be as unobtrusive to the driver as possible [17].

Even though the training of the FES parameters with a GA takes

a substantial amount of time that can reach one hour, once the

parameters are trained the system generates its output instantly

for online operation. Tests that were carried out using this data

led to a prediction accuracy of 80% for the training set of 30

drivers.

Having explained the algorithms for the hypo-vigilance anal-

ysis and prediction, we now focus on the software design. Two

component platforms described in the following section have

been used for the development of our case study. We then ex-

plain the corresponding designed component architecture.
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4. COMPONENT PLATFORMS

4.1. OpenInterface platform

OpenInterface is a component-based platform developed in C++

that handles distributed heterogeneous components. OpenInter-

face supports the efficient and quick definition of a new OpenIn-

terface component from an XML description of a program. Al-

though the platform is generic, in the context of the SIMILAR

[1] and OpenInterface [2] projects, the OpenInterface platform

is dedicated to multimodal applications. We define a multimodal

application as an application that includes multimodal data pro-

cessing and/or offers multimodal input/output interaction to its

users.

Figure 12 gives an overview of the platform. Each com-

ponent is registered in OpenInterface Platform using the Com-

ponent Interface Description Language (CIDL) and described

in XML. The registered components properties are retrieved by

the Graphic Editor (Java). Using the editor the user can edit the

component properties and compose the execution pipeline (by

connecting the components) of the multimodal application. This

execution pipeline is sent to the OpenInterface Kernel (C/C++)

to run the application.

Figure 12: Overview of the OpenInterface platform.

OpenInterface is designed to serve three levels of users: pro-

grammers, application designers (AD) and end-users. Program-

mers are responsible for the development and integration of new

components into the platform. The application designers focus

on end-user’s needs and are aware of the resources provided by

the platform. The AD will use the graphical editor to assemble

components in order to develop a multimodal application. End-

users interact with the final application whose components are

executed within the platform.

4.2. ICARE platform

ICARE (Interaction CARE -Complementarity Assignment, Re-

dundancy and Equivalence-) is a component-based approach

which allows the easy and rapid development of multimodal in-

terfaces [3, 4]. The ICARE platform enables the designer to

graphically manipulate and assemble ICARE software compo-

nents in order to specify the multimodal interaction dedicated to

a given task of the interactive system under development. From

this specification, the code is automatically generated. The cur-

rently developed ICARE platform that implements a conceptual

component model that describes the manipulated software com-

ponents, is based on the JavaBeans technology [18]. The ICARE

conceptual model includes:

1. Elementary components: Such components are building

blocks useful for defining a modality. Two types of ICARE

elementary components are defined: Device components

and Interaction Language components. We reuse our def-

inition of a modality [19] as the coupling of a physical de-

vice d with an interaction language L: <d, L>. In [20],

we demonstrate the adequacy of the notions of physical

device and interaction language for classifying and de-

riving usability properties for multimodal interaction and

the relevance of these notions for software design.

2. Composition components: Such components describe com-

bined usages of modalities and therefore enable us to

define new composed modalities. The ICARE compo-

sition components are defined based on the four CARE

properties [20]: the Complementarity, Assignment, Re-

dundancy, and Equivalence that may occur between the

modalities available in a multimodal user interface. We

therefore define three Composition components in our

ICARE conceptual model: the Complementarity one, the

Redundancy one, and the Redundancy/Equivalence one.

Assignment and Equivalence are not modeled as compo-

nents in our ICARE model. Indeed, an assignment is rep-

resented by a single link between two components. An

ICARE component A linked to a single component B im-

plies that A is assigned to B. As for Assignment, Equiva-

lence is not modeled as a component. When several com-

ponents (2 to n components) are linked to the same com-

ponent, they are equivalent. As opposed to ICARE el-

ementary components, Composition components are ge-

neric in the sense that they are not dependent on a partic-

ular modality. For input multimodality, the two ICARE

composition components, Complementarity and Redun-

dancy/Equivalence have been developed in C++ as con-

nectors within the OpenInterface platform.

In the following section, examples of ICARE component

assemblies are provided in the context of the multimodal driving

simulator.

5. SOFTWARE ARCHITECTURE OF THE

MULTIMODAL DRIVING SIMULATOR

In this section, we first present the overall architecture along the

ICARE conceptual model followed by the implemented archi-

tecture. We finally conclude by a discussion of the tradeoffs and

differences between the initial conceptual architecture and the

implemented one.

5.1. ICARE conceptual architecture

In figure 13, we present the overall software architecture of the

entire multimodal driving simulator in order to highlight the

scope of the code organized along the ICARE conceptual model.

The overall software architecture is organized along four mod-

ules. The Functional Core (FC) implements domain specific

concepts in a presentation independent way. The Functional

Core Adapter (FCA) serves as a mediator between the Dialogue

Controller and the domain-specific concepts implemented in the

Functional Core. It is designed to absorb the effects of changes

in its direct neighbours. Data exchanged with the Dialogue Con-

troller are conceptual objects, that is perspectives on domain ob-

jects. Such perspectives are supposed to match the user’s mental

representation of domain concepts. They transform computa-

tional objects into abstractions driven by considerations for the

user’s conceptual model. At the other end of the spectrum, the

interaction modality module is managing the input and output
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concrete user interface. This module is developed using ICARE

components. Finally the Dialogue Controller (DC) is the key-

stone of the model. It has the responsibility for task-level se-

quencing and is modality independent.

Figure 13: Overall architecture of the multimodal driving simu-

lator.

As pointed out in figure 13, within the architecture, we iden-

tify two types of link between the ICARE components and the

rest of the interactive system:

• For inputs, the connection between the ICARE Input com-

ponents and the rest of the interactive system is at the

level of the elementary tasks. From explicit or implicit

actions performed by the driver (i.e., the user) along var-

ious modalities, the ICARE components are responsible

for defining elementary tasks that are independent of the

used modalities. Such elementary tasks are then trans-

mitted to the Dialogue Controller. One example of an

driving task is the “accelerate” task.

• For outputs, the Dialogue Controller is sending elemen-

tary presentation tasks to the ICARE output components

that are responsible for making the information perceiv-

able to the driver along various output modalities. One

example of an elementary task is the “present alarm” task.

Because we reuse the GPL driving simulator TORCS [8]

that we extend to be multimodal, some parts of the architecture

of Figure 13 are already developed. Figure 14 shows the code

that we need to develop along with the existing TORCS code.

All the modalities for driving (input modalities based on the

steering wheel and the pedal) and for displaying the graphical

scene are reused and not developed with ICARE components.

Figure 14: TORCS code and extensions to be developed within

our architecture.

To better understand the extensions to be developed, figure

15 presents the task tree managed by the Dialogue Controller.

Within the task tree, the task “Choose output modalities” does

not belong to the main Dialogue Controller of the driving sim-

ulator but rather belongs to a distinct Dialogue Controller ded-

icated to the meta User Interface (meta UI) as shown in figure

16. Indeed the meta UI enables the user to select the modalities

amongst a set of equivalent modalities. Such a task, also called

an articulatory task, does not correspond to a task of the driving

simulator itself. The meta UI includes a second Dialogue Con-

troller (Dialogue Controller (2) in figure 16) as well as ICARE

input components for specifying the selection. The selection is

then sent by the second Dialogue Controller to the ICARE out-

put components [21].

Figure 15: Hierarchical Task Analysis (HTA): Task tree corre-

sponding to the Dialogue Controller.

Figure 16: Meta User Interface: ICARE components within an

overall software architecture of an interactive system and the

meta UI that enables the selection of equivalent modalities by

the user (from [20]).

To obtain the final ICARE architecture, for each elemen-

tary task of figure 15, an ICARE diagram is defined. Figure 17

presents the four ICARE diagrams designed for the four elemen-

tary tasks to be developed.

The ICARE diagrams for the multimodal driving simulator

include pure modalities and two composition components.

• For inputs, pure modalities made of a device and an inter-

action language components are used for the two tasks;

(i) capture the user’s state of fatigue and attention and (ii)

predict the user’s state of fatigue. These two modalities

are passive input modalities. The modality for captur-

ing the user’s state is based on eye blinking and mouth

movement (yawning) for detecting the state of fatigue

and on face movement for capturing the focus of atten-

tion. Instead of one pure modality, we can also define

three modalities, one for the state of fatigue based on

mouth movement, one for the state of fatigue based on
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eye blinking and one for the focus of attention. The three

modalities will then be combined by two composition

components as shown in figure 18.

For selecting the output modalities the user issues speech

commands such as “windshield screen voice beep tac-

tile” for selecting all the output modalities. For using this

combined modality, the user first selects a wheel button

then issues the voice command, and finally selects again

the button to indicate the end of the speech commands.

As shown in figure 17 two pure modalities, speech and

button, are combined by a Complementarity composition

component. Finally an Interaction Language component

is responsible for combining all the recognized words be-

tween the two button press events. The output of this

component is a list of selected modalities that is sent to

the second Dialogue Controller of the meta User Inter-

face.

• For outputs, five pure modalities made of a device and

an interaction language component are defined for pre-

senting an alarm. Such modalities are combined by a

Redundancy/Equivalence composition component. This

composition component implies that the five modalities

can be used all together in a redundant way or that only a

sub-set of the modalities (1 to 5 modalities) can be used

in a redundant way.

Figure 18: Combined modalities for capturing and detecting

user’s state.

Having presented the ICARE overall software architecture

of the multimodal driving simulator, we now present the imple-

mented architecture and in particular which components of the

architecture have been implemented in OpenInterface.

5.2. Implemented architecture

We first describe the implemented OpenInterface components

and then explain in the following section the differences be-

tween the ICARE conceptual architecture and the implemented

architecture. We have developed six OpenInterface components:

• One OpenInterface component is dedicated to the video

stream. Such a component is not explicit in the ICARE

architecture since it represents a supplementary layer of

the physical device driver.

• One OpenInterface component is implementing the soft-

ware interface to be able to send messages to the TORCS

code.

• One OpenInterface component implements all the ICARE

diagrams for the task “Show alert message” of figure 17

as well as the meta User Interface. This component has

been implemented with ICARE JavaBeans components.

The final implemented ICARE diagram is presented in

figure 19. First, due to time constraints, the Complemen-

tarity component of figure 17 has not been used for de-

veloping the combined active modalities based on speech

and a steering wheel button. Second, we decided to add

a new modality for choosing modalities using dedicated

buttons on the steering wheel. The two modalities are

then equivalent for the task “Choose output modalities”.

• One OpenInterface component corresponds to the “Eye

Blinking history” for predicting the user’s state of Fa-

tigue.

• Two OpenInterface components correspond to the ICARE

diagram of figure 18 for capturing the user’s state (At-

tention & Fatigue). Figure 20 presents the implemented

processes of these two implemented OpenInterface com-

ponents.

Figure 19: Implemented ICARE components for the output

modalities and meta User Interface. All the ICARE components

are encapsulated in one OpenInterface component.

The video analysis system for capturing user’s state is com-

posed of two OpenInterface components: the Retina component

that enhances the input data and extracts different information.

The second component computes the user face analysis and out-

puts different indicators related to the user’s state.

5.2.1. Description of the Retina component

Once a frame is acquired from the video stream component, it is

processed by the Retina component. This component is a filter

coming from the modeling of the human retina (see section 3).
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Figure 17: ICARE diagrams for the elementary task of figure 7.

5.2.2. Description of the User State component

The first module of the User State component provides the posi-

tion of the head in the visual scene, and is made of the Machine

Perception Toolbox [22]. This module accepts as input a gray

level picture. Nevertheless, luminance variations on the face can

make this module fail. Then, in order to make it more robust, its

input is the corrected luminance output of the Retina component

instead of the Video Stream Component.

Once the face is detected, two modules work in parallel. The

first is the Optical Flow Computing module and the Spectrum

Analysis module (see section 3). This module provides alarms

for different face motions: the global head motion, eyes and

mouth motions (opening/closing).

The User State component provides different outputs that

are used by the components presenting the alarms. Three out-

puts are alarms related to the estimation of the driver fatigue

level. An alarm is sent when the user closes his eyes for more

than a specified duration (we experimentally fix it to 200ms).

Another is sent when the driver yawns. Also, an alarm is gen-

erated when the user moves his head longer than a specified pe-

riod (we experimentally fix it to 300ms). The generation of this

alarm is based on the data provided by the Optical Flow Com-

puting module and the global head spectrum analysis. Once a

head motion event is detected by the Spectrum Analysis mod-

ule, the velocity data coming from the Optical Flow module and

motion orientation coming from the Spectrum Analysis module

are fused to generate the appropriate alarm in the event that the

information is redundant. These alarms are developed to sig-

nal user fatigue dynamically. In order to provide a long term

prediction of hypo-vigilance, we generate a last output which is

a list of the duration of the eye blinks encountered in the last

20 seconds. This output is sent to the hypo-vigilance prediction

component.

5.2.3. Description of the Sleep Prediction component

The sleep prediction algorithm is integrated in the sleep predic-

tion component (see section 3). This component was developed

in C++ and was delivered in the form of a dll for integration.

5.3. Discussion: tradeoffs and compatibility between ICARE

& OpenInterface

There is no direct 1-1 mapping between the ICARE component

architecture and the implemented OpenInterface component ar-

chitecture. Nevertheless we demonstrated the compatibility and

feasibility of the approach.

For the user’s state capture, the two implemented OpenIn-

terface components define large components. The componenti-

zation as described in figure 18 would have been a difficult task

since the code is developed in Matlab. Matlab had been initially

used for exploring solutions. For providing final components af-

ter a feasibility phase made in Matlab, it would be useful to fully

redevelop the final version in C++. Moreover we did not define

one component for each feature used in the image, as advocated

by figure 18, for efficiency reasons because this would involve

duplication of the video stream input.

For the output multimodal interface, we show the benefit of

the ICARE approach, that is, that it allows us to quickly add

a new equivalent modality for selecting the output modalities

within the meta User Interface and that it allows us to reuse

components such as the Device component Loudspeakers for

lexical feedback from the speech recognizer. For outputs, only

one OpenInterface component implements all the ICARE dia-

grams. More OpenInterface components could have been de-

fined corresponding to the ICARE software architecture. To do

so, we need to extend the OpenInterface platform by defining

new connectors corresponding to the ICARE output composi-

tion components.
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Figure 20: Implemented OpenInterface components for cap-

turing the user’s state. Starting from the input provided by

the Video Stream component, two OpenInterface components,

namely Retina component and User’s State component, have

been implemented for providing four outputs: Focus of atten-

tion (head motion), duration of eyes closed, yawning and eye

blinking history.

6. CONCLUSION

By considering the case study of a driving simulator, we fo-

cused on designing and developing a software component ar-

chitecture for multimodal interfaces from the Human-Computer

Interaction domain, and how to implement it using the Open-

Interface as well as the ICARE platforms. We explained how

to define components from existing code from both Signal Pro-

cessing and Human-Computer Interaction research results. We

also showed the compatibility of the two platforms since several

ICARE components are encapsulated within one OpenInterface

component.

In future work, we first need to integrate the user’s state

prediction component within the demonstrator. We also plan to

define new OpenInterface components particularly for the de-

veloped output multimodal interfaces. To do so, new native

OpenInterface connectors need to be defined corresponding to

the ICARE output composition components. This work has al-

ready been done for the input ICARE composition components

although we did not use them in this case study. Moreover

we would like to use new passive modalities for capturing the

stress level of the user based on biological signals analysis. We

are currently defining the corresponding OpenInterface compo-

nents. We plan to integrate the stress level within our demonstra-

tor as part of the meta User Interface for automatically selecting

the output modalities in addition to allowing the user to select

them.

Finally we would be interested in performing some usability

experiments and in studying the benefit of our component archi-

tecture in quickly modifying multimodal interaction and retest-

ing the interaction as part of an iterative user centered design

method.
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