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In this paper we propose and discuss variance reduction tech-
niques for the estimation of quantiles of the ouput of a complex model
with random input parameters. These techniques are based on the
use of a reduced model, such as a metamodel or a response surface.
The reduced model can be used as a control variate; or a rejection
method can be implemented to sample the realizations of the input
parameters in prescribed relevant strata; or the reduced model can be
used to determine a good biased distribution of the input parameters
for the calibration of an importance sampling strategy. The different
strategies are analyzed, the asymptotic variances are computed and
compared, which shows the benefit of an adaptive controlled strati-
fication method. This method is applied to a real example (compu-
tation of the peak cladding temperature during a large-break loss of
coolant accident in a nuclear reactor).

1. Introduction. Quantile estimation is of fundamental importance in
statistics as well as for practical applications (Law and Kelton, 1991). In
the case of complicated situations, such as in the case of the output of a
numerical code, simulations are required to estimate the quantiles, and the
number of simulations may be somewhat limited. Variance reduction tech-
niques specifically designed for this problem have been proposed and im-
plemented. These techniques usually involve importance sampling (Glynn,
1996), correlation-induction (Avramidis and Wilson, 1998), and control vari-
ates (Hsu and Nelson, 1987; Hesterberg and Nelson, 1998). In this paper, we
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2 C. CANNAMELA, J. GARNIER, AND B. IOOSS

focus our attention on variance reduction techniques based on the use of an
auxiliary variable. For the problem of the quantile estimation of a computer
code output, the auxiliary variable is the output of a reduced model, which
is coarse but cheap from the computational time point of view. We will show
how to use it to find convenient parameters of the stratified and importance
sampling techniques (Rubinstein, 1981).

Quantiles form a class of performance measures. Quantile estimation for
a real-valued random variable (r.v.) Y aims at determining the level y such
that the likelihood that Y takes a value lower than y is some prescribed value.
We assume that Y has an absolutely continuous cumulative distribution
function (cdf) F (y) = P(Y ≤ y) and a continuously differentiable probability
density (pdf) p(y). We look for an estimation of the α-quantile yα defined
by F (yα) = α.

In this paper we assume that Y is the real-valued output of a CPU time ex-
pensive computer code f , whose input parameters are random and modeled
by the random vector X ∈ R

d with known distribution. With the advance
of computing technology and numerical methods, the design, modeling and
analysis of computer code experiments have been a growing research domain
of interest during the last two decades (Sacks et al., 1989; Fang, Li and Sud-
jianto, 2006). The problem of low or high quantile estimation (smaller than
10% and larger than 90%) can be resolved by classical sampling techniques
such as the simple Monte Carlo or latin hypercube techniques. These Monte
Carlo methods can give imprecise quantile estimate (with large variance) if
they are performed with a reasonable number of code runs, say of the order
of 200 (David, 1981). An alternative solution is to calculate a tolerance limit
rather than a percentile thanks to Wilk’s formula (Nutt and Wallis, 2004).
For an upper bound, it provides with a low number of code runs, less than
200, a majoring value of the desired percentile with a given confidence level
(for example 95%). But the variance of this tolerance limit is larger than
that of the empirical estimate, for the same number of code runs.

Another well known solution for the uncertainty analysis of such systems
consists in replacing the complex computer code by a reduced model, called
metamodel or response surface (Fang, Li and Sudjianto, 2006). However,
a low or high quantile estimate from a metamodel tends to substantially
differ from the computer model quantile because the metamodel is usually
constructed by smoothing the available computer experiments. Recently,
some authors have taken advantage of one particular type of metamodel:
the Gaussian process model (Sacks et al., 1989) which gives not only a pre-
dictor (the mean) of a computer experiment but also a local indicator of
prediction accuracy (the variance). In this context, Oakley (2004), Vazquez
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CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 3

and Piera Martinez (2007) and Ranjan, Bingham and Michailidis (2008)
have developed sequential procedures to choose design points and to con-
struct an accurate Gaussian process metamodel, specially near the regions of
interest, where the quantile lies. Rutherford (2006) proposes to use geostatis-
tical conditional simulation techniques to obtain several possible realizations
of the Gaussian process. He deduces an unbiased quantile estimate by tak-
ing the quantile mean of each realization. However, all these techniques are
based on the construction of a Gaussian process model which can be diffi-
cult, but possible (Jones, Schonlau, and Welch, 1998; Schonlau and Welch,
2005; Marrel et al., 2007), in high-dimensional context (d > 10). Moreover,
in industrial practice, a metamodel can already be available coming from
a previous study or from a simplified physical model. This is the situation
we have in mind. We do not concentrate our effort on the construction of a
more accurate metamodel, but on the use of a given reduced model.

In our work, we deal with this situation in which a reduced model is
available, in the form of a metamodel fr, which is a coarse approxima-
tion of the computer model f . The quality of the metamodel may be not
known; the metamodel may be a simplified version of the computer code (a
one-dimensional version for a three-dimensional problem, a response surface
determined during another study, ...); its input variables may be a subset
of the input variables for the computer code f . The computer model f is
assumed to be very computationally expensive to execute, while evaluating
the approximating metamodel fr and the input random r.v. X generation
are assumed to be very fast (essentially free). Therefore, the focus of this
paper is on how to exploit the metamodel to obtain better control variates,
stratification or importance sampling than could be obtained without it. In
the real example we address in Section 5 (computation of the peak cladding
temperature of the nuclear fuel during a large-break loss of coolant accident
in a nuclear reactor), the CPU time for each call of the function f is 20 min-
utes, while the metamodel fr is linear and the input r.v. X is a collection
of d = 53 independent real-valued r.v. with normal and log-normal distribu-
tions. In this example, we also study the relevance of using more complex
and powerful metamodels, as the popular Gaussian process model.

The usual practice of quantile estimation is to construct an estimator
of the cdf of Y first, then to deduce an estimator of the α-quantile of Y .
In absence of control variate, the standard method is the following one.
The estimation is based on a n-sample (Y1, ..., Yn), that is to say a set of
n independent and identically distributed r.v. with the pdf p(y) of Y . The
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4 C. CANNAMELA, J. GARNIER, AND B. IOOSS

empirical estimator (EE) of the cdf of F is

F̂EE(y) =
1

n

n∑

i=1

1Yi≤y(1)

which leads to the standard estimator of the α-quantile

ŶEE(α) = inf
{
y, F̂EE(y) > α

}
= Y(⌈αn⌉)(2)

where ⌈x⌉ is the integer ceiling of x and Y(k) is the k-th order statistics.
Refined versions of this result based on interpolation and smoothing methods
can be found in the literature (Dielman et al., 1994). The empirical estimator
ŶEE(α) has a bias and a variance of order 1/n (David, 1981). The empirical
estimator is asymptotically normal

√
n(ŶEE(α) − yα)

n→∞−→ N (0, σ2
EE) , σ2

EE =
α(1 − α)

p2(yα)
(3)

The reduced variance σ2
EE is usually larger when a larger quantile is esti-

mated (the pdf at yα is then very small).
This paper first describes the already known quantile estimation by con-

trol variate in Section 2. Section 3 presents an original controlled stratifica-
tion method. Then, a controlled importance sampling strategy is analyzed in
Section 4. A real example is addressed in Section 5. A conclusion synthesizes
our results.

2. Quantile estimation by Control Variate (CV). In this section
we present already known variance reduction techniques based on the use
of Z = fr(X) as a control variate The quantiles zα of Z are assumed to be
known, as well as any expectation E[g(Z)] of a function of g(Z). We mean
that these quantities can be computed analytically, or they can be estimated
by standard Monte Carlo estimations with an arbitrary precision, since only
the reduced model fr is involved.

2.1. Estimation of the distribution function. A Control Variate (CV) es-
timator of F (y) with the real-valued control variate Z has the form

F̂CV(y) = F̂EE(y) − C (ĝn − E[g(Z)])(4)

where the function g : R → R has to be chosen by the user (Nelson, 1990) and
ĝn = 1

n

∑n
i=1 g(Zi). The optimal parameter C is the correlation coefficient

between g(Z) and 1Y ≤y whose value is unknown in practice. Therefore, the
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CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 5

estimated parameter Ĉ is used instead. It is defined as the slope estimator
obtained from a least-squares regression of 1Yj≤y on g(Zi):

Ĉ =

∑n
j=1(1Yj≤y − F̂EE(y))(g(Zj) − ĝn)

∑n
j=1(g(Zj) − ĝn)2

As shown by Hesterberg (1993) the estimator F̂CV(y) can be rewritten as
the weighted average

F̂CV(y) =

n∑

j=1

Wj1Yj≤y(5)

with

Wj =
1

n
+

(ĝn − E[g(Z)])(ĝn − g(Zj))∑n
i=1(g(Zi) − ĝn)2

.

Note that
∑n

j=1Wj = 1. If g(z) = 1z≤zα
, then E[g(Z)] = α, ĝn = N0/n with

N0 =

n∑

i=1

1Zi≤zα
and Wj =

α

N0
1Zj≤zα

+
1 − α

n−N0
1Zj>zα

(6)

As shown by Davidson and MacKinnon (1992) the estimator (5) is equivalent
to the maximum likelihood estimator for probabilities. By using standard
results for the convergence of Monte Carlo estimators (Nelson, 1990), one
finds

√
n(F̂CV(y) − F (y))

n→∞−→ N (0, σ2
CV) , σ2

CV = F (y)(1 − F (y))(1 − ρ2
I)(7)

where ρI is the correlation coefficient between 1Y ≤y and 1Z≤zα
:

ρI =
P(Y ≤ y, Z ≤ zα) − αF (y)√
F (y)(1 − F (y))

√
α− α2

(8)

This result can be compared to the corresponding central limit theorem in
absence of control, which claims that the empirical estimator F̂EE defined
by (1) is asymptotically normal

√
n(F̂EE(y) − F (y))

n→∞−→ N (0, σ2
EE) , σ2

EE = F (y)(1 − F (y))

Comparing with (7) reveals an asymptotic variance reduction of 1 − ρ2
I .
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6 C. CANNAMELA, J. GARNIER, AND B. IOOSS

2.2. Quantile estimation. Our goal is now to estimate the α-quantile of
Y by using the CV estimator of the cdf of Y . We consider the order statistics
(Y(1), ..., Y(n)) with the weights W(i) defined by (6) sorted according to the
Y(i). Using the estimator (5) of the cdf of Y , the CV estimator of the α-
quantile is

ŶCV(α) = Y(K) , K = inf
{
j ,

j∑

i=1

W(i) > α
}

(9)

Applying standard results for the variance reduction for Monte Carlo
methods (David, 1981), one finds that this estimator is asymptotically nor-
mal with the reduced variance σ2

CV

√
n(ŶCV(α) − yα)

n→∞−→ N (0, σ2
CV) , σ2

CV =
α(1 − α)

p2(yα)
(1 − ρ2

I)(10)

where p is the pdf of Y and ρI is the correlation coefficient between 1Y ≤yα

and 1Z≤zα
:

ρI =
P(Y ≤ yα, Z ≤ zα) − α2

α− α2

Comparing (10) with (3) reveals a variance reduction by the factor 1 − ρ2
I .

As expected, the stronger Y and Z are correlated, the larger the variance
reduction is. It is not easy to build an estimator of the reduced variance
σCV, because this requires to estimate the pdf p(yα). However, it is possible
to build an estimator of the correlation coefficient ρI , which controls the
variance reduction. This estimator is the empirical correlation coefficient ρ̂I

defined by

ρ̂I =

∑n
j=1(1Yj≤y − F̂EE(y))(1Zj≤zα

− Ĝn(zα))
√∑n

j=1(1Yj≤y − F̂EE(y))2
√∑n

j=1(1Zj≤zα
− Ĝn(zα))2

|y=ŶCV(α)(11)

with Ĝn(zα) = 1
n

∑n
i=1 1Zi≤zα

.

2.3. The optimal CV estimator. In the previous section the control vari-
ate function is g(z) = 1z≤zα

, which allows both an easy implementation and
a substantial variance reduction. In general, the variance reduction obtained
with the CV estimator (4) depends on the correlation coefficient between
1Y ≤y and the control g(Z). The optimal control, which maximizes the cor-
relation coefficient, is obtained with the function (Rao, 1973)

g∗(z) = P (Y ≤ y|Z = z)(12)

imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008



CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 7

This function is usually unknown, otherwise it could be possible to com-
pute analytically the cdf F (y) by taking the expectation of g∗(Z), and
solve numerically the equation F (y) = α to get the quantile. However, this
result gives the principle of refined CV methods using approximations of
the optimal control function g∗. Continuous approximations have been pro-
posed, that are however difficult to implement in practice (Hastie and Tib-
shirani, 1990). Discrete approximations have been presented, which have
been shown to be very efficient and easy to implement. We now describe
the discrete method proposed by Hesterberg and Nelson (1998). Let us
choose m + 1 cutpoints 0 = α0 < α1 < ... < αm = 1, and denote by
−∞ = zα0 < zα1 < ... < zαm

= ∞ the corresponding quantiles of Z. The
intervals (zαj−1 , zαj

] will be used as strata to construct a stepwise constant
approximation of the optimal control. This construction is based on the
straightforward expansion of the cdf of Y :

F (y) =

m∑

j=1

Pj(y)(αj − αj−1)(13)

where Pj(y) is the conditional probability

Pj(y) = P(Y ≤ y |Z ∈ (zαj−1 , zαj
])(14)

The quantiles of Z are known, so the estimation of F (y) is reduced to the es-
timations of the conditional probabilities. The Poststratified Sampling (PS)
estimator of F (y) is

F̂PS(y) =

m∑

j=1

P̂j(y)(αj − αj−1)

where

P̂j(y) =

∑n
i=1 1Zi∈(zαj−1 ,zαj

]1Yi≤y
∑n

i=1 1Zi∈(zαj−1 ,zαj
]

The PS estimator can be written as a weighted average of 1Yj≤y as well. It
can also be interpreted as a CV estimator with gj(Z) = 1Z≤zαj

, j = 1, ...,m
as control variates. Its variance is

Var(F̂PS(y)) =
1

n

m∑

j=1

(αj − αj−1)[Pj(y) − P 2
j (y)] +O

( 1

n2

)
(15)

Using Gaussian examples, Hesterberg and Nelson (1998) have shown that the
optimal variance reduction (the one achieved with g∗) can be almost achieved
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8 C. CANNAMELA, J. GARNIER, AND B. IOOSS

with the discrete approximation with two or three strata. Based on numerical
simulations, the authors recommend to choose the cutpoint α1 = α for the
PS strategy with two strata. They also apply the strategy with three strata
on some particular examples. In the next section, we will show that we can
go beyond the variance reduction obtained with the optimal control g∗(Z)
or its approximations by using the reduced model in a different way.

3. Quantile estimation by Controlled Stratification (CS). The
use of a reduced model to estimate directly the quantiles may be not efficient.
Indeed, as mentioned in the introduction, the reduced model is usually a
metamodel or a response surface that has been calibrated to mimic the
response of the complete model f(X) for typical realizations of X, and
not to predict the response f(X) for exceptional realizations of X. This is
precisely what is sought when the purpose is to estimate quantiles. Besides,
it is very difficult to give an estimate of the error when only the reduced
model is used to estimate the quantiles.

In this section we exploit in a different and more intensive manner the
existence of a reduced model Z = fr(X). The idea of the previous section
was to use it as a control variate, or equivalently post-stratification, without
modifying the sampling. The idea of this section is to use it in order to imple-
ment non-proportional stratified sampling in which we do modify the sam-
pling by rejection. The rough idea is to generate many realizations of X, to
evaluate the corresponding reduced responses fr(X), and to accept/reject
the realizations depending on the responses fr(X). The complete model f
will be used only with the accepted realizations. We can therefore enforce
the numbers of realizations of X such that fr(X) lie in prescribed intervals,
and increase the numbers of realizations in the more important intervals.

3.1. Estimation of the distribution function. Let us choose m + 1 cut-
points 0 = α0 < α1 < ... < αm = 1 and denote by −∞ = zα0 < zα1 <
... < zαm

= ∞ the corresponding quantiles of Z. As noted in the previous
section, the cdf of Y can be expanded as (13), so the estimation of F (y) is
reduced to the estimations of the conditional probabilities Pj(y) defined by
(14). Let us fix a sequence of integers N1, ..., Nm such that

∑m
j=1Nj = n,

where n is the total number of simulations using the complete model f .
For each j, we use the rejection method to sample Nj realizations of the

input r.v. (X
(j)
i )i=1,...,Nj

such that the reduced output r.v. Z
(j)
i = fr(X

(j)
i )

lies in the interval (zαj−1 , zαj
]. For each of these Nj realizations, the out-

put Y
(j)
i = f(X

(j)
i ) is computed. The conditional probability Pj(y) can be

imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008



CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 9

estimated by

P̂j(y) =
1

Nj

Nj∑

i=1

1
Y

(j)
i

≤y
,

which gives the CS estimator of F (y)

F̂CS(y) =

m∑

j=1

P̂j(y)(αj − αj−1)(16)

The estimator F̂CS(y) is unbiased and its variance is

Var(F̂CS(y)) =

m∑

j=1

(αj − αj−1)
2

Nj

[
Pj(y) − P 2

j (y)
]

(17)

If the number m of strata is fixed, if (βj)j=1,...,m is a sequence of positive
real numbers such that

∑m
j=1 βj = 1, and if we choose Nj = [nβj ], where

[x] is the integer closest to x, then the estimator F̂CS(y) is asymptotically
normal

√
n(F̂CS(y) − F (y))

n→∞−→ N
(
0, σ2

CS

)
,

σ2
CS =

m∑

j=1

(αj − αj−1)
2

βj

[
Pj(y) − P 2

j (y)
]

(18)

We first try to estimate the complete cdf F (y) for all y ∈ R.
In the case where Z is independent of Y (which means that there is no

control), we have Pj(y) = F (y) and

Var(F̂CS(y)) =
[ m∑

j=1

(αj − αj−1)
2

Nj

]
×
[
F (y) − F (y)2

]
(19)

If we use a proportional allocation in the strata βj = αj − αj−1, then Nj =
[(αj −αj−1)n] and we find that the variance of the CS estimator is, modulo
the rounding errors, equal to 1

n

[
F (y) − F (y)2

]
which is the variance of the

empirical estimator.
In the case where the r.v. Z is an increasing function of Y (that is to say,

Z controls completely Y ), then we obtain

Var(F̂CS(y)) =
(αj0 − αj0−1)

2

Nj0

[
pj0(y) − pj0(y)

2
]
≤ (αj0 − αj0−1)

2

4Nj0

imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008



10 C. CANNAMELA, J. GARNIER, AND B. IOOSS

where j0 is such that y ∈ (yαj0−1 , yαj0
]. If we choose equiprobable strata αj =

j/m and proportional sampling βj = 1/m, then Var(F̂CS(y)) ≤ 1/(4mn).
The variance of the CS estimator has therefore been reduced by a factor of
the order of 1/m.

Let us now look for the estimation of the tail of cdf F (y), in the region
where F (y) ≃ 1 − δ with 0 < δ ≪ 1. If Z and Y have positive correlation,
then it is clear that we should allocate more simulation points in the tail of
the reduced model Z, so as to increase the number of realizations that are
potentially relevant.

As an example, we can choose m = 4, α1 = 1/2, α2 = 1− 2δ, α3 = 1− δ,
Nj = n/4 for j = 1, ..., 4. Note that this particular choice allocates n/2
points in the tail of the cdf of Z, where z1−2δ < Z.

If Z and Y are independent, then Eq. (19) shows that this strategy in-
volves an increase of the variance of the estimator by a factor 2: Var(F̂CS(y)) ≃
2δ/n compared to the empirical estimator Var(F̂EE(y)) ≃ δ/n.

If Z and Y are so strongly correlated that the probability of the joint event
Z ≤ z1−2δ and Y > y1−δ is negligible, then Eq. (19) shows that this strategy
involves a variance reduction by a factor smaller than 2δ: Var(F̂CS(y)) ≤
2δ2/n. This means that the variance reduction can be very substantial in
the case where the variables Y and Z are correlated.

3.2. Quantile estimation. Here we consider the problem of the estima-
tion of the α-quantile of Y , with α close to 1. From the previous results, we
can propose the estimator of the α-quantile of Y given by

ŶCS(α) = inf
{
y, F̂CS(y) > α

}

where F̂CS(y) is the CS estimator of the cdf of Y . The estimator ŶCS(α) is
asymptotically normal

√
n(ŶCS(α) − yα)

n→∞−→ N (0, σ2
CS),

σ2
CS =

∑m
j=1

(αj−αj−1)2

βj

[
Pj(yα) − P 2

j (yα)
]

p2(yα)

If Z and Y are positively correlated, then it is profitable to allocate more
points in the cdf tail of Z, so as to increase the number of potentially relevant
realizations.

In the following we carry out numerical simulations on a toy example
in which n = 200 and α = 0.95. We apply the CS method with m = 4
strata described here above (α1 = 0.5, α2 = 0.9, α3 = 0.95, Nj = n/4

imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008



CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 11

for j = 1, ..., 4). We underline that this example is very simple and the
reduced model could certainly be improved. In particular, a Gaussian process
approach would here provide a very good approximation with a few tens of
simulations (see Section 5). The reduced model for this toy example has in
fact been chosen so as to have approximately the same quality (in terms of
correlation coefficients ρ and ρI) as the one we expect in the case of the real
example addressed in Section 5. Our goal here is to validate and calibrate the
CS strategy on this toy example for which we can check the CS estimations
in terms of bias and standard deviation and to show that it can give good
results with the parameters n = 200 and α = 0.95 even in the case in which
ρI is relatively small, which is the context of the real example addressed in
Section 5.

Toy example. 1D function
Let us consider the following configuration. X is assumed to be a Gaussian

r.v. with mean zero and variance one. The functions f and fr are given by

fr(x) = x2 , f(x) = 0.95x2[1 + 0.5 cos(10x) + 0.5 cos(20x)](20)

The quantiles of Z = fr(X) are given by zα =
[
Φ−1 ((1 + α)/2)

]2
, where Φ

is the cdf of the N (0, 1)-distribution. The quantiles of Y are not known ana-
lytically, as can be seen in the plot of the pdf of Y in Figure 1a, obtained by a
series of 5 107 Monte Carlo simulations. By using these Monte Carlo simula-
tions, we have evaluated the theoretical 0.95-quantile of Y : y0.95 = 3.66, and
the correlation coefficient between Y and Z: ρ = 0.84. The efficiency of the
CS method is related to the value of the indicator correlation coefficient ρI ,
which can be computed from the simulations and equation (11): ρI = 0.62.
We compare the CS estimator with the empirical estimator and the CV es-
timator of the α-quantile (Figure 1b). One can observe that the quantile is
poorly predicted by the empirical estimator, slightly better predicted by the
CV estimator, while the CS estimator seems more efficient.

3.3. Adaptive controlled stratification (ACS). We first show that there
exists an optimal choice for the allocation of the simulation points in the
strata. Let us consider the CS estimation of the cdf of Y as described in
Section 3.1. Let us fix y ∈ R. The CS estimator (16) of F (y) is asymptotically
normal and its reduced variance σ2

CS is given by (18). In fact, if the rounding

errors are neglected, σ2
CS/n is the variance of the CS estimator F̂CS(y) for

any n by (17).
We note that, if we choose to allocate the simulation points proportionally

in the strata, i.e. we choose βj = αj −αj−1, then the reduced variance of the
CS estimator is equivalent to the reduced variance of the PS estimator (15).
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Fig 1. Figure a: pdf of Y = f(X) and Z = fr(X) for X ∼ N (0, 1), obtained with 5 107

Monte Carlo simulations. Figure b: Estimation of the α-quantile of the r.v. Y = f(X)
from a n-sample, with α = 95% and n = 200. The three histograms are obtained from
two series of 104 experiments. The theoretical quantile is yα = 3.66. The mean of the 104

empirical estimations is 3.86 and their standard deviation is 0.83. The mean of the 104

CV estimations is 3.74 and their standard deviation is 0.744. The mean of the 104 CS
estimations is 3.63 and their standard deviation is 0.381.

The important point is that this proportional allocation is not efficient, as
we now show.

If the number m of strata is fixed, as well as the cutpoints (αj)j=0,...,m

and the total number n of simulations, then it is possible to choose the
numbers of simulations [βjn] per stratum so as to minimize the variance
of the CS estimator. The fact that an optimal allocation policy for stan-
dard stratification is known (Fishman, 1996; Glasserman, Heidelberger and
Shahabuddin, 1998). Here we show that an optimal allocation policy exists
for CS, in which the strata are determined by the metamodel. By denoting

qj = (αj − αj−1)
2
[
Pj(y) − P 2

j (y)
]
, the minimization problem

argminβ

{ m∑

j=1

qj
βj

}
with the constraints βj ≥ 0,

m∑

j=1

βj = 1

has the unique solution

β∗j =
q
1/2
j

∑m
l=1 q

1/2
l

, j = 1, ...,m

With this optimal choice the reduced variance of the CS estimator F̂CS(y)
is

σ2
OCS =

{ m∑

j=1

(αj − αj−1)
[
Pj(y) − P 2

j (y)
]1/2

}2
(21)
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CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 13

Note that the optimal allocation β∗j depends on y in general, which means
that it is not possible to propose an allocation that is optimal for the esti-
mation of the whole cdf of Y . However, we can observe that
1) if the control is weak, then Pj(y) depends weakly on y, and the optimal
allocation is then β∗j = αj − αj−1.
2) If the control is strong, then we should allocate more simulations in the
strata (zαj−1 , zαj

] around F (y).
For instance, let us assume a very strong control, in the sense that Z =

ψ(Y ) is an increasing function of Y . Then

Pj(y) = P(Y ≤ y|Z ∈ (zαj−1 , zαj
]) = P(Y ≤ y|Y ∈ (ψ−1(zαj−1), ψ

−1(zαj
)])

is equal to 1 if zαj
≤ ψ(y) (i.e. αj ≤ F (y)) and to 0 if zαj−1 > ψ(y) (i.e.

αj−1 > F (y)). In these two cases, qj and the optimal β∗j are zero, and
all simulations should be allocated in the stratum (zαj0−1, zαj0

], for which
αj0−1 < F (y) ≤ αj0. Of course, the very strong control assumed here is
not realistic, but this example clearly illustrates the optimal allocation of
simulations in the different strata.

We now know that there exists an optimal allocation of the n simula-
tions in the m strata. This allocation depends on the Pj(y), which are the
quantities that we want to estimate. We can therefore propose an adaptive
procedure:
1) First apply the CS method with ñ = nγ simulations, γ ∈ (0, 1), and an a
priori choice of the βj. We then obtain a first estimation of the conditional
probabilities Pj(y):

P̃j(y) =
1

[βj ñ]

[βjñ]∑

i=1

1
Y

(j)
i

≤y

2) Estimate the optimal allocation β∗j by:

β̃j =
(αj − αj−1)

[
P̃j(y) − P̃j(y)

2
]1/2

∑m
l=1(αl − αl−1) [p̃l(y) − p̃l(y)2]

1/2

3) Carry out the n− ñ last simulations by allocating the simulations in each
stratum in order to achieve the estimated optimal number [nβ̃j ] for all j.
4) Estimate Pj(y) and F (y) by

P̂j(y) =
1

[β̃jn]

[β̃jn]∑

i=1

1
Y

(j)
i

≤y
, F̂ACS(y) =

m∑

j=1

P̂j(y)(αj − αj−1)
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14 C. CANNAMELA, J. GARNIER, AND B. IOOSS

The ACS estimator is unbiased conditionally on β̃j > 0 for the j’s such
that β∗j > 0. The probability of the complementary event is of the order of

exp(−cñ) which can be usually neglected. The ACS estimator F̂ACS(y) is
asymptotically normal

√
n
(
F̂ACS(y) − F (y)

)
n→∞−→ N (0, σ2

ACS) ,

σ2
ACS =

{ m∑

j=1

(αj − αj−1)
[
Pj(y) − P 2

j (y)
]1/2

}2
(22)

The expression of the reduced variance σ2
ACS is the same as (21), which is

the one of the CS estimator with the optimal allocation β∗j . The difference

is that the variance σ2
ACS/n is only reached asymptotically as n→ ∞ in the

case of the ACS estimator, while the variance is σ2
OCS/n for all n in the case

of the CS estimator with the optimal allocation. Note that the convergence
of the ACS estimator is ensured whatever the choice of the positive a priori
numbers βj . In practice, a good a priori choice will speed up the convergence.

We now present an asymptotic analysis of the variance reduction for the
CV, PS, CS, and ACS methods in the case of m = 2 strata.

In the PS method, or in the CS method if we choose the proportional
allocation βj = αj − αj−1, the reduced variance in (18) is

σ2
PS = F (y)(1 − F (y))

[
1 − ρ2

I

]
(23)

where ρI is the correlation coefficient between 1Y ≤y and 1Z≤zα
defined by

(8). σ2
PS is also the reduced variance of the CV estimator (7). The fact that

the PS and CV estimators are equivalent was already noticed in Hester-
berg and Nelson (1998). In the ACS method, the expression of the reduced
variance σ2

ACS in (22) is

σ2
ACS = F (y)(1 − F (y))K2,

K = α

[
1 + ρI

( (1 − α)(1 − F (y))

αF (y)

) 1
2

] 1
2
[
1 − ρI

((1 − α)F (y)

α(1 − F (y))

) 1
2

] 1
2

+(1 − α)

[
1 + ρI

( αF (y)

(1 − α)(1 − F (y))

) 1
2

] 1
2
[
1 − ρI

(α(1 − F (y))

(1 − α)F (y)

) 1
2

]1
2

If we assume that the correlation coefficient ρI is small, then we get the
following expansion with respect to ρI

σ2
ACS = F (y)(1 − F (y))

[
1 − ρ2

I

8F (y)(1 − F (y))
+O(ρ3

I)

]
(24)
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CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 15

These results show that the CV, PS, CS, and ACS methods involve a vari-
ance reduction of the same order when the goal is to estimate the cdf around
the median F (y) ∼ 1/2. However, when the goal is to estimate the cdf tail
F (y) ∼ 0 or 1, then the ACS method gives a larger variance reduction.
Of course, the CS method with a nearly optimal allocation policy gives
the same performance as the ACS method, but the implementation of this
method requires some a priori information on the correlation between Y and
Z to guess the correct allocation, while the ACS method finds it.

The expressions that we have just derived also give indications for the
choice of the cutpoint α. Indeed, the variance reduction is all the larger
as the correlation coefficient ρI is larger. For instance, if we assume that
Z = ψ(Y ) is an increasing function of Y , which models a very strong control,
then one finds

ρI =





[
α(1 − F (y))

(1 − α)F (y)

]1/2

if zα < ψ(y)
[
(1 − α)F (y)

α(1 − F (y))

]1/2

if zα ≥ ψ(y)

As a function of α, this function is maximal when α = F (y). This shows that,
if the goal is to estimate the cdf of Y around some y, then it is interesting
to choose α = F (y).

We can also revisit the asymptotic analysis of the variance reduction
for the CV, PS, CS, and ACS methods in the case of a large number m
of strata. In the PS method and in the CS method with the proportional
allocation βj = αj − αj−1, the reduced variance is (18). If the conditional
probability P(Y ≤ y|Z) has a continuous density g∗ with respect to the
Lebesgue measure, then (18) is a Riemann sum that has the following limit
as m→ ∞

σ2
PS = E

[
P(Y ≤ y|Z) − P(Y ≤ y|Z)2

]
= F (y) − E

[
P(Y ≤ y|Z)2

]

This is actually the reduced variance of the optimal CV estimator, when
the optimal control function g∗ defined by (12) is used. In the ACS method,
the expression of the reduced variance σ2

ACS is (22) which has the following
limit as m→ ∞

σ2
ACS = E

[(
P(Y ≤ y|Z) − P(Y ≤ y|Z)2

)1/2
]2

The Cauchy-Schwarz inequality clearly shows that the variance reduction
is larger for the ACS method than for the optimal CV method using the
optimal control function g∗.
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16 C. CANNAMELA, J. GARNIER, AND B. IOOSS

Whatever the value of m ≥ 2, we can also use Cauchy-Schwarz inequality
to check that the reduced variance for the PS method (or for the CS method
with the proportional allocation)

σ2
PS =

m∑

j=1

(αj − αj−1)[Pj(y) − P 2
j (y)]

is always larger than the reduced variance (22) for the ACS method.
Finally, it is relevant to estimate the additional computational cost of

controlled stratification compared to empirical estimation. It is of the order
of (Nr − n)TX + NrTfr

, where Nr is the number of evaluations of fr and
X, TX is the computational time for the generation of a realization of the
input r.v. X, and Tfr

is the computational time for the call of the function
fr. For the CS method with the allocation βj , we have

E[Nr] = n

m∑

j=1

βj

αj − αj−1
≤ n

minj(αj − αj−1)

where the last inequality holds uniformly in β. Besides Nr has fluctuations
of the order of

√
n. The same estimate holds true for the ACS method. In

the real example we have in mind (in which the computational time for the
call function f is 20 minutes), this additional cost is completely negligible.

3.4. Quantile estimation by adaptive controlled stratification. In this sec-
tion we use the ACS strategy to estimate the α-quantile of Y , with α close
to 1. We propose the following procedure:
1) First apply the CS method with ñ = nγ simulations, γ ∈ (0, 1), and with
an a priori allocation policy βj , so that a first estimate of the conditional
probabilities Pj(y) can be obtained:

P̃j(y) =
1

[βj ñ]

[βjñ]∑

i=1

1
Y

(j)
i

≤y

The corresponding estimators of the cdf and the α-quantile of Y are

F̃ (y) =
m∑

j=1

(αj − αj−1)P̃j(y) , Ỹα = inf
{
y, F̃ (y) > α

}

2) Estimate the optimal allocation β∗j for the estimated α-quantile Ỹα by:

β̃j =
(αj − αj−1)

[
P̃j(Ỹα) − P̃j(Ỹα)2

]1/2

∑m
l=1(αl − αl−1)

[
p̃l(Ỹα) − p̃l(Ỹα)2

]1/2
(25)
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CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 17

3) Carry out the n− ñ final simulations by allocating the simulations in each
stratum in order to achieve the estimated optimal number [β̃jn].
4) Estimate Pj(y) and F (y) by

P̂j(y) =
1

[β̃jn]

[β̃jn]∑

i=1

1
Y

(j)
i

≤y
, F̂ACS(y) =

m∑

j=1

P̂j(y)(αj − αj−1)

The ACS estimator of the α-quantile yα is

ŶACS(α) = inf
{
y, F̂ACS(y) > α

}

The estimator ŶACS(α) is asymptotically normal

√
n(ŶACS(α) − yα)

n→∞−→ N (0, σ2
ACS) ,

σ2
ACS =

{∑m
j=1(αj − αj−1)

[
Pj(yα) − P 2

j (yα)
]1/2

}2

p2(yα)

To summarize, we have found the following expressions of the reduced
variance for the different methods:
- for the empirical estimator

σ2
EE =

α(1 − α)

p2(yα)

- for the PS estimator or for the CV estimator with the proportional alloca-
tion βj = αj − αj−1 (see (10))

σ2
PS =

α(1 − α)

p2(yα)
× (1 − ρ2

I)

- for the ACS estimator with two strata separated by α:

σ2
ACS =

α(1 − α)

p2(yα)
×
(

1 − ρ2
I

8α(1 − α)
+O(ρ3

I)

)

Here ρI is the correlation coefficient between 1Y ≤yα
and 1Z≤zα

given by (11).
This shows that the CV, PS, CS and ACS methods give variance reductions
of the same order when the goal is to estimate quantiles close to the median
α ∼ 1/2. However, when the goal is to estimate large quantiles α ∼ 0 or 1,
the ACS method is much more efficient.
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18 C. CANNAMELA, J. GARNIER, AND B. IOOSS

Table 1
Estimation of the α-quantile with α = 0.95, n = 2000, yα = 3.66

Method quantity mean standard deviation

Empirical estimation ŶEE(α) 3.66 0.33

CV estimation ŶCV(α) 3.65 0.29

ACS method with 2 strata β̃1 0.86 0.02

[0, 0.95], (0.95, 1] ŶACS(α) 3.65 0.28

β̃1 0.10 0.02

ACS method with 3 strata β̃2 0.58 0.02

[0, 0.85], (0.85, 0.95], (0.95, 1] β̃3 0.32 0.01

ŶACS(α) 3.65 0.12

3.5. Simulations. We now present a series of numerical simulations that
illustrate the theoretical results presented in this paper. These examples
are simple and they are used to calibrate the ACS method when n = 200,
α = 0.95 and the reduced model has poor quality (i.e. ρI is small). We will
address in Section 5 a real example in which these conditions hold.

Toy example. 1D function
Let us revisit the toy example based on the 1D function (20) and look

for the α-quantile of Y with α = 95%. We compare the performances of the
empirical estimator (2), the CV estimator (9) with the control variate Z, and
the ACS estimator. The ACS method is first implemented with two strata
[0, α1] and (α1, 1] with the cutpoint α1 = α. We use ñ = 2n/10 simulations
for the estimation (25) of the optimal allocation, with n/10 simulations in
each stratum. The results extracted from a series of 10000 simulations are
summarized in Table 1. Note that the ACS method allocates 85% of the
simulations in the stratum [0, 0.95], and 15% in the stratum (0.95, 1]. This
shows that we deal with a configuration where the number of simulations in
the stratum (0.95, 1] has to be increased compared to the expected value in
the case where there is no control, where only 5% of the simulations should
be allocated in the stratum (0.95, 1].

We have also implemented the ACS method with 3 strata [0, α1], (α1, α2],
(α2, 1], with cutpoints α1 = 0.85 and α2 = 0.95. We use 3n/10 simulations
for the evaluation (25) of the optimal allocation, with n/10 simulations in
each of the three strata. The results extracted from a series of 10000 simula-
tions are presented in Table 1. The variance reduction for the ACS method
with three strata is very important. The standard deviation of the ACS
estimator is 3 times smaller compared to the empirical estimator of the
CV estimator. Note that the optimal allocation should attribute a fraction
β1 < 0.1 to the first stratum, but the number 0.1 cannot be lowered due to
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CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION 19

Table 2
Estimation of the α-quantile with α = 0.95, n = 200, yα = 3.66

Method quantity mean standard deviation

Empirical estimation ŶEE(α) 3.88 0.83

CV estimation ŶCV(α) 3.73 0.74

β̃1 0.14 0.16

ACS method with 3 strata β̃2 0.55 0.11

[0, 0.85], (0.85, 0.95], (0.95, 1] β̃3 0.31 0.06

ŶACS(α) 3.62 0.38

the fact that n/10 simulations in the first stratum [0, α1] were already used
in the first step of the estimation.

The previous simulations were carried out with the sample size n = 2000.
In such a case, the ACS method is robust, in the sense that the choice
of the number ñ of simulations devoted to the estimation of the optimal
allocation is not critical. When n is smaller, such as n = 200, then the
choice of ñ becomes critical: if ñ is too small, then the estimation of the
optimal allocation may fail during the first step of the ACS method; if ñ is
too large, then n− ñ may be too small and it may be impossible to allocate
the estimated optimal number of simulations to each stratum during the
second step of the ACS method. We have applied the ACS method with
n = 200 to the example 1, and it turns out that the ACS method with
ñ = n/10 is still efficient. However, we cannot claim that this will be the case
for all applications. The results obtained from a series of 10000 simulations
are summarized in Table 2. The standard deviations of the estimations of
the βj ’s are much larger than in the case n = 2000, but the quality of
the estimation of the optimal allocation is just good enough to allow for
a significant variance reduction for the quantile estimation. The standard
deviation of the ACS estimator is here 2 times smaller compared to the
empirical estimator or the CV estimator. If n = 100, then the ACS method
fails (in the sense that some simulations give β̃1 = 0), and the CS method
with an allocation of the simulation points prescribed by the user should be
chosen.

4. Quantile estimation with Controlled Importance Sampling
(CIS). We consider the same problem as in the previous sections. In this
section we show that the reduced model can be used to help designing a
biased distribution of the input r.v. X in order to implement an efficient
importance sampling (IS) strategy. The standard IS method consists in sim-
ulating the n-sample of the r.v. X according to a biased distribution, and to
multiply the output by a likelihood ratio to recover an unbiased estimator.
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20 C. CANNAMELA, J. GARNIER, AND B. IOOSS

In the case where the biased distribution favors the occurrence of the event
of importance, the variance of the estimator can be drastically reduced com-
pared to the standard empirical Monte Carlo estimator. Adaptive versions
of the IS procedure have been proposed and studied, whose principle is to
estimate first a“good” biased distribution, that is to say a distribution that
properly favors the occurrence of the event of importance, before using this
biased distribution as in the standard IS estimation. We will propose an es-
timator of the cdf of Y first, then an estimator of the α-quantile of Y , by a
controlled importance sampling (CIS) procedure, where the reduced model
fr and the associated r.v. Z = fr(X) are used to determine the biased
distribution, while the complete model f is used to perform the estimation.

4.1. Estimation of the distribution function. An IS estimator of the cdf
of Y = f(X) is

F̂IS(y) =
1

n

n∑

i=1

1f(Xi)≤y
qori(Xi)

q(Xi)
, Xi ∼ q(26)

where qori is the original pdf of X and q is the biased pdf chosen by the user.
In practice, it can be useful to use a variant in which the denominator n in
(26) is replaced by

∑n
i=1 qori(Xi)/q(Xi), in order to enforce F̂IS(y) → 1 as

y → ∞. Other alternatives can be found in Hesterberg (1995). The estimator
F̂IS(y) converges almost surely to F (y) when n→ ∞. In fact, the estimator
F̂IS(y) is unbiased as soon as the support of the original pdf qori is included
in the support of the biased pdf q. The variance of (26) is given by

Var[F̂IS(y)] =
1

n

(∫
1f(x)≤yqori(x)

2

q(x)
dx− F (y)2

)
(27)

The IS can involve a dramatic variance reduction compared to the standard
empirical estimator if the biased pdf q is properly chosen. The variance of
F̂IS(y) is minimal (Rubinstein, 1981) when the biased pdf is taken to be
equal to the optimal pdf defined by

q∗(x) =
1f(x)≤yqori(x)∫

1f(x′)≤yqori(x′)dx′
(28)

This result cannot be processed directly to perform the simulations because
the normalizing constant of the optimal pdf is the quantity that is sought.
However, this remark gives the basis of an adaptive procedure where the
optimal density is estimated.
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The parametric approach for the adaptive IS approach is the following
one. We first choose a family of pdfs Q = {qγ ; γ ∈ Γ} and we then try to
estimate the parameter γ. In this section we assume that the family of pdfs
Q is parameterized by the first two moments γ = (λ,C): λ ∈ R

d is the
expectation and C ∈ Md(R) is the covariance matrix of X when the pdf of
X is qγ .

The strategy to determine the best biased density in the family Q is
based on the following remark. The theoretical optimal density is q∗ and
it is given by (28). The expectation and covariance matrix of the random
vector X under q∗ is

λ∗ =

∫
x1f(x)≤yqori(x)dx∫
1f(x)≤yqori(x)dx

and C∗ =

∫
xxt1f(x)≤yqori(x)dx∫
1f(x)≤yqori(x)dx

− λ∗λ∗t(29)

The idea is to choose in the family Q the pdf qγ which has expectation
λ∗ and covariance matrix C∗, that is to say we choose the pdf qγ∗ with
γ∗ = (λ∗, C∗).

The problem is now reduced to the estimation of λ∗ and C∗. If we assume
that the reduced model is so cheap that we can use as many simulations
based on fr as desired, then we can estimate λ∗ and C∗ by:





λ̂ =

∑ñ
i=1Xi1Zi≤yqori(Xi)/q0(Xi)∑ñ

i=1 1Zi≤yqori(Xi)/q0(Xi)

Ĉ =

∑ñ
i=1XiX

t
i1Zi≤yqori(Xi)/q0(Xi)∑ñ

i=1 1Zi≤yqori(Xi)/q0(Xi)
− λ̂λ̂t

, Xi ∼ q0(30)

where q0 is a pdf chosen a priori by the user. If no a priori information is
available, then the choice q0 = qori is natural. The estimators λ̂ and Ĉ are
well-defined on ∪ñ

i=1{Zi ≤ y}. For completeness we can set λ̂ = 0 and Ĉ = Id
on the complementary event, whose probability is of the form exp(−cñ). As
ñ→ ∞, the estimators λ̂ and Ĉ converge almost surely to

λ∗r =

∫
x1fr(x)≤yqori(x)dx∫
1fr(x)≤yqori(x)dx

and C∗
r =

∫
xxt1fr(x)≤yqori(x)dx∫
1fr(x)≤yqori(x)dx

− λ∗rλ
∗
r
t

which are close to λ∗ and C∗ if fr is a good enough reduced model. The
variance of the CIS estimator of F (y) using the biased pdf determined by
the metammodel is (27) with q = qγ∗

r
, γ∗r = (λ∗r , C

∗
r ). It is asymptotically

normal

√
n(F̂CIS(y)−F (y))

n→∞−→ N (0, σ2
CIS) , σ2

CIS =

∫
1f(x)≤yqori(x)

2

qγ∗

r
(x)

dx−F (y)2
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Note that the selected biased pdf depends on y. Indeed, it is not possible to
propose a biased pdf that is efficient for all values of y. This is not surprising,
since the principle of the IS method is to favor the realizations that probe a
specific region of the state space, that is important for the target function
whose expectation is sought (here, x 7→ 1f(x)≤y).

4.2. Quantile estimation. In this subsection, we look for the α-quantile
of Y . The CIS strategy consists in determining a biased pdf that is efficient
for the estimation of the expectation

E
[
1fr(X)≤zα

]
=

∫
1fr(x)≤zα

qori(x)dx = α(31)

where fr is the reduced model and zα is the α-quantile of Z, which is assumed
to be known. The determination of a biased pdf q that minimizes the IS
estimator of the quantity (31) will give a pdf that probes the important
regions for the estimation of the α-quantile of Z, and also of the α-quantile
of Y if the reduced model is correlated to the complete computer model.

As in the previous subsection we will look for the biased pdf in a family
Q of pdfs qγ parameterized by the first two moments γ = (λ,C). By using
only the reduced model, we estimate the parameter γ with the estimator (30)
with y = zα. Next we apply the IS estimator (26) of the cdf of Y by using the
complete model and the biased density qγ̂ , γ̂ = (λ̂, Ĉ). Finally the estimator

of the α-quantile is ŶCIS(α) = inf{y, F̂IS(y) > α}. It is asymptotically normal

√
n(ŶCIS(α) − yα)

n→∞−→ N (0, σ2
CIS) ,

σ2
CIS =

1

p2(yα)

(∫
1f(x)≤yα

qori(x)
2

qγ∗

r
(x)

dx− α2

)

In the case where the reduced model is not so cheap, adaptive IS strate-
gies can be used with the reduced model to estimate the parameters of the
biased density (Oh and Berger, 1992): roughly speaking, at generation k, the
parameter γk is estimated by using a standard IS strategy using the biased
pdf γk−1 obtained during the computations of the previous generation.

4.3. Simulations. Let us consider the case where X = (X1,X2) is a ran-
dom vector with independent Gaussian entries with zero mean and variance
one. The functions f and fr are given by:

fr(x) = |x1|x1 + x2(32)

f(x) = 0.95|x1|x1[1 + 0.5 cos(10x1) + 0.5 cos(20x1)]

+0.7x2[1 + 0.4 cos(x2) + 0.3 cos(14x2)](33)
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The pdf of Y = f(X) and Z = fr(X) are plotted in Figure 2a. By using
Monte Carlo simulations, we have evaluated the correlation coefficient be-
tween Y and Z: ρ = 0.90. From equation (11), we have also evaluated the
indicator correlation coefficient: ρI = 0.64. The empirical estimator and the
CIS estimator of the α-quantile of Y are compared in Figure 2b. The family
Q consists of the set of two-dimensional Gaussian pdfs parameterized by
their means and covariance matrices. The comparison is also made with the
CV estimator and the CS estimator and it appears that the variance of the
CIS estimator is significantly smaller than the one of the other estimators.
CIS is the best strategy in this example. However, CIS (in the present ver-
sion) is successful only when one unique important region exists in the state
space. For instance, in the case of the 1D function treated in the previous
sections (where there are two equally important regions far away from each
other due to the parity of the function f) the CIS strategy fails in the sense
that the algorithm to determine the biased pdf does not converge. The use
of mixed pdf models should be considered to overcome this limitation and
will be the subject of further research.
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Fig 2. Figure a: pdf of Y = f(X1, X2) and Z = fr(X1, X2) for X1, X2 ∼ N (0, 1). Figure
b: estimation of the α-quantile of Y from a n-sample, with α = 0.95 and n = 200. The
four histograms are obtained from series of 5000 experiments. The mean of the empirical
estimations is 2.83 and their standard deviation is 0.52. The mean of the CV estimations is
2.74 and their standard deviation is 0.38. The mean of the CS estimations is 2.71 and their
standard deviation is 0.25. The mean of the CIS estimations is 2.77 and their standard
deviation is 0.21. The theoretical quantile (obtained from a series of 5 107 simulations) is
yα ≃ 2.75.

5. Application to a nuclear safety problem. In this section we ap-
ply the controlled stratification and controlled importance sampling method-
ologies on a complex computer model used for nuclear reactor safety. It sim-
ulates a hypothetic thermo-hydraulic scenario: a large-break loss of coolant
accident for which the quantity of interest is the peak cladding temper-

imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008



24 C. CANNAMELA, J. GARNIER, AND B. IOOSS

ature. This scenario is part of the Benchmark for Uncertainty Analysis in
Best-Estimate Modelling for Design, Operation and Safety Analysis of Light
Water Reactors proposed by the Nuclear Energy Agency of the Organisation
for Economic Co-operation and Development (OCDE/NEA). It has been im-
plemented on the computer code Cathare of the Commissariat à l’Energie
Atomique (CEA). In this exercise the 0.95-quantile of the peak cladding
temperature has to be estimated with less than 250 computations of the
computer model. The CPU time is twenty minutes for each simulation. The
complexity of the computer model lies in the high-dimensional input space:
53 random input parameters (physical laws essentially, but also initial con-
ditions, material properties and geometrical modeling) are considered, with
normal and log-normal distributions. This number is rather large for the
metamodel construction problem.

Screening and linear regression strategy. To simplify the problem, we ap-
ply first a screening technique, based on a supersaturated design (Lin, 1993)
with 30 numerical experiments. This leads to the determination of the five
most influential input parameters (UO2 conductivity X19, film boiling heat
transfer coefficient X44, axial peaking factor X9, critical heat flux X42, and
UO2 specific heat X20). Then a stepwise regression procedure has been ap-
plied on the 30 experiments to obtain five additional input parameters and
a linear regression procedure allows us to obtain a coarse linear metamodel
of degree one

fr(X) = 660.3 − 61.79X2 + 6.141X6 + 589.9X9 + 80.82X11 − 404.5X19

+264.2X20 − 27.06X35 + 6.161X37 − 255.7X42 − 31.99X44

Note that the present strategy for the metamodel construction is relatively
basic and not devoted to maximize ρI .

Controlled stratification. A first test with controlled stratification with
200 simulations was performed, which gave the following quantile estima-
tion: 928oC with a bootstrap-estimated standard-deviation of 7oC, while the
quantile estimation from the metamodel is 932oC. A second test with con-
trolled stratification with 200 simulations was performed, which gave the
following quantile estimation: 929oC with a bootstrap-estimated standard-
deviation of 10oC.

Controlled importance sampling. A biased distribution for the 10 impor-
tant parameters of the metamodel has been obtained as follows. The original
distributions of these independent parameters are normal or log-normal. We
have considered a parametric family of biased pdfs with the same forms as
the original ones, and we have selected their means and variances by (30)
with y = zα and q0 equals to the original pdf. A first test with controlled
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importance sampling with 200 simulations was performed, which gave the
following quantile estimation: 929oC with a bootstrap-estimated standard-
deviation of 10oC, while the quantile estimation from the metamodel is
932oC. A second test with controlled importance sampling with 200 simu-
lations was performed, which gave the following quantile estimation: 924oC
with a bootstrap-estimated standard-deviation of 8oC.

Empirical estimation. A test sample of 1000 additional computations
(with input parameters chosen randomly) was then carried out. We have
first used this random sample to check the quality of the metamodel. We
have found that ρ = 0.66, R2 = 0.09, and ρI = 0.54, which shows that
the metamodel has poor quality (as it could have been expected). We also
used the random sample to get empirical estimations of the quantile. For
the full sample n = 1000 the empirical quantile estimation is 928oC with
a standard-deviation of 6oC. For n = 200 the empirical quantile estima-
tion is 926oC with a standard-deviation of 12oC. It thus appears that the
controlled stratification estimator and the controlled importance sampling
estimator performed with 230 simulations (30 for the screening and 200 for
the controlled estimation) have better performances than the one of the
empirical estimator with 200 simulations, and have performances close to
the one of the empirical estimator with 1000 simulations. This shows that
controlled stratification and controlled importance sampling can be used
to substantially reduce the variance of quantile estimation, in the case in
which a small number of simulations is allowed but a reduced cheap model
is available, even if this reduced model has poor quality.

Gaussian process (Gp) strategies. In order to compare our approach (crude
initial screening step before controlled stratification step) to a strategy in-
cluding a more involved metamodel construction step, we propose to show
some results with a Gp approach (Sacks et al., 1989; Schonlau and Welch,
2005).
- First, we perform a numerical experimental design of 200 Cathare code
simulations. We choose a maximin Latin hypercube sampling design, well
adapted to the Gp model construction (Fang, Li and Sudjianto, 2006). This
difficult fit (due to the high dimensionality and small database) can be re-
alized thanks to the algorithm of Marrel et al. (2007), specifically devoted
to this situation. The obtained Gp model contains a linear regression part
(including 15 input variables) and a generalized exponential covariance part
(including 7 input variables). We use the test sample of 1000 additional com-
putations to check the predictor quality of this new metamodel: ρ = 0.84,
R2 = 0.70, and ρI = 0.73. As expected, this Gp model quality is much
better than the crude one. However, a brute-force Monte-Carlo estimation
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(with 106 computations) of the 0.95-quantile using the predictor of this
metamodel gives 917oC which underestimates the “true” quantile (928oC).
A better strategy, which could be applied in a future work, would be to
choose sequentially the specific design points to improve the Gp fit around
the quantile (as in Oakley (2004)).
- As a second comparison, we propose to perform the controlled stratifica-
tion process with the predictor of a Gp model. We fit a Gp model with a
smaller number of runs than the previous one, keeping other runs for the con-
trolled stratification step. We choose a maximin Latin hypercube sampling
design with 100 design points. Below this sampling size, Gp fitting becomes
unfeasible because of the large dimensionality of our problem (53 input vari-
ables). The obtained Gp model contains a linear regression part (including
7 input variables) and a generalized exponential covariance part (including
6 input variables). The quality of this Gp model is measured via the test
sample and gives ρ = 0.82, R2 = 0.66, and ρI = 0.37. The Gp predictivity
is rather good but compared to previous one, the ρI value shows a strong
deterioration around the 0.95-quantile (the Gp model 0.95-quantile is worth
912oC). Using the predictor of this Gp model, the controlled stratification
with 200 simulations gives the following quantile estimation: 917oC with a
standard-deviation of 9oC. This relatively poor and biased result confirms
the importance of ρI in the controlled stratification process: quantile estima-
tion with a coarse metamodel (linear model of degree one with R2 = 0.09),
but adequate near the quantile region, is much better than quantile estima-
tion with a refined metamodel (Gp model with R2 = 0.66), but inadequate
near the quantile region.

Table 3 summarizes all the results we have shown in this section. Other
experiments, that will be shown in a future paper, have been made to com-
pare different choices about the stratas (number and locations).

6. Conclusion. In this paper, we have proposed and discussed variance
reduction techniques for estimating the α-quantile of a real-valued r.v. Y in
the case where:
- the r.v. Y = f(X) is the output of a CPU time expensive computer code
with random input X,
- the auxiliary r.v. Z = fr(X) can be used at essentially free cost, where fr

is a metamodel that is a coarse approximation of f .
Our goal was to exploit the metamodel to obtain better control variates,
stratification or importance sampling than could be obtained without it.

First, we have presented already known variance reduction techniques
based on the use of Z as a control variate (CV). The CV methods allow a
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Table 3
Estimation of the 0.95-quantile for the nuclear safety problem. Gp(100) (resp. Gp(200))
is the Gp model estimated from 100 (resp. 200) design points. Mm(30) is the metamodel

fr estimated from 30 numerical experiments.

Method quantile standard deviation
estimation estimated by bootstrap

EE from code (n = 1000) 928 6
EE from code (n = 200) 926 12

EE from Mm(30) (n = 106) 932 ∼ 0
EE from Gp(100) (n = 106) 912 ∼ 0
EE from Gp(200) (n = 106) 917 ∼ 0

CS with Mm(30) test 1 (n = 200) 928 7
CS with Mm(30) test 2 (n = 200) 929 10

CS with Gp(100) (n = 200) 917 9

CIS test 1 (n = 200) 929 10
CIS test 2 (n = 200) 924 8

variance reduction of the quantile estimator by associating to each of the
n simulations Yi = f(Xi) weights that depend on Zi = fr(Xi). In the CV
methods, n realizations (Xi)i=1,...,n are generated and the corresponding n
outputs f(Xi) and fr(Xi) are computed.

Second, we have developed an original controlled stratification (CS) method,
that consists in accepting/rejecting the realizations of the input X based on
the values of fr(X). A large number of realizations of the input X and a
large number of evaluations of fr are used, compared to the CV methods,
but the number of evaluations of the complete model f is fixed. In the adap-
tive controlled stratification (ACS) method, the realizations of the random
input Xi are sampled in strata determined by the reduced model fr, and the
number of simulations allocated to each stratum is optimized dynamically.
The variance reduction can be very substantial. By a theoretical analysis of
the asymptotic variance of the estimator on the one hand and by numerical
simulations on the other hand we have found that, if n is large enough, the
ACS method is the most efficient one. Note that the a priori choice of the
parameters for the CS and ACS strategies (choice of ñ, m, and βj) plays no
role in the asymptotic regime n→ ∞. However, for n = 200 for instance, it
plays a primary role. In this paper, a toy example with a metamodel that has
the same quality (in terms of correlation coefficients) as the one we have in
the real example has been used to calibrate the parameters of the CS strat-
egy. For the time being, we have the feeling that it is the only reasonable
strategy when n is not large enough to apply the asymptotic results.

Third, a controlled importance sampling (CIS) strategy has been ana-
lyzed, where the biased pdf for the CIS estimator is estimated by intensive
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simulations using only the reduced model. The variance reduction can be
significant. However, an important condition in the present version is that
only one important region exists in the state space. The use of mixed pdf
models should be considered to overcome this limitation.

The methods presented in this paper suppose the availability of a reduced
model or a metamodel. However, it seems to be sufficient to have a crude
approximation of the computer model. In industrial practice, it is often
the case due to the nonlinear effects, the high dimensionality of the inputs
and the limited numbers of computer experiments (Fang, Li and Sudjianto,
2006; Volkova, Iooss and Van Dorpe, 2008). We can note also that a great
advantage of these methods is that it is very easy to carry out the simulations
on a parallel computer, with as many nodes as calls for the complex code f .
One possible investigation way to improve our quantile estimation strategies
for the applications would be to optimize the number of runs devoted to the
metamodel construction and the number of runs devoted to the quantile
estimation. Furthermore, the computer runs of the first step of the ACS
method can also serve to update the metamodel; then this refined metamodel
can be used in the second step. A further improvement would be to update
the metamodel fr as one obtains more values of f (at least occasionally)
during the second step. However this strategy goes against the parallelization
of the method and one should be cautious and conservative in order to avoid
bias, but it is certainly an interesting direction of research.

The different tests performed on our industrial application have shown
that the metamodel quality has to be sufficient near the quantile region. The
quality criterion ρI has been identified as a good measure of the potential
performance of the controlled stratification process. Another quantile esti-
mation technique, the sequential construction of a Gaussian process model
(Oakley, 2004; Ranjan, Bingham and Michailidis, 2008), is devoted to opti-
mize the metamodel construction near the quantile region. As a perspective
of our work, we will try to apply this technique to our high-dimensional
application.
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final computational power.
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