
HAL Id: hal-00256659
https://hal.science/hal-00256659v1

Submitted on 16 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multimodal Focus Attention Detection in an Augmented
Driver Simulator

Alexandre Benoit, Laurent Bonnaud, Alice Caplier, Philippe Ngo, L. Lawson,
D. Treviesan, V. Levacic, C. Mancas, G. Chanel

To cite this version:
Alexandre Benoit, Laurent Bonnaud, Alice Caplier, Philippe Ngo, L. Lawson, et al.. Multimodal
Focus Attention Detection in an Augmented Driver Simulator. Personal and Ubiquitous Computing,
2006, not yet published. �10.1007/s00779-007-0173-0�. �hal-00256659�

https://hal.science/hal-00256659v1
https://hal.archives-ouvertes.fr

Multimodal Focus Attention Detection in an
Augmented Driver Simulator
Alexandre Benoit, Laurent Bonnaud, Alice Caplier, Phillipe Ngo

Laboratoire des Images et des Signaux, Grenoble, France
Lionel Lawson, Daniela G. Trevisan

Communications and Remote Sensing Laboratory, Université catholique de Louvain, Belgium
Vjekoslav Levacic

Faculty of Electrical Engineering and Computing at University of Zagreb, Croatia
Céline Mancas

Falculté Polytechnique de Mons, Belgium
Guillaume Chanel

Université of Genève, Switzerland

Abstract— This project proposes to develop a driver simulator,

which takes into account information about the user state of
mind (level of attention, fatigue state, stress state). The user’s
state of mind analysis is based on video data and physiological
signals. Facial movements such as eyes blinking, yawning, head
rotations… are detected on video data: they are used in order to
evaluate the fatigue and attention level of the driver. The user’s
electrocardiogram and galvanic skin response are recorded and
analyzed in order to evaluate the stress level of the driver. A
driver simulator software is modified in order to be able to
appropriately react to these critical situations of fatigue and
stress: some visual messages are sent to the driver, wheel
vibrations are generated and the driver is supposed to react to
the alertness messages. A flexible and efficient multi threaded
server architecture is proposed to support multi messages sent by
different modalities. Strategies for data fusion and fission are
also provided. Some of these components are integrated within
the first prototype of OpenInterface (the Multimodal Similar
platform).

Index Terms— driver simulator, facial movements analysis,
physiological signals, stress, attention level, data fusion, fission,
OpenInterface.

I. INTRODUCTION

The main goal of this project is to use multimodal signals
processing to provide an augmented user's interface for

driving. The term augmented here can be understood as an
attentive interface supporting the user interaction. So far at
most basic level, the system should contain at least four
components:

1. sensors for determining user state of mind;
2. an inference engine feature extractor to evaluate

incoming sensor information

This report, as well as the source code for the software developed during the
project, is available online from the eNTERFACE’05 web site:
www.enterface.net.

3. an adaptive user interface based on the results of step 2
4. an underlying computational architecture to integrate

these components.
In fact a fully functioning system would have many more

components, but the previous components are the most critical
for inclusion in an augmented cognition system and they are
covered in the project implementation.

Basically to provide such multimodal application, we
address the following issues: which driver simulator to use?
How to characterize a user’s state of fatigue or stress? Which
biological and/or physiological signals to take into account?
What kind of alarm to send to the user? How to integrate all
these pieces – data fusion and fission mechanism? Which
software architecture is more appropriate to support such kind
of integration?
A software architecture supporting real time processing is the
first requirement of the project because the system has to be
interactive. A distributed approach supporting multi thread
server can address such needs.
The choice of the driver simulator has to take into account
some features such as: open source software, “First person
view”: (i.e. cockpit view with wheel) and dashboard, source
code easy to modify and possible use of a vibration feedback
wheel.
We consider two user’s states to be detected: stress and
fatigue. The detection of these states is based on video
information and/or on biological information. From video
data we extract relevant information to detect fatigue state
while the biological signals provide data for stress detection.
Physiological signals could be associated to video data in
order to detect fatigue but in the context of the driver
simulator used in this project, a real fatigue state is very
difficult to obtain. It is possible to simulate fatigue on video
data (by closing the eyes or by yawning for example). On the
contrary, such kind of simulation is not possible on
physiological signals.

http://www.enterface.net/

The third step is to define what kind of alarms to provide to
the user. Textual messages and force feedback are considered
to alert the user.

An other challenge of this project is to provide a concrete
example in order to test OpenInterface, the multimodal
Similar platform.

The rest of the paper is organized as follow: section II
present the global architecture of the demonstrator, section III
describes how we detect driver’s hypo-vigilance states by the
analysis of video data, section IV presents how to detect
driver’s stress states by the analysis of some biological signal,
sections V and VI describe the data fusion and fission
strategies and section VII gives details about the demonstrator
implementation.

II. CONCEPTUAL ARCHITECTURE

The diagram of Figure 1 presents the conceptual architecture
of our attentive driver simulator. We propose a distributed
approach to integrate our components. On one PC under
Linux we have integrated all video data based detection and
analysis as well as the fusion and fission components. An
other PC under Windows is used to run the driver simulator
and a third PC is used for biological signals acquisition and
analysis. Communication between all the PCs is done
exchanging XML messages. For that the Dialog Controller
included in the driver Simulator software should be able to
receive multi messages (i.e. from biological signals station and
from video based station). In this case a multi thread server
approach is developed and included in the driver simulator.

Figure 1: Overview of the system architecture

III. HYPO-VIGILANCE DETECTION BASED ON VIDEO DATA
The state of hypo-vigilance (either related to fatigue or
inattention) is detected by the analysis of video data. The
required sensor is a camera facing the driver. In this project,
three indices are considered as hypo-vigilance signs: yawning,
head rotations and eyes closing for more than 1s.

A. Face detection
Face detection is the first and maybe the most crucial step of
the image processing phase. The face detector should be
robust (no error in face localization) and should work in real
time. The chosen face detector is the free toolbox MPT [5].
This face detector extracts a square-bounding box around each
face in the processed image. Face detection is done for each
image of the sequence without any face tracking. The
advantage is that the head is not lost because of tracking error
propagation. The main drawback is the decrease of the frame
rate even though MPT works nearly in real time for pictures
of size (320x200 pixels), which is not the case of other face
detectors such as OpenCV [13] for example.
Whichever face detector you use, the extracted face bounding
box is not exactly the same from frame to frame so that we use
a temporal median filter with temporal adaptive position mean
to make the spatial localization of the face temporally stable
(note that the size of the bounding box of the face is supposed
to be constant during an experiment: in a car the driver face
distance w.r.t the camera is stable if the driver stays on his
seat).

B. Head motion analysis

Once a bounding box around the driver face has been
detected, head motion such as head rotations, eyes closing and
yawning are detected by using an algorithm working in a way
close to the human visual system. In a first step, a filter
coming from the modeling of the human retina is applied. This
filter enhances moving contours and cancel static ones. In a
second step, the FFT of the filtered image is computed in the
log polar domain as a modeling of the primary visual cortex.
Figure 2 gives a general overview of the algorithm.

Figure 2: Algorithm for hypo-vigilance features extraction

from video data

The first step consists in an efficient prefiltering [1]: the retina
OPL (Outer Plexiform Layer) that enhances all contours by
attenuating spatio-temporal noise, correcting luminance and

whitening the spectrum (see Figure 3) . The IPL filter (Inner
Plexiform Layer) [1] removes the static contours and extracts
moving ones.
The second step consists in a frequency analysis of the
spectrum of the OPL and IPL filters outputs in each region of
interest of the face: global head, eyes and mouth (see section
C for the description of eyes and mouth region of interest
extraction).

Figure 3 : OPL filtering results

In order to estimate the rigid head rotations [3], the proposed
method analyses the spectrum of the IPL filter output in the
log polar domain. It detects head motion events and is able to
extract its orientation. Cortical optical flow filters [2] are
oriented filters that compute the optical flow of the global
head to extract the motion direction. Optical flow is computed
only when motion is detected.
For the detection of yawning or eyes closing, three identical
processes are done independently [4]. On each region of
interest (each eye and the mouth), a spectrum analysis of the
OPL and IPL filters output is done for motion event detection:
we are looking for vertical motion related to eyes closing or to
yawning.

C. Eyes and mouth detection
The mouth can be easily extracted in the lower half of the
detected bounding box of the head. The detection algorithm
will work even if the mouth is not perfectly centered in the
area because we analyze the spectrum energy instead of
spatial features, which is more robust. Moreover, there are no
disturbing contours in that area that could generate false
detections.
Concerning the eyes, the spectrum analysis in the region of
interest is accurate only if each eye is correctly localized.
Indeed around the eyes, several vertical or horizontal contours
can generate false detection (hair boundary for example).
The MPT toolbox proposes an eye detector but it requires too
much computing time so that it is not compliant with real time
constraint. We use another solution: eye region is supposed to
be the area in which there is the most energized contours. To
do so, assuming that the eyes are localized in the 2 upper
quarters of the detected face, we use the retina output. The
retina output gives the contours in these areas and due to the
fact that the eye region (containing iris and eyelid) is the only
area in which there are horizontal and vertical contours, the
eye detection can be achieved easily. We use two oriented low
pass filters: one horizontal low pass filter and a vertical low

pass filter and we multiply their response. The maximum of
the result is obtained in the area in which there are the most
horizontal and vertical contours that is an eye region. To make
the eye areas temporally stable, their position is smoothed
from frame to frame using adaptive mean positions. This eye
detection takes about 6 operations per pixel for each search
area (i.e. each upper quarter of the face bounding box).
Figure 4 gives an example of the input picture of the eye
detector; bright areas are the most important contours. Figure
5 shows the output of the horizontal vertical filters.

Figure 4: Input picture for eye detection : one of the 2
upper quarters of the face-bounding box

Figure 5: Output of the vertical and horizontal low pass
filters, both filters report maximum amplitude on the eye
center.

D. Hypo-vigilance alarms generation
• We generate an alarm when both eyes are closed

longer than a specific time period (1 second for
example).

• We detect mouth yawning: when a yawn occurs, the
mouth is wide open, then, this generates a very high-
energy increase on the spectrum that can be easily
extracted.

• The global head motion events are detected with the
global head spectrum analysis. We only extract the
fact that a head motion has occurred. The proposed
algorithms are able to extract the motion direction
with the cortical optical flow algorithm, but it is not
yet integrated in the fusion system.

E. Fusion strategy
After the video analysis, Boolean information about yawning
or not, about eyes closing or not and about head moving or not
are available. A very simple and easy to compute fusion
strategy based on the three index is proposed:

if head motion is detected
 send an alarm to the user
 hypo-vigilance value=100
else
 if both eyes are closed during 1s
 send an alarm to the user
 hypo-vigilance value = 50
 if the driver is yawning
 send an alarm to the user
 hypo-vigilance value = 50+hypovigilence value
end
The variable hypo-vigilance associated to each index is set to
50 or 100. The highest the value, the highest the hypo-
vigilance.
Note that in this very simple fusion strategy, information
about head motion kind of rotation is not taken into account.
A more sophisticated fusion strategy has been tested and is
described in section V.

IV. STRESS DETECTION BASED ON BIOLOGICAL SIGNALS
ANALYSIS

Physiological signals are used in order to detect stress
situation. ECG (Electrocardiogram) and GSR (Galvanic Skin
Response) are announced by literature as very promising to
detect driver stress in real situations [11, 12]. In a stressful
time, the GSR signal and the heart rate signal (extracted from
the ECG) are supposed to increase. Two different experiments
have been considered; they aim at detecting either driver stress
over a long time period or punctual driver stress.
In this experiment, we use the Biopac system MP30B-CE for
ECG and GSR acquisition.

Figure 6: On the left, ECG devices and on the right, GSR

device

The main drawback of the data acquisition system is that for
the moment, on line analysis is not possible. For that reason,
the study on biological signal for stress detection has not been
implemented in the final demonstrator.

A. ECG signals analysis
1) Prefiltering

Since we are analysing the stress state of a driver, the ECG
can be disturbed by several muscle artefacts that generally
come from hands or arms movements (see Figure 7). This is
why it is necessary to pre-filter signals.

Figure 7: Driver with electrodes on the wrists for ECG

measure

The pre-filtering is based on the characteristics of the ECG
peaks: we observed that these peaks contain energy in the
frequency band 10-35 Hz. As we do not need other
components of the signal we choose to band-pass the signal
using this interval and a Butterworth IIR filter with 8
coefficients. Figure 8 shows the original signal and the results
after filtering.

Figure 8: ECG before (first line) and after pre-filtering

(second line); computed heart rate from ECG (third line,
red signal)

2) Heart rate computation

The first thing to do, before computing heart rate, is to
identify peaks in the filtered signal. For this, we use a
reference record (ECG when the subject is supposed to be
relaxed) as a baseline to identify the general height of the
peaks depending on the subject. We define the general height
of peaks as one third (chosen empirically) of the maximum
value. In order to improve the peak detection, we also use a
priori information: we consider that the heart rate cannot
exceed 180 BPM (Beats Per Minute). If two peaks are too
close, so that they do not validate this assumption, we keep
only the one with the maximum value.
Finally, the heart rate is computed by evaluating the number n
of samples between two peaks and by using this simple
formula:

HR = 60/ (n*(1/fe))

Where fe is the sampling rate.

3) Stress level assessments

In case of unexpected or stressful events, the heart rate does
not increase as generally assumed, but one can observe a raise
in its variation. In order to determine this variation, we use the
absolute value of the first derivative of the signal. After
smoothing the result by a Gaussian filter we obtain what we
call the stress level (see Figure 9).

Figure 9 : stress level (bottom) computed from heart rate
(top) for exciting stimuli

B. GSR signal analysis
Due to the chosen sampling rate (200 samples per second) and
the apparatus, some artefacts occur in the initial signals and a
filtering is also required. After trying several smoothing filters
and because of the large variability in the conductivity of each
user, we opt for a multiscale median filtering. Four successive
filters are used with a decreasing window size (100, 50, 30
and 20 samples).

1) Global stress detection
We can easily measure the minimum and maximum of the
user’s GSR level. By normalizing the signal to analyze with
these values as usual:

)_min()_max(
)_min(___

restGSRrestGSR
restGSRanalysetolevelGSR

−
−

where GSR_rest correspond to the values of the GSR when
the user is supposed to be relaxed.
We can then define a score to know the global stress level.
Global stress can occur after a very difficult day of work or
when the traffic jam is increasing for example. Global stress is
related to slow but constant increase of the GSR. The global
stress level is used to know the initial state of the driver or
with a sliding window, to know the global state of the driver
in a certain amount of time.

2) Local stress detection
Local stress is supposed to be related to punctual and
unforeseen events as it could occur on roads such as a

pedestrian crossing and so on. Local stress detection can be
modelled as high peaks in GSR signals. GSR signals have the
property to react quite quickly to an event but to have a
decreasing response to go back to a calm situation very
slowly.
We used this particular property as a priori information in our
algorithm.
First of all, we detect local maxima using the watershed
algorithm. Local maxima correspond to watershed pixels.
Once maxima are detected, we keep only those, which have a
difference of 1 unit with the previous maximum. This
threshold of 1 unit is based on the correlation of punctual
events, precisely recorded, and GSR signals. Then, we remove
all maxima, which are too close to each other by keeping only
the highest one. This rule is based on the assumption that if
two maxima are too close to each other (inferior to 5 seconds),
they belong to the same event. Figure 10 presents an example
of GSR local increasing detection: each peak on the bottom
curve corresponds to a stress alert.

Figure 10: GSR record and punctual stress event detection

V. FUSION STRATEGY
In this section, we describe and test a data fusion based on
Bayesian Network. It is used for the purpose of hypo-
vigilance detection but it also represents a global fusion
method for the integration of additional information in the
detection process. Note that this fusion process is not
integrated in the final demonstrator for the moment due to the
lack of significant data. Both fusion strategies are
implemented in the demonstrator but for the moment, only the
simplest one described in III.D. is used by default for
computational cost reduction.
Human fatigue generation is a very complicated process.
Several uncertainties may be present in this process. First,
fatigue is not observable and it can only be inferred from the
available information. In fact, fatigue can be regarded as the
result of many contextual variables such as working
environments, health and sleep history. Also, it is the cause of
many symptoms, e.g. the visual cues, such as irregular eyelid
movements, yawning and frequent head tilts. Second, human's
visual characteristics vary significantly with age, height,
health and shape of face. To effectively monitor fatigue, a
system that integrates evidences from multiple sources into

one representative format is needed. Naturally, a Bayesian
Networks (BN) model is a good option to deal with such an
issue.

Figure 11: Fusion strategy based on a Bayesian Network

A BN provides a mechanism for graphical representation of
uncertain knowledge and for inferring high-level activities
from the observed data. Specifically, a BN consists of nodes
and arcs connected together forming a directed acyclic graph.
Each node can be viewed as a domain variable that can take a
set of discrete values or a continuous value. An arc represents
a probabilistic dependency between the parent node and the
child node.
Some contextual information such as temperature, time of day,
sleep history, etc can be used to build a prior probability for
the fatigue node. For that we use the parameters proposed in
[7]. For the face data fusion we have considered a very
preliminary version where the network evidences change
when: eyes closed more than 1 sec; yawning occurs; down
head motion are detected simultaneously or not. As result we
got the level of fatigue, which is sent to the data fission
component.

VI. FISSION STRATEGY
Data fission duty is to collect the data from data fusion and to
generate an alert XML message that is sent to the driver
simulator. Data fission function is called at the rate the driver
state detection is progressing. Generated messages are in
XML format. We decided for XML because it is extendable
and messages are sent only when the driver state changes.
Driver state may be defined by a fatigue value (either coming
from the Bayesian Network result or from the simple fusion
process) that is an output variable of data fusion. For example,
we can set the range of values for fatigue level that determine
the driver state. For those range of values we can define
different screen messages and wheel shaking power. Table 1

and Table 2 present the fusion strategy for the simple method
and for the Bayesian network based method respectively.

Fatigue
range 50 50 100

Message Open the
eyes

Yawning: be
careful

Stop moving
the head

Shaking
power '100' '100' '100'

Table 1: fission strategy with the simple fusion process

Fatigue
range [0,33] [33,66] [66,100]

Message '' 'Tired' 'Asleep'
Message

color '' 'Green' 'Red'

Shaking
power '0' '0' '100'

Table 2: fission strategy with the BN based method

Data fission only creates the message if the driver state has
changed and is different than the previous driver state. If the
user state is the same as in previous call, data fission generates
'NOT_CHANGED' message. In that way the XML message
does not need to be sent to the driver simulator after each call
of the data fission function.
Once the alert message has been sent, the driver is supposed to
acknowledge to the system that the message has been
understood. For example, in the case of the simple fusion
process, each time an alert is detected, wheel vibrations are
triggered. The driver has to stop these vibrations by pushing a
button. The reaction time is also recorded, this time being
correlated with the hypo-vigilance or fatigue user state.

VII. DEMONSTRATOR

A. Overview of the global system
The developed demonstrator is made of

• 2 PCs: one under Windows for the driver simulator
and one under Linux for hypo-vigilance states
detection

• 1 SONY digital camera
• 1 LOGITECH force feed back wheel
• 1 projection screen
• 1 video-projector
• 2 loudspeakers

Figure 12: Global views of the demonstrator

On the used computer (Pentium 4 2.4Ghz), the frame rate is
about 5 frames per second but it could be increased up to 8
frames per second thanks to some MPT optimization.

B. Driver Simulator
Around ten driver simulators have been studied. The chosen
driver simulator is TORCS [9] because it is a well
architectured GPL program with well structured source code
and a well designed user interface.
This simulator is working under Linux and windows
platforms. The main sources are written in C++ with the
OpenGL library. The graphics quality of the simulator is
correct and it has a first person view. Figure 13 presents an
illustration of TORCS simulator.

Figure 13: Torcs driver simulator illustration

We integrate an interaction from the Data Analysis Kernel to
our driving Simulator.

The main work consisted in
- Allowing a Text Message to be displayed within the game

graphical interface.
- Creating a multi-threaded Server within the application

whose purpose is accepting different clients connexions.
- Integrating a force Feedback wheel in order to warn the

user with an other modality than the visual one.
- Allowing the user to make a feedback on the message

displayed by stopping it.
- Parsing XML messages from the multimodal analysis of

the driver. Indeed, it is possible to change the color, the string
of the sent message and the feedback power.

C. Implementation of hypo-vigilance detection
Due to the fact that ECG and GSR signals cannot be
processed on line with the data acquisition station we used,
the detection of stress state has not been implemented in real
time. Only the detection of hypo-vigilance state based on
video data is available at the moment.

1) Face detection algorithm modifications
For face detection, we use the Matlab implementation of
mpiSearch function belonging to the MPT library, which
receives a RGB or Gray level frame as input. Outputs of the
function are the bounding box coordinates of the detected
face.
Due to the relative slowness of the mismatch function
developed under Matlab a fine study of the algorithm has been
done in order to increase the computational rate. We managed
to figure out how the algorithm behaves in dynamic
environment when the video is acquired with the help of
DirectInput library. While streaming, mpiSearch uses a
special object that caches the detected face-bounding box.
The trick is to modify the mpiSearch Mex function and to put
this object as a global DLL variable. Global DLL variables are
preserved in Matlab memory space after the DLL is first
accessed by Matlab. In that way after each Matlab call of the
mpisearch function caching state is preserved.
With using the Microsoft VS.NET 2003, we additionally
increase the performances by compiling the code for new
Pentium 4 generation of processors.
With all these modifications, we achieve about 2.7 times
speed increase.
In order to increase the frame rate again, some of time-
consuming parts of the mpisearch code may be written in
assembler language. This is beyond of scope of the project.

D. Alert message generation
1) The Display Changes

Three different messages depending on the index of hypo-
vigilance can be displayed on the first view of the driver
simulator (see Table 1 for the different considered messages
and Figure 14 for an example of message incrustation during
the game). In order to show the message, we need to change
all the graphical classes within the source code. The
communication between the main program and all the libraries
is created by using some global variables and also by creating
new links between several libraries.

Figure 14: alert message in case of long eyes closing

2) Force Feedback implementation

Force Feedback is used to make the wheel shaking when
hypo-vigilance is detected. Shaking power is defined by XML
message of data fission. Shaking becomes stronger and
gradually reaches its maximum value. Force Feedback uses
the DirectInput library, a part of the Microsoft DirectX SDK.
The library is based on "The Force Feedback Direct Input
Library (DIL)" made by Bryan Warren and Alex Koch. This
library can be loaded at [8]. In our project, the library has
been altered from functions to class. In class we can set the
time period that shaking needs to reach the maximum
vibration time, vibration activation threshold and to modify
the shaking of the wheel dynamically. We also use the class to
check whether the button is pressed, and if pressed stop the
wheel shaking.

3) Message parsing and controlling the input devices of
driver simulator

After the XML message arrives through the socket connection
it is parsed. We use Microsoft XML parser to parse the
message. You can download the MSXML parser from
Microsoft web site. After the parsing, controller class activates
the screen display message or starts the wheel shaking.

4) The Server Side:
We choose to implement a Server side for the interaction
between the multimodal devices and the user. The network
protocol used is TCP/IP. We implement this socket by using
threads. Those threads access global variables under mutual
exclusion. We use a “GPL” library called Openthreads for this
implementation.

E. Openinterface integration
1) OpenInterface: a short presentation

OpenInterface is the Similar Software Platform that includes
software components dedicated to multimodal interaction and
multimodal data fusion. OpenInterface integrates results from
the Human-Computer Interaction (HCI) community as well as
from the Signal Processing community.
Each component is registered into OpenInterface Platform
using the Component Interface Description Language (CIDL
described in XML). The registered components properties are

retrieved by the Graphic Editor (Java). Using the editor the
user can edit the components properties and compose the
execution pipeline of the multimodal application. This
execution pipeline is sent to the OpenInterface Kernel
(C/C++) to run the application. The OpenInterface Tutorial
can be found on the Similar web site [10].

2) OpenInterface implementation of the demonstrator

Currently, OpenInterface is in its early development stage and
this driver simulator project is used as a test bed for the
working prototype. The latter provides several services and
also has limitations.
The services provided by this first OpenInterface prototype
are:

• Interface Description Language for the specification
of reusable software code.

• Seamless integration of reusable heterogeneous
software (C/C++, Java, Matlab).

Some limitations are:
• The description of a software interface is currently

not automated and has to be written by hand. This
can be cumbersome as the language syntax is very
strict and the validity of a description is not heavily
enforced besides DTD checking. This lack of
robustness might lead to an inappropriate binding
and therefore to unexplained application crash.

• At the beginning of the project, it was impossible to
perform two ways communication with any Matlab
script. The latter could only be called by
OpenInterface component.

Several issues have been encountered during the integration
phase:

• First of all as the current prototype is only running
under Linux, we had to reduce the set of software to
those that could be run under Linux. It has been
decided that the communication with non-compliant
Linux software will be done through network
communication. Thus, only the following software
code have been integrated into OpenInterface:
firewire camera driver, face detection, head motion
analysis, fusion for hypo-vigilance detection, fission
strategy for alerting the user and a Java GUI to start
the application. Figure 15 shows how these
components are connected into OpenInterface.

• After deciding which software to use as component
into OpenInterface, the main problem we had to face
has been to make those components reusable. Indeed,
in their first version, the software was designed for a
particular goal and could not be reused by a third-
part (e.g. OpenInterface) as tools. Thus, we
redesigned the components interaction interfaces. To
avoid this redesigning step in the future, modular
programming habit should be enforced from the
beginning among components programmer.

• From this step we have pulled out that a two-way
communication with Matlab script is mandatory to

prevent heavy code rewriting. Indeed the camera
driver has to be called by the face detection
component, not the contrary. Therefore, due to the
Matlab Engine API limitations, the only way to allow
Matlab script to interact with component already
running into OpenInterface is to perform
communication through UNIX socket. Of course this
is transparent to the user.

• The third integration step was the description, in
CIDL, of all components interface. This step was
straightforward and we did not find any difficulties in
expressing the interfaces in the integration platform's
CIDL.

• Finally we started the integration of the components.
It is performed in a gradual way so that we were able
to test each component inside OpenInterface and
point out the incompatibility. Some problems arose
when we put two Matlab components in the same
execution pipeline. It turned out that due to another
undocumented Matlab Engine API limitation, we
could not call another m-script while another is
running. The lack of time directed us to fix the
problem by having one Matlab engine instance per
Matlab script taking part in a pipeline. One would
think that this solution would drastically slow down
the computer but that did not happen. A Matlab
process actually uses resource proportional to the
computation done by the running script.

Figure 15: Openinterface components coming from the

project

As a conclusion of this integration phase using OpenInterface
platform, we can say that thanks to this first project
integration a lot of feedback has been collected to improve the
current prototype of the OpenInterface tool in order to provide
another improved version as soon as possible. The future
engineering work on OpenInterface will be narrowed to
improve the integration of Matlab components and also to
provide a user with a friendly integration interface. This
would allow distributing the platform and letting people test it
on their own.

VIII. FUTURE WORKS AND CONCLUSION
During the project, we have developed an augmented driver

simulator based on video analysis for driver’s attention
controlling. First promising studies about physiological data
have to be improved and integrated in the global system. This

will induce the development of an appropriate data fusion
method in order to control both the driver’s attention level and
the driver’s stress.

Once the driver has been alerted, it will be necessary to
perform some specific tests in order to control that driver’s
stress or fatigue has actually decreased.

For the moment, the global system is running almost 10
frames per second. It will be necessary to optimize video data
analysis algorithms in order to speed up the frame rate.

ACKNOWLEDGMENT
This work was supported by the Similar network of

excellence [10]

REFERENCES

[1] Beaudot W., "The neural information processing in the vertebrate retina:
A melting pot of ideas for artifficial vision", PhD Thesis in Computer
Science, INPG (France) december 1994.

[2] Torralba A. B., Herault J. (1999). "An efficient neuromorphic
analog network for motion estimation."
IEEE Transactions on Circuits and Systems-I: Special Issue on
Bio-Inspired Processors and CNNs for Vision. Vol 46, No. 2,
February 1999.

[3] Benoit A. , Caplier A. "Head nods analysis : interpretation of non verbal
communication gestures " IEEE, ICIP 2005, Genova, Italy

[4] Benoit A. , Caplier A. "Hypovigilence Analysis: Open or Closed Eye or
Mouth ? Blinking or Yawning Frequency ?" IEEE, AVSS 2005, Como,
Italy

[5] Machine Perception Toolbox (MPT)
http://mplab.ucsd.edu/grants/project1/free-software/MPTWebSite/API/].

[6] Bayes Net Toolbox for MatLab
[http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html].

[7] [Qiang Ji, Zhiwei Zhu and Peilin Lan, Real-Time Nonintrusive
Monitoring and Prediction of Driver Fatigue, IEEE Transactions on
Vehicular Technology, Vol. 53, No. 4, July, 2004, p1052-1068].

[8] Force Feedback Direct Input Library
http://courses.washington.edu/css450/Fall2003/web_contents/direct_inp
ut_lib/DirectInput.html

[9] TORCS Driver Simulator: http://torcs.sourceforge.net/
[10] Similar Network of Excellence: www.similar.cc
[11] S. K. Lal, A. Craig, “Driver fatigue: electroencephalography and

psychological assessment”, Psychophysiology, 39, 3, May 2002, 313-21.
[12] J. Healey, J. Seger, R. Picard, “Quantifying driver stress: developing a

system for collecting and processing bio-metric signals in natural
situation”, MIT technical report n°483.

[13] OpenCV : www.intel.com/technology/computing/opencv

Alexandre Benoit was born in 1980 in France. He graduated from Institut
Nationnal Polytechnique de Grenoble (INPG). His PhD subject concerns head
motion analysis. His work is based on the human visual perception system. He
teaches signal processing to engineering students. He prepares his PhD from
the INPG, his thesis started in october 2003 at the Laboratoire des Images et
des Signaux (LIS) in Grenoble.

Laurent Bonnaud was born in 1970. He graduated from the École Centrale
de Paris (ECP) in 1993. He obtained his PhD from IRISA and the Université
de Rennes-1 in 1998. Since 1999 he is teaching at the Université Pierre-
Mendès-France (UPMF) in Grenoble and is a permanent researcher at the
Laboratoire des Images et des Signaux (LIS) in Grenoble. His research
interests include segmentation and tracking, human motion and gestures
analysis and interpretation.

Alice Caplier was born in 1968. She graduated from the École Nationale
Supérieure des Ingénieurs Électriciens de Grenoble (ENSIEG) of the Institut
National Polytechnique de Grenoble (INPG), France, in 1991. She obtained

http://www.ecse.rpi.edu/homepages/qji/Papers/IEEE_vt.pdf
http://www.ecse.rpi.edu/homepages/qji/Papers/IEEE_vt.pdf
http://courses.washington.edu/css450/Fall2003/web_contents/direct_input_lib/DirectInput.html
http://courses.washington.edu/css450/Fall2003/web_contents/direct_input_lib/DirectInput.html
http://torcs.sourceforge.net/
http://www.similar.cc/

her Master’s degree in Signal, Image, Speech Processing and
Telecommunications from the INPG in 1992 and her PhD from the INPG in
1995. Since 1997, she is teaching at the École Nationale Supérieure
d’Électronique et de Radioélectricité de Grenoble (ENSERG) of the INPG and
is a permanent researcher at the Laboratoire des Images et des Signaux (LIS)
in Grenoble. Her interest is on human motion analysis and interpretation.
More precisely, she is working on the recognition of facial gestures (facial
expressions and head motion) and the recognition of human postures.

Guillaume Chanel was born in 1978 in Switzerland. He obtains both his
engineering diploma in computing and robotics and his master degree in
automatics during the 2002 year. He is currently a PhD student at the
Computer Vision and Multimedia Laboratory (CVML) of the University of
Geneva. His research interest is to detect emotional states from recordings of
EEGs and other physiological signals in order to improve human computer
interactions.

Lionel Lawson was born in 1982 in Bénin. He graduated from the
Engineering School of Université Catholique de Louvain (UCL) and obtained
his Master degree in Computer Science and Engineering in 2004. He is
currently working at the Communication and Remote Sensing Laboratory
(TELE) on the development of OpenInterface, an open source component-
oriented integration platform.

Vjekoslav Levacic was born in 1981 in a small but pleasent city at north of
Croatia called Cakovec. He ended two high schools, gymnasium and classical
music high school. In 2000 he become an student in Faculty of Electrical
Engineering and Computing in University of Zagreb. He has worked on
various projects including buiding the enterprise systems and web
applications.

Céline Mancas-Thillou holds two Master degrees, in Audiovisual Systems
and Networks Engineering (ESIGETEL, 2002) and in Applied Sciences
(FPMS, 2004). She is working for the TCTS lab since January 2003 and is
pursuing a PhD in Applied Sciences since March 2004. Her research deals
with text extraction, segmentation and degraded character recognition in
SYPOLE project. She has been a visiting PhD student at the University of
Bristol for 3 months in 2005 to work on Super Resolution Text for an
embedded application.

Phillipe Ngo was born in 1980 in France, He is still undergraduated from the
UTBM (university of technology of Belfort Montbéliard (France)).
His major is computer science with specialization in Picture, interaction and
virtual reality. He is currently working for the LIS (INPG Grenoble France)
for its last internship of computer science. His work is focused on human and
computer interactions within a virtual reality environment.

Daniela G. Trevisan was born in Santa Maria, Brazil, on 1974. She graduated
in Informatic at the University Federal of Santa Maria, Brazil (UFSM) in
1997. She obtained Master degree in Computer Science from University
Federal of Rio Grande do Sul, Brazil (UFRGS) in 2000. Currently she is PhD
student at the Université Catholique de Louvain (UCL) at the Communication
and Remote Sensing Laboratory (TELE) and she is also member of the
Belgium Computer-Human Interaction Laboratory (BCHI). Her research
topics are focused on human-computer interaction (HCI) field such as
modelling multimodal interfaces, model based-approach, augmented and
mixed reality and multimodal interfaces for image-guided surgery.

http://www.fpms.ac.be/
http://tcts.fpms.ac.be/projects/sypole/sypole.html
http://www.cs.bristol.ac.uk/
http://www.cs.bristol.ac.uk/
http://www.inf.ufsm.br/
http://www.inf.ufrgs.br/
http://www.ucl.ac.be/
http://www.tele.ucl.ac.be/
http://www.isys.ucl.ac.be/bchi/members/dtr/

	INTRODUCTION
	conceptual architecture
	Hypo-vigilance detection based on Video data
	Face detection
	Head motion analysis
	Eyes and mouth detection
	Hypo-vigilance alarms generation
	Fusion strategy

	Stress detection based on Biological signals analysis
	ECG signals analysis
	Prefiltering
	Heart rate computation
	Where fe is the sampling rate.
	Stress level assessments

	GSR signal analysis
	Global stress detection
	Local stress detection

	Fusion strategy
	Fission strategy
	Demonstrator
	Overview of the global system
	Driver Simulator
	Implementation of hypo-vigilance detection
	Face detection algorithm modifications

	Alert message generation
	The Display Changes
	Force Feedback implementation
	Message parsing and controlling the input devices of driver simulator
	The Server Side:

	Openinterface integration
	OpenInterface: a short presentation
	OpenInterface implementation of the demonstrator

	Future Works and Conclusion

