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Abstract— This project proposes to develop a driver simulator, 

which takes into account information about the user state of 
mind (level of attention, fatigue state, stress state). The user’s 
state of mind analysis is based on video data and physiological 
signals. Facial movements such as eyes blinking, yawning, head 
rotations… are detected on video data: they are used in order to 
evaluate the fatigue and attention level of the driver. The user’s 
electrocardiogram and galvanic skin response are recorded and 
analyzed in order to evaluate the stress level of the driver. A 
driver simulator software is modified in order to be able to 
appropriately react to these critical situations of fatigue and 
stress: some visual messages are sent to the driver, wheel 
vibrations are generated and the driver is supposed to react to 
the alertness messages. A flexible and efficient multi threaded 
server architecture is proposed to support multi messages sent by 
different modalities. Strategies for data fusion and fission are 
also provided. Some of these components are integrated within 
the first prototype of OpenInterface (the Multimodal Similar 
platform). 
 

Index Terms— driver simulator, facial movements analysis, 
physiological signals, stress, attention level, data fusion, fission, 
OpenInterface. 
 

I. INTRODUCTION 

The main goal of this project is to use multimodal signals 
processing to provide an augmented user's interface for 

driving. The term augmented here can be understood as an 
attentive interface supporting the user interaction. So far at 
most basic level, the system should contain at least four 
components: 

1. sensors for determining user state of mind; 
2. an inference engine feature extractor to evaluate 

incoming sensor information 
 
This report, as well as the source code for the software developed during the 
project, is available online from the eNTERFACE’05 web site: 
www.enterface.net. 

3. an adaptive user interface based on the results of step 2 
4. an underlying computational architecture to integrate 

these components. 
In fact a fully functioning system would have many more 

components, but the previous components are the most critical 
for inclusion in an augmented cognition system and they are 
covered in the project implementation. 

Basically to provide such multimodal application, we 
address the following issues: which driver simulator to use?  
How to characterize a user’s state of fatigue or  stress? Which 
biological and/or physiological signals to take into account?  
What kind of alarm to send to the user? How to integrate all 
these pieces – data fusion and fission mechanism? Which 
software architecture is more appropriate to support such kind 
of integration? 
A software architecture supporting real time processing is the 
first requirement of the project because the system has to be 
interactive. A distributed approach supporting multi thread 
server can address such needs. 
The choice of the driver simulator has to take into account 
some features such as: open source software, “First person 
view”: (i.e. cockpit view with wheel) and dashboard, source 
code easy to modify and possible use of a vibration feedback 
wheel. 
We consider two user’s states to be detected: stress and 
fatigue. The detection of these states is based on video 
information and/or on biological information.  From video 
data we extract relevant information to detect fatigue state 
while the biological signals provide data for stress detection. 
Physiological signals could be associated to video data in 
order to detect fatigue but in the context of the driver 
simulator used in this project, a real fatigue state is very 
difficult to obtain. It is possible to simulate fatigue on video 
data (by closing the eyes or by yawning for example). On the 
contrary, such kind of simulation is not possible on 
physiological signals.  
                                                                                                     
 

http://www.enterface.net/


 
The third step is to define what kind of alarms to provide to 
the user. Textual messages and force feedback are considered 
to alert the user.  

An other challenge of this project is to provide a concrete 
example in order to test OpenInterface, the multimodal 
Similar platform. 

The rest of the paper is organized as follow: section II 
present the global architecture of the demonstrator, section III 
describes how we detect driver’s hypo-vigilance states by the 
analysis of video data, section IV presents how to detect 
driver’s stress states by the analysis of some biological signal, 
sections V and VI describe the data fusion and fission 
strategies and section VII gives details about the demonstrator 
implementation. 

II. CONCEPTUAL ARCHITECTURE 
 
The diagram of Figure 1 presents the conceptual architecture 
of our attentive driver simulator. We propose a distributed 
approach to integrate our components. On one PC under 
Linux we have integrated all video data based detection and 
analysis as well as the fusion and fission components. An 
other PC under Windows is used to run the driver simulator 
and a third PC is used for biological signals acquisition and 
analysis. Communication between all the PCs is done 
exchanging XML messages. For that the Dialog Controller 
included in the driver Simulator software should be able to 
receive multi messages (i.e. from biological signals station and 
from video based station). In this case a multi thread server 
approach is developed and included in the driver simulator.  
 

 
Figure 1: Overview of the system architecture 

III. HYPO-VIGILANCE DETECTION BASED ON VIDEO DATA  
The state of hypo-vigilance (either related to fatigue or 
inattention) is detected by the analysis of video data. The 
required sensor is a camera facing the driver. In this project, 
three indices are considered as hypo-vigilance signs: yawning, 
head rotations and eyes closing for more than 1s. 

A. Face detection 
Face detection is the first and maybe the most crucial step of 
the image processing phase. The face detector should be 
robust (no error in face localization) and should work in real 
time. The chosen face detector is the free toolbox MPT [5]. 
This face detector extracts a square-bounding box around each 
face in the processed image. Face detection is done for each 
image of the sequence without any face tracking. The 
advantage is that the head is not lost because of tracking error 
propagation. The main drawback is the decrease of the frame 
rate even though MPT works nearly in real time for pictures 
of size (320x200 pixels), which is not the case of other face 
detectors such as OpenCV [13] for example.   
Whichever face detector you use, the extracted face bounding 
box is not exactly the same from frame to frame so that we use 
a temporal median filter with temporal adaptive position mean 
to make the spatial localization of the face temporally stable 
(note that the size of the bounding box of the face is supposed 
to be constant during an experiment: in a car the driver face 
distance w.r.t the camera is stable if the driver stays on his 
seat). 
 

B. Head motion analysis 
 
Once a bounding box around the driver face has been 
detected, head motion such as head rotations, eyes closing and 
yawning are detected by using an algorithm working in a way 
close to the human visual system. In a first step, a filter 
coming from the modeling of the human retina is applied. This 
filter enhances moving contours and cancel static ones. In a 
second step, the FFT of the filtered image is computed in the 
log polar domain as a modeling of the primary visual cortex. 
Figure 2 gives a general overview of the algorithm. 
 

 
Figure 2: Algorithm for hypo-vigilance features extraction 

from video data 

The first step consists in an efficient prefiltering [1]: the retina 
OPL (Outer Plexiform Layer) that enhances all contours by 
attenuating spatio-temporal noise, correcting luminance and 



whitening the spectrum (see Figure 3) . The IPL filter (Inner 
Plexiform Layer) [1] removes the static contours and extracts 
moving ones. 
The second step consists in a frequency analysis of the 
spectrum of the OPL and IPL filters outputs in each region of 
interest of the face: global head, eyes and mouth (see section 
C for the description of eyes and mouth region of interest 
extraction).  

 
Figure 3 : OPL filtering results 

In order to estimate the rigid head rotations [3], the proposed 
method analyses the spectrum of the IPL filter output in the 
log polar domain. It detects head motion events and is able to 
extract its orientation. Cortical optical flow filters [2] are 
oriented filters that compute the optical flow of the global 
head to extract the motion direction. Optical flow is computed 
only when motion is detected. 
For the detection of yawning or eyes closing, three identical 
processes are done independently [4]. On each region of 
interest (each eye and the mouth), a spectrum analysis of the 
OPL and IPL filters output is done for motion event detection: 
we are looking for vertical motion related to eyes closing or to 
yawning. 

C. Eyes and mouth detection 
The mouth can be easily extracted in the lower half of the 
detected bounding box of the head. The detection algorithm 
will work even if the mouth is not perfectly centered in the 
area because we analyze the spectrum energy instead of 
spatial features, which is more robust. Moreover, there are no 
disturbing contours in that area that could generate false 
detections. 
Concerning the eyes, the spectrum analysis in the region of 
interest is accurate only if each eye is correctly localized. 
Indeed around the eyes, several vertical or horizontal contours 
can generate false detection (hair boundary for example).  
The MPT toolbox proposes an eye detector but it requires too 
much computing time so that it is not compliant with real time 
constraint. We use another solution: eye region is supposed to 
be the area in which there is the most energized contours. To 
do so, assuming that the eyes are localized in the 2 upper 
quarters of the detected face, we use the retina output. The 
retina output gives the contours in these areas and due to the 
fact that the eye region (containing iris and eyelid) is the only 
area in which there are horizontal and vertical contours, the 
eye detection can be achieved easily. We use two oriented low 
pass filters: one horizontal low pass filter and a vertical low 

pass filter and we multiply their response. The maximum of 
the result is obtained in the area in which there are the most 
horizontal and vertical contours that is an eye region. To make 
the eye areas temporally stable, their position is smoothed 
from frame to frame using adaptive mean positions. This eye 
detection takes about 6 operations per pixel for each search 
area (i.e. each upper quarter of the face bounding box). 
Figure 4 gives an example of the input picture of the eye 
detector; bright areas are the most important contours. Figure 
5 shows the output of the horizontal vertical filters. 

 
Figure 4:  Input picture for eye detection : one of the 2 
upper quarters of the face-bounding box 

 
Figure 5: Output of the vertical and horizontal low pass 
filters, both filters report maximum amplitude on the eye 
center. 

D. Hypo-vigilance alarms generation 
• We generate an alarm when both eyes are closed 

longer than a specific time period (1 second for 
example). 

• We detect mouth yawning: when a yawn occurs, the 
mouth is wide open, then, this generates a very high-
energy increase on the spectrum that can be easily 
extracted. 

• The global head motion events are detected with the 
global head spectrum analysis. We only extract the 
fact that a head motion has occurred. The proposed 
algorithms are able to extract the motion direction 
with the cortical optical flow algorithm, but it is not 
yet integrated in the fusion system. 

 

E. Fusion strategy 
After the video analysis, Boolean information about yawning 
or not, about eyes closing or not and about head moving or not 
are available. A very simple and easy to compute fusion 
strategy based on the three index is proposed:  
 



if head motion is detected 
 send an alarm to the user 
 hypo-vigilance value=100 
else 
 if both eyes are closed during 1s 
  send an alarm to the user 
    hypo-vigilance value = 50 
 if the driver is yawning 
  send an alarm to the user 
       hypo-vigilance value = 50+hypovigilence value 
end 
The variable hypo-vigilance associated to each index is set to 
50 or 100. The highest the value, the highest the hypo-
vigilance. 
Note that in this very simple fusion strategy, information 
about head motion kind of rotation is not taken into account. 
A more sophisticated fusion strategy has been tested and is 
described in section V.  

IV. STRESS DETECTION BASED ON BIOLOGICAL SIGNALS 
ANALYSIS  

Physiological signals are used in order to detect stress 
situation. ECG (Electrocardiogram) and GSR (Galvanic Skin 
Response) are announced by literature as very promising to 
detect driver stress in real situations [11, 12]. In a stressful 
time, the GSR signal and the heart rate signal (extracted from 
the ECG) are supposed to increase. Two different experiments 
have been considered; they aim at detecting either driver stress 
over a long time period or punctual driver stress. 
In this experiment, we use the Biopac system MP30B-CE for 
ECG and GSR acquisition. 

  
Figure 6: On the left, ECG devices and on the right, GSR 

device 

The main drawback of the data acquisition system is that for 
the moment, on line analysis is not possible. For that reason, 
the study on biological signal for stress detection has not been 
implemented in the final demonstrator.  
 

A. ECG signals analysis 
1) Prefiltering 

 
Since we are analysing the stress state of a driver, the ECG 
can be disturbed by several muscle artefacts that generally 
come from hands or arms movements (see Figure 7). This is 
why it is necessary to pre-filter signals. 

 
Figure 7: Driver with electrodes on the wrists for ECG 

measure 

The pre-filtering is based on the characteristics of the ECG 
peaks: we observed that these peaks contain energy in the 
frequency band 10-35 Hz. As we do not need other 
components of the signal we choose to band-pass the signal 
using this interval and a Butterworth IIR filter with 8 
coefficients. Figure 8 shows the original signal and the results 
after filtering. 

 
Figure 8: ECG before (first line) and after pre-filtering 

(second line); computed heart rate from ECG (third line, 
red signal) 

2) Heart rate computation 
 
The first thing to do, before computing heart rate, is to 
identify peaks in the filtered signal. For this, we use a 
reference record (ECG when the subject is supposed to be 
relaxed) as a baseline to identify the general height of the 
peaks depending on the subject. We define the general height 
of peaks as one third (chosen empirically) of the maximum 
value. In order to improve the peak detection, we also use a 
priori information: we consider that the heart rate cannot 
exceed 180 BPM (Beats Per Minute). If two peaks are too 
close, so that they do not validate this assumption, we keep 
only the one with the maximum value. 
Finally, the heart rate is computed by evaluating the number n 
of samples between two peaks and by using this simple 
formula: 

HR = 60/ (n*(1/fe)) 



Where fe is the sampling rate. 
 
3) Stress level assessments 

 
In case of unexpected or stressful events, the heart rate does 
not increase as generally assumed, but one can observe a raise 
in its variation. In order to determine this variation, we use the 
absolute value of the first derivative of the signal. After 
smoothing the result by a Gaussian filter we obtain what we 
call the stress level  (see Figure 9). 

 
Figure 9 : stress level (bottom) computed from heart rate 
(top) for exciting stimuli 

B. GSR signal analysis 
Due to the chosen sampling rate (200 samples per second) and 
the apparatus, some artefacts occur in the initial signals and a 
filtering is also required. After trying several smoothing filters 
and because of the large variability in the conductivity of each 
user, we opt for a multiscale median filtering. Four successive 
filters are used with a decreasing window size (100, 50, 30 
and 20 samples). 
 

1) Global stress detection 
We can easily measure the minimum and maximum of the 
user’s GSR level. By normalizing the signal to analyze with 
these values as usual: 

)_min()_max(
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−
−  

where GSR_rest correspond to the values of the GSR when 
the user is supposed to be relaxed. 
We can then define a score to know the global stress level. 
Global stress can occur after a very difficult day of work or 
when the traffic jam is increasing for example. Global stress is 
related to slow but constant increase of the GSR. The global 
stress level is used to know the initial state of the driver or 
with a sliding window, to know the global state of the driver 
in a certain amount of time.  
 

2) Local stress detection 
Local stress is supposed to be related to punctual and 
unforeseen events as it could occur on roads such as a 

pedestrian crossing and so on. Local stress detection can be 
modelled as high peaks in GSR signals. GSR signals have the 
property to react quite quickly to an event but to have a 
decreasing response to go back to a calm situation very 
slowly. 
We used this particular property as a priori information in our 
algorithm. 
First of all, we detect local maxima using the watershed 
algorithm. Local maxima correspond to watershed pixels. 
Once maxima are detected, we keep only those, which have a 
difference of 1 unit with the previous maximum. This 
threshold of 1 unit is based on the correlation of punctual 
events, precisely recorded, and GSR signals. Then, we remove 
all maxima, which are too close to each other by keeping only 
the highest one. This rule is based on the assumption that if 
two maxima are too close to each other (inferior to 5 seconds), 
they belong to the same event. Figure 10 presents an example 
of GSR local increasing detection: each peak on the bottom 
curve corresponds to a stress alert. 

 
Figure 10: GSR record and punctual stress event detection 

V. FUSION STRATEGY  
In this section, we describe and test a data fusion based on 
Bayesian Network. It is used for the purpose of hypo-
vigilance detection but it also represents a global fusion 
method for the integration of additional information in the 
detection process. Note that this fusion process is not 
integrated in the final demonstrator for the moment due to the 
lack of significant data. Both fusion strategies are 
implemented in the demonstrator but for the moment, only the 
simplest one described in III.D. is used by default for 
computational cost reduction. 
Human fatigue generation is a very complicated process. 
Several uncertainties may be present in this process. First, 
fatigue is not observable and it can only be inferred from the 
available information. In fact, fatigue can be regarded as the 
result of many contextual variables such as working 
environments, health and sleep history. Also, it is the cause of 
many symptoms, e.g. the visual cues, such as irregular eyelid 
movements, yawning and frequent head tilts. Second, human's 
visual characteristics vary significantly with age, height, 
health and shape of face. To effectively monitor fatigue, a 
system that integrates evidences from multiple sources into 



one representative format is needed. Naturally, a Bayesian 
Networks (BN) model is a good option to deal with such an 
issue.  

 
Figure 11: Fusion strategy based on a Bayesian Network 

 
A BN provides a mechanism for graphical representation of 
uncertain knowledge and for inferring high-level activities 
from the observed data. Specifically, a BN consists of nodes 
and arcs connected together forming a directed acyclic graph. 
Each node can be viewed as a domain variable that can take a 
set of discrete values or a continuous value. An arc represents 
a probabilistic dependency between the parent node and the 
child node. 
Some contextual information such as temperature, time of day, 
sleep history, etc can be used to build a prior probability for 
the fatigue node. For that we use the parameters proposed in  
[7]. For the face data fusion we have considered a very 
preliminary version where the network evidences change 
when: eyes closed more than 1 sec; yawning occurs; down 
head motion are detected simultaneously or not. As result we 
got the level of fatigue, which is sent to the data fission 
component. 

VI. FISSION STRATEGY  
Data fission duty is to collect the data from data fusion and to 
generate an alert XML message that is sent to the driver 
simulator. Data fission function is called at the rate the driver 
state detection is progressing. Generated messages are in 
XML format. We decided for XML because it is extendable 
and messages are sent only when the driver state changes. 
Driver state may be defined by a fatigue value (either coming 
from the Bayesian Network result or from the simple fusion 
process) that is an output variable of data fusion. For example, 
we can set the range of values for fatigue level that determine 
the driver state. For those range of values we can define 
different screen messages and wheel shaking power. Table 1 

and Table 2 present the fusion strategy for the simple method 
and for the Bayesian network based method respectively. 
 

Fatigue 
range 50 50 100 

Message Open the 
eyes 

Yawning: be 
careful 

Stop moving 
the head 

Shaking 
power '100' '100' '100' 

Table 1: fission strategy with the simple fusion process 

 
Fatigue 
range [0,33] [33,66] [66,100] 

Message '' 'Tired' 'Asleep' 
Message 

color '' 'Green' 'Red' 

Shaking 
power '0' '0' '100' 

Table 2: fission strategy with the BN based method 

Data fission only creates the message if the driver state has 
changed and is different than the previous driver state. If the 
user state is the same as in previous call, data fission generates 
'NOT_CHANGED' message. In that way the XML message 
does not need to be sent to the driver simulator after each call 
of the data fission function.  
Once the alert message has been sent, the driver is supposed to 
acknowledge to the system that the message has been 
understood. For example, in the case of the simple fusion 
process, each time an alert is detected, wheel vibrations are 
triggered. The driver has to stop these vibrations by pushing a 
button. The reaction time is also recorded, this time being 
correlated with the hypo-vigilance or fatigue user state. 

VII. DEMONSTRATOR 

A. Overview of the global system 
The developed demonstrator is made of  

• 2 PCs: one under Windows for the driver simulator 
and one under Linux for hypo-vigilance states 
detection 

• 1 SONY digital camera 
• 1 LOGITECH force feed back wheel 
• 1 projection screen 
• 1 video-projector 
• 2 loudspeakers 
 



 
 

 
Figure 12: Global views of the demonstrator 

 
On the used computer (Pentium 4 2.4Ghz), the frame rate is 
about 5 frames per second but it could be increased up to 8 
frames per second thanks to some MPT optimization. 

B. Driver Simulator 
Around ten driver simulators have been studied. The chosen 
driver simulator is TORCS [9] because it is a well 
architectured GPL program with well structured source code 
and a well designed user interface. 
This simulator is working under Linux and windows 
platforms. The main sources are written in C++ with the 
OpenGL library. The graphics quality of the simulator is 
correct and it has a first person view. Figure 13 presents an 
illustration of TORCS simulator. 

 
Figure 13: Torcs driver simulator illustration 

We integrate an interaction from the Data Analysis Kernel to 
our driving Simulator. 

The main work consisted in  
- Allowing a Text Message to be displayed within the game 

graphical interface. 
- Creating a multi-threaded Server within the application 

whose purpose is accepting different clients connexions. 
- Integrating a force Feedback wheel in order to warn the 

user with an other modality than the visual one. 
- Allowing the user to make a feedback on the message 

displayed by stopping it. 
- Parsing  XML messages from the multimodal analysis of 

the driver. Indeed, it is possible to change the color, the string 
of the sent message and the feedback power. 

C. Implementation of hypo-vigilance detection 
Due to the fact that ECG and GSR signals cannot be 
processed on line with the data acquisition station we used, 
the detection of stress state has not been implemented in real 
time. Only the detection of hypo-vigilance state based on 
video data is available at the moment. 
 

1) Face detection algorithm modifications 
For face detection, we use the Matlab implementation of 
mpiSearch function belonging to the MPT library, which 
receives a RGB or Gray level frame as input. Outputs of the 
function are the bounding box coordinates of the detected 
face. 
Due to the relative slowness of the mismatch function 
developed under Matlab a fine study of the algorithm has been 
done in order to increase the computational rate. We managed 
to figure out how the algorithm behaves in dynamic 
environment when the video is acquired with the help of 
DirectInput library. While streaming, mpiSearch uses a 
special object that caches the detected face-bounding box.  
The trick is to modify the mpiSearch Mex function and to put 
this object as a global DLL variable. Global DLL variables are 
preserved in Matlab memory space after the DLL is first 
accessed by Matlab. In that way after each Matlab call of the 
mpisearch function caching state is preserved.  
With using the Microsoft VS.NET 2003, we additionally 
increase the performances by compiling the code for new 
Pentium 4 generation of processors.  
With all these modifications, we achieve about 2.7 times 
speed increase. 
In order to increase the frame rate again, some of time-
consuming parts of the mpisearch code may be written in 
assembler language. This is beyond of scope of the project. 

D. Alert message generation 
1) The Display Changes 

Three different messages depending on the index of hypo-
vigilance can be displayed on the first view of the driver 
simulator (see Table 1 for the different considered messages 
and Figure 14 for an example of message incrustation during 
the game). In order to show the message, we need to change 
all the graphical classes within the source code. The 
communication between the main program and all the libraries 
is created by using some global variables and also by creating 
new links between several libraries. 
 



 
Figure 14: alert message in case of long eyes closing 

 
2) Force Feedback implementation 

Force Feedback is used to make the wheel shaking when 
hypo-vigilance is detected. Shaking power is defined by XML 
message of data fission. Shaking becomes stronger and 
gradually reaches its maximum value. Force Feedback uses 
the DirectInput library, a part of the Microsoft DirectX SDK. 
The library is based on "The Force Feedback Direct Input 
Library (DIL)" made by Bryan Warren and Alex Koch. This 
library can be loaded at [8]. In our project, the library has 
been altered from functions to class. In class we can set the 
time period that shaking needs to reach the maximum 
vibration time, vibration activation threshold and to modify 
the shaking of the wheel dynamically. We also use the class to 
check whether the button is pressed, and if pressed stop the 
wheel shaking. 
 

3) Message parsing and controlling the input devices of 
driver simulator 

After the XML message arrives through the socket connection 
it is parsed. We use Microsoft XML parser to parse the 
message. You can download the MSXML parser from 
Microsoft web site. After the parsing, controller class activates 
the screen display message or starts the wheel shaking. 
 

4) The Server Side: 
We choose to implement a Server side for the interaction 
between the multimodal devices and the user. The network 
protocol used is TCP/IP. We implement this socket by using 
threads. Those threads access global variables under mutual 
exclusion. We use a “GPL” library called Openthreads for this 
implementation. 

E. Openinterface integration 
1) OpenInterface: a short presentation 

 
OpenInterface is the Similar Software Platform that includes 
software components dedicated to multimodal interaction and 
multimodal data fusion. OpenInterface integrates results from 
the Human-Computer Interaction (HCI) community as well as 
from the Signal Processing community. 
Each component is registered into OpenInterface Platform 
using the Component Interface Description Language (CIDL 
described in XML). The registered components properties are 

retrieved by the Graphic Editor (Java). Using the editor the 
user can edit the components properties and compose the 
execution pipeline of the multimodal application. This 
execution pipeline is sent to the OpenInterface Kernel 
(C/C++) to run the application. The OpenInterface Tutorial 
can be found on the Similar web site [10].  
 
 

2) OpenInterface implementation of the demonstrator 
 
Currently, OpenInterface is in its early development stage and 
this driver simulator project is used as a test bed for the 
working prototype. The latter provides several services and 
also has limitations. 
The services provided by this first OpenInterface prototype 
are: 

• Interface Description Language for the specification 
of reusable software code. 

• Seamless integration of reusable heterogeneous 
software (C/C++, Java, Matlab). 

Some limitations are: 
• The description of a software interface is currently 

not automated and has to be written by hand. This 
can be cumbersome as the language syntax is very 
strict and the validity of a description is not heavily 
enforced besides DTD checking. This lack of 
robustness might lead to an inappropriate binding 
and therefore to unexplained application crash. 

• At the beginning of the project, it was impossible to 
perform two ways communication with any Matlab 
script. The latter could only be called by 
OpenInterface component. 

Several issues have been encountered during the integration 
phase: 

• First of all as the current prototype is only running 
under Linux, we had to reduce the set of software to 
those that could be run under Linux. It has been 
decided that the communication with non-compliant 
Linux software will be done through network 
communication. Thus, only the following software 
code have been integrated into OpenInterface: 
firewire camera driver, face detection, head motion 
analysis, fusion for hypo-vigilance detection, fission 
strategy for alerting the user and a Java GUI to start 
the application. Figure 15 shows how these 
components are connected into OpenInterface. 

• After deciding which software to use as component 
into OpenInterface, the main problem we had to face 
has been to make those components reusable. Indeed, 
in their first version, the software was designed for a 
particular goal and could not be reused by a third-
part (e.g. OpenInterface) as tools. Thus, we 
redesigned the components interaction interfaces. To 
avoid this redesigning step in the future, modular 
programming habit should be enforced from the 
beginning among components programmer. 

• From this step we have pulled out that a two-way 
communication with Matlab script is mandatory to 



prevent heavy code rewriting. Indeed the camera 
driver has to be called by the face detection 
component, not the contrary. Therefore, due to the 
Matlab Engine API limitations, the only way to allow 
Matlab script to interact with component already 
running into OpenInterface is to perform 
communication through UNIX socket. Of course this 
is transparent to the user. 

• The third integration step was the description, in 
CIDL, of all components interface. This step was 
straightforward and we did not find any difficulties in 
expressing the interfaces in the integration platform's 
CIDL. 

• Finally we started the integration of the components. 
It is performed in a gradual way so that we were able 
to test each component inside OpenInterface and 
point out the incompatibility. Some problems arose 
when we put two Matlab components in the same 
execution pipeline. It turned out that due to another 
undocumented Matlab Engine API limitation, we 
could not call another m-script while another is 
running. The lack of time directed us to fix the 
problem by having one Matlab engine instance per 
Matlab script taking part in a pipeline. One would 
think that this solution would drastically slow down 
the computer but that did not happen. A Matlab 
process actually uses resource proportional to the 
computation done by the running script. 

 

 
Figure 15: Openinterface components coming from the 

project 

As a conclusion of this integration phase using OpenInterface 
platform, we can say that thanks to this first project 
integration a lot of feedback has been collected to improve the 
current prototype of the OpenInterface tool in order to provide 
another improved version as soon as possible. The future 
engineering work on OpenInterface will be narrowed to 
improve the integration of Matlab components and also to 
provide a user with a friendly integration interface. This 
would allow distributing the platform and letting people test it 
on their own. 

VIII. FUTURE WORKS AND CONCLUSION 
During the project, we have developed an augmented driver 

simulator based on video analysis for driver’s attention 
controlling. First promising studies about physiological data 
have to be improved and integrated in the global system. This 

will induce the development of an appropriate data fusion 
method in order to control both the driver’s attention level and 
the driver’s stress. 

Once the driver has been alerted, it will be necessary to 
perform some specific tests in order to control that driver’s 
stress or fatigue has actually decreased. 

For the moment, the global system is running almost 10 
frames per second. It will be necessary to optimize video data 
analysis algorithms in order to speed up the frame rate. 
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