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In this paper we propose and discuss variance reduction techniques for the estimation of quantiles of the ouput of a complex model with random input parameters. These techniques are based on the use of a reduced model, such as a metamodel or a response surface. The reduced model can be used as a control variate; or a rejection method can be implemented to sample the realizations of the input parameters in prescribed relevant strata; or the reduced model can be used to determine a good biased distribution of the input parameters for the calibration of an importance sampling strategy. The different strategies are analyzed, the asymptotic variances are computed and compared, which shows the benefit of an adaptive controlled stratification method. This method is applied to a real example (computation of the peak cladding temperature during a large-break loss of coolant accident in a nuclear reactor).

1. Introduction. Quantile estimation is of fundamental importance in statistics as well as for practical applications [START_REF] Law | Simulation modeling and analysis[END_REF]. In the case of complicated situations, such as in the case of the output of a numerical code, simulations are required to estimate the quantiles, and the number of simulations may be somewhat limited. Variance reduction techniques specifically designed for this problem have been proposed and implemented. These techniques usually involve importance sampling [START_REF] Glynn | Importance sampling for Monte Carlo estimation of quantiles[END_REF], correlation-induction (Avramidis and Wilson, 1998), and control variates [START_REF] Hsu | Control variates for quantile estimation[END_REF][START_REF] Hesterberg | Control variates for probability and quantile estimation[END_REF]. In this paper, we focus our attention on variance reduction techniques based on the use of an auxiliary variable. For the problem of the quantile estimation of a computer code output, the auxiliary variable is the output of a reduced model, which is coarse but cheap from the computational time point of view. We will show how to use it to find convenient parameters of the stratified and importance sampling techniques [START_REF] Rubinstein | Simulation and the Monte Carlo method[END_REF].

Quantiles form a class of performance measures. Quantile estimation for a real-valued random variable (r.v.) Y aims at determining the level y such that the likelihood that Y takes a value lower than y is some prescribed value. We assume that Y has an absolutely continuous cumulative distribution function (cdf) F (y) = P(Y ≤ y) and a continuously differentiable probability density (pdf) p(y). We look for an estimation of the α-quantile y α defined by F (y α ) = α.

In this paper we assume that Y is the real-valued output of a CPU time expensive computer code f , whose input parameters are random and modeled by the random vector X ∈ R d with known distribution. With the advance of computing technology and numerical methods, the design, modeling and analysis of computer code experiments have been a growing research domain of interest during the last two decades [START_REF] Sacks | Design and analysis of computer experiments[END_REF][START_REF] Fang | Design and modeling for computer experiments[END_REF]. The problem of low or high quantile estimation (smaller than 10% and larger than 90%) can be resolved by classical sampling techniques such as the simple Monte Carlo or latin hypercube techniques. These Monte Carlo methods can give imprecise quantile estimate (with large variance) if they are performed with a reasonable number of code runs, say of the order of 200 [START_REF] David | Order statistics[END_REF]. An alternative solution is to calculate a tolerance limit rather than a percentile thanks to Wilk's formula [START_REF] Nutt | Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties[END_REF]. For an upper bound, it provides with a low number of code runs, less than 200, a majoring value of the desired percentile with a given confidence level (for example 95%). But the variance of this tolerance limit is larger than that of the empirical estimate, for the same number of code runs.

Another well known solution for the uncertainty analysis of such systems consists in replacing the complex computer code by a reduced model, called metamodel or response surface [START_REF] Fang | Design and modeling for computer experiments[END_REF]. However, a low or high quantile estimate from a metamodel tends to substantially differ from the computer model quantile because the metamodel is usually constructed by smoothing the available computer experiments. Recently, some authors have taken advantage of one particular type of metamodel: the Gaussian process model [START_REF] Sacks | Design and analysis of computer experiments[END_REF] which gives not only a predictor (the mean) of a computer experiment but also a local indicator of prediction accuracy (the variance). In this context, [START_REF] Oakley | Estimating percentiles of uncertain computer code outputs[END_REF]), Vazquez imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008 and Piera [START_REF] Vazquez | Estimation of the volume of an excursion set of a Gaussian process using intrinsic kriging[END_REF] and [START_REF] Ranjan | Sequential experiment design for contour estimation from complex computer codes[END_REF] have developed sequential procedures to choose design points and to construct an accurate Gaussian process metamodel, specially near the regions of interest, where the quantile lies. [START_REF] Rutherford | A response-modeling alternative to surrogate models for support in computational analyses[END_REF] proposes to use geostatistical conditional simulation techniques to obtain several possible realizations of the Gaussian process. He deduces an unbiased quantile estimate by taking the quantile mean of each realization. However, all these techniques are based on the construction of a Gaussian process model which can be difficult, but possible [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF][START_REF] Schonlau | Screening the input variables to a computer model via analysis of variance and visualization[END_REF][START_REF] Marrel | An efficient methodology for modeling complex computer codes with gaussian processes[END_REF], in high-dimensional context (d > 10). Moreover, in industrial practice, a metamodel can already be available coming from a previous study or from a simplified physical model. This is the situation we have in mind. We do not concentrate our effort on the construction of a more accurate metamodel, but on the use of a given reduced model.

In our work, we deal with this situation in which a reduced model is available, in the form of a metamodel f r , which is a coarse approximation of the computer model f . The quality of the metamodel may be not known; the metamodel may be a simplified version of the computer code (a one-dimensional version for a three-dimensional problem, a response surface determined during another study, ...); its input variables may be a subset of the input variables for the computer code f . The computer model f is assumed to be very computationally expensive to execute, while evaluating the approximating metamodel f r and the input random r.v. X generation are assumed to be very fast (essentially free). Therefore, the focus of this paper is on how to exploit the metamodel to obtain better control variates, stratification or importance sampling than could be obtained without it. In the real example we address in Section 5 (computation of the peak cladding temperature of the nuclear fuel during a large-break loss of coolant accident in a nuclear reactor), the CPU time for each call of the function f is 20 minutes, while the metamodel f r is linear and the input r.v. X is a collection of d = 53 independent real-valued r.v. with normal and log-normal distributions. In this example, we also study the relevance of using more complex and powerful metamodels, as the popular Gaussian process model.

The usual practice of quantile estimation is to construct an estimator of the cdf of Y first, then to deduce an estimator of the α-quantile of Y . In absence of control variate, the standard method is the following one. The estimation is based on a n-sample (Y 1 , ..., Y n ), that is to say a set of n independent and identically distributed r.v. with the pdf p(y) of Y . The empirical estimator (EE) of the cdf of F is

FEE (y) = 1 n n i=1 1 Y i ≤y (1)
which leads to the standard estimator of the α-quantile

ŶEE (α) = inf y, FEE (y) > α = Y (⌈αn⌉) (2)
where ⌈x⌉ is the integer ceiling of x and Y (k) is the k-th order statistics. Refined versions of this result based on interpolation and smoothing methods can be found in the literature [START_REF] Dielman | A comparison of quantile estimators[END_REF]. The empirical estimator ŶEE (α) has a bias and a variance of order 1/n [START_REF] David | Order statistics[END_REF]. The empirical estimator is asymptotically normal

√ n( ŶEE (α) -y α ) n→∞ -→ N (0, σ 2 EE ) , σ 2 EE = α(1 -α) p 2 (y α ) (3)
The reduced variance σ 2 EE is usually larger when a larger quantile is estimated (the pdf at y α is then very small).

This paper first describes the already known quantile estimation by control variate in Section 2. Section 3 presents an original controlled stratification method. Then, a controlled importance sampling strategy is analyzed in Section 4. A real example is addressed in Section 5. A conclusion synthesizes our results.

Quantile estimation by Control Variate (CV).

In this section we present already known variance reduction techniques based on the use of Z = f r (X) as a control variate The quantiles z α of Z are assumed to be known, as well as any expectation E[g(Z)] of a function of g(Z). We mean that these quantities can be computed analytically, or they can be estimated by standard Monte Carlo estimations with an arbitrary precision, since only the reduced model f r is involved.

Estimation of the distribution function.

A Control Variate (CV) estimator of F (y) with the real-valued control variate Z has the form

FCV (y) = FEE (y) -C (ĝ n -E[g(Z)]) (4)
where the function g : R → R has to be chosen by the user [START_REF] Nelson | Control variates remedies[END_REF]) and ĝn = 1 n n i=1 g(Z i ). The optimal parameter C is the correlation coefficient between g(Z) and 1 Y ≤y whose value is unknown in practice. Therefore, the imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008 estimated parameter Ĉ is used instead. It is defined as the slope estimator obtained from a least-squares regression of 1 Y j ≤y on g(Z i ):

Ĉ = n j=1 (1 Y j ≤y -FEE (y))(g(Z j ) -ĝn ) n j=1 (g(Z j ) -ĝn ) 2
As shown by [START_REF] Hesterberg | Control variates and importance sampling for the bootstrap[END_REF] the estimator FCV (y) can be rewritten as the weighted average

FCV (y) = n j=1 W j 1 Y j ≤y (5) with W j = 1 n + (ĝ n -E[g(Z)])(ĝ n -g(Z j )) n i=1 (g(Z i ) -ĝn ) 2 . Note that n j=1 W j = 1. If g(z) = 1 z≤zα , then E[g(Z)] = α, ĝn = N 0 /n with N 0 = n i=1 1 Z i ≤zα and W j = α N 0 1 Z j ≤zα + 1 -α n -N 0 1 Z j >zα (6)
As shown by [START_REF] Davidson | Regression-based methods for using control variates in Monte Carlo experiments[END_REF] the estimator ( 5) is equivalent to the maximum likelihood estimator for probabilities. By using standard results for the convergence of Monte Carlo estimators [START_REF] Nelson | Control variates remedies[END_REF]

, one finds √ n( FCV (y) -F (y)) n→∞ -→ N (0, σ 2 CV ) , σ 2 CV = F (y)(1 -F (y))(1 -ρ 2 I ) (7)
where ρ I is the correlation coefficient between 1 Y ≤y and 1 Z≤zα :

ρ I = P(Y ≤ y, Z ≤ z α ) -αF (y) F (y)(1 -F (y)) √ α -α 2 (8)
This result can be compared to the corresponding central limit theorem in absence of control, which claims that the empirical estimator FEE defined by (1) is asymptotically normal

√ n( FEE (y) -F (y)) n→∞ -→ N (0, σ 2 EE ) , σ 2 EE = F (y)(1 -F (y))
Comparing with (7) reveals an asymptotic variance reduction of 1ρ 2 I .

2.2. Quantile estimation. Our goal is now to estimate the α-quantile of Y by using the CV estimator of the cdf of Y . We consider the order statistics (Y (1) , ..., Y (n) ) with the weights W (i) defined by ( 6) sorted according to the Y (i) . Using the estimator (5) of the cdf of Y , the CV estimator of the αquantile is

ŶCV (α) = Y (K) , K = inf j , j i=1 W (i) > α (9)
Applying standard results for the variance reduction for Monte Carlo methods [START_REF] David | Order statistics[END_REF], one finds that this estimator is asymptotically normal with the reduced variance

σ 2 CV √ n( ŶCV (α) -y α ) n→∞ -→ N (0, σ 2 CV ) , σ 2 CV = α(1 -α) p 2 (y α ) (1 -ρ 2 I ) (10)
where p is the pdf of Y and ρ I is the correlation coefficient between 1 Y ≤yα and 1 Z≤zα :

ρ I = P(Y ≤ y α , Z ≤ z α ) -α 2 α -α 2
Comparing (10) with (3) reveals a variance reduction by the factor 1ρ 2 I . As expected, the stronger Y and Z are correlated, the larger the variance reduction is. It is not easy to build an estimator of the reduced variance σ CV , because this requires to estimate the pdf p(y α ). However, it is possible to build an estimator of the correlation coefficient ρ I , which controls the variance reduction. This estimator is the empirical correlation coefficient ρI defined by

ρI = n j=1 (1 Y j ≤y -FEE (y))(1 Z j ≤zα -Ĝn (z α )) n j=1 (1 Y j ≤y -FEE (y)) 2 n j=1 (1 Z j ≤zα -Ĝn (z α )) 2 | y= ŶCV (α) (11) with Ĝn (z α ) = 1 n n i=1 1 Z i ≤zα .
2.3. The optimal CV estimator. In the previous section the control variate function is g(z) = 1 z≤zα , which allows both an easy implementation and a substantial variance reduction. In general, the variance reduction obtained with the CV estimator (4) depends on the correlation coefficient between 1 Y ≤y and the control g(Z). The optimal control, which maximizes the correlation coefficient, is obtained with the function [START_REF] Rao | Linear statistical inference and its applications[END_REF])

g * (z) = P (Y ≤ y|Z = z) (12)
imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date : February 18, 2008 This function is usually unknown, otherwise it could be possible to compute analytically the cdf F (y) by taking the expectation of g * (Z), and solve numerically the equation F (y) = α to get the quantile. However, this result gives the principle of refined CV methods using approximations of the optimal control function g * . Continuous approximations have been proposed, that are however difficult to implement in practice [START_REF] Hastie | Generalized additive models[END_REF]). Discrete approximations have been presented, which have been shown to be very efficient and easy to implement. We now describe the discrete method proposed by [START_REF] Hesterberg | Control variates for probability and quantile estimation[END_REF]. Let us choose m + 1 cutpoints 0 = α 0 < α 1 < ... < α m = 1, and denote by -∞ = z α 0 < z α 1 < ... < z αm = ∞ the corresponding quantiles of Z. The intervals (z α j-1 , z α j ] will be used as strata to construct a stepwise constant approximation of the optimal control. This construction is based on the straightforward expansion of the cdf of Y :

F (y) = m j=1 P j (y)(α j -α j-1 ) (13)
where P j (y) is the conditional probability

P j (y) = P(Y ≤ y | Z ∈ (z α j-1 , z α j ]) (14)
The quantiles of Z are known, so the estimation of F (y) is reduced to the estimations of the conditional probabilities. The Poststratified Sampling (PS) estimator of F (y) is

FPS (y) = m j=1 Pj (y)(α j -α j-1 )
where

Pj (y) = n i=1 1 Z i ∈(zα j-1 ,zα j ] 1 Y i ≤y n i=1 1 Z i ∈(zα j-1 ,zα j ]
The PS estimator can be written as a weighted average of 1 Y j ≤y as well. It can also be interpreted as a CV estimator with g j (Z) = 1 Z≤zα j , j = 1, ..., m as control variates. Its variance is

Var( FPS (y)) = 1 n m j=1 (α j -α j-1 )[P j (y) -P 2 j (y)] + O 1 n 2 (15)
Using Gaussian examples, [START_REF] Hesterberg | Control variates for probability and quantile estimation[END_REF] have shown that the optimal variance reduction (the one achieved with g * ) can be almost achieved imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008 with the discrete approximation with two or three strata. Based on numerical simulations, the authors recommend to choose the cutpoint α 1 = α for the PS strategy with two strata. They also apply the strategy with three strata on some particular examples. In the next section, we will show that we can go beyond the variance reduction obtained with the optimal control g * (Z) or its approximations by using the reduced model in a different way.

3. Quantile estimation by Controlled Stratification (CS). The use of a reduced model to estimate directly the quantiles may be not efficient. Indeed, as mentioned in the introduction, the reduced model is usually a metamodel or a response surface that has been calibrated to mimic the response of the complete model f (X) for typical realizations of X, and not to predict the response f (X) for exceptional realizations of X. This is precisely what is sought when the purpose is to estimate quantiles. Besides, it is very difficult to give an estimate of the error when only the reduced model is used to estimate the quantiles.

In this section we exploit in a different and more intensive manner the existence of a reduced model Z = f r (X). The idea of the previous section was to use it as a control variate, or equivalently post-stratification, without modifying the sampling. The idea of this section is to use it in order to implement non-proportional stratified sampling in which we do modify the sampling by rejection. The rough idea is to generate many realizations of X, to evaluate the corresponding reduced responses f r (X), and to accept/reject the realizations depending on the responses f r (X). The complete model f will be used only with the accepted realizations. We can therefore enforce the numbers of realizations of X such that f r (X) lie in prescribed intervals, and increase the numbers of realizations in the more important intervals.

Estimation of the distribution function. Let us choose

m + 1 cut- points 0 = α 0 < α 1 < ... < α m = 1 and denote by -∞ = z α 0 < z α 1 < ... < z αm = ∞ the corresponding quantiles of Z.
As noted in the previous section, the cdf of Y can be expanded as ( 13), so the estimation of F (y) is reduced to the estimations of the conditional probabilities P j (y) defined by ( 14). Let us fix a sequence of integers N 1 , ..., N m such that m j=1 N j = n, where n is the total number of simulations using the complete model f . For each j, we use the rejection method to sample N j realizations of the input r.v. (X

(j) i ) i=1,...,N j such that the reduced output r.v. Z (j) i = f r (X (j) i ) lies in the interval (z α j-1 , z α j ]. For each of these N j realizations, the out- put Y (j) i = f (X (j)
i ) is computed. The conditional probability P j (y) can be imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008 estimated by

Pj (y) = 1 N j N j i=1 1 Y (j) i ≤y ,
which gives the CS estimator of F (y)

FCS (y) = m j=1 Pj (y)(α j -α j-1 ) (16)
The estimator FCS (y) is unbiased and its variance is

Var( FCS (y)) = m j=1 (α j -α j-1 ) 2 N j P j (y) -P 2 j (y) (17)
If the number m of strata is fixed, if (β j ) j=1,...,m is a sequence of positive real numbers such that m j=1 β j = 1, and if we choose

N j = [nβ j ], where [x] is the integer closest to x, then the estimator FCS (y) is asymptotically normal √ n( FCS (y) -F (y)) n→∞ -→ N 0, σ 2 CS , σ 2 CS = m j=1 (α j -α j-1 ) 2 β j P j (y) -P 2 j (y) (18)
We first try to estimate the complete cdf F (y) for all y ∈ R. In the case where Z is independent of Y (which means that there is no control), we have P j (y) = F (y) and

Var( FCS (y)) = m j=1 (α j -α j-1 ) 2 N j × F (y) -F (y) 2 (19)
If we use a proportional allocation in the strata β j = α jα j-1 , then N j = [(α jα j-1 )n] and we find that the variance of the CS estimator is, modulo the rounding errors, equal to 1 n F (y) -F (y) 2 which is the variance of the empirical estimator.

In the case where the r.v. Z is an increasing function of Y (that is to say, Z controls completely Y ), then we obtain where j 0 is such that y ∈ (y α j 0 -1 , y α j 0 ]. If we choose equiprobable strata α j = j/m and proportional sampling β j = 1/m, then Var( FCS (y)) ≤ 1/(4mn).

Var( FCS (y)) = (α j 0 -α j 0 -1 ) 2 N j 0 p j 0 (y) -p j 0 (y) 2 ≤ (α j 0 -α j 0 -1 ) 2 4N j 0 imsart-
The variance of the CS estimator has therefore been reduced by a factor of the order of 1/m. Let us now look for the estimation of the tail of cdf F (y), in the region where F (y) ≃ 1δ with 0 < δ ≪ 1. If Z and Y have positive correlation, then it is clear that we should allocate more simulation points in the tail of the reduced model Z, so as to increase the number of realizations that are potentially relevant.

As an example, we can choose m = 4, α 1 = 1/2, α 2 = 1 -2δ, α 3 = 1δ, N j = n/4 for j = 1, ..., 4. Note that this particular choice allocates n/2 points in the tail of the cdf of Z, where z 1-2δ < Z.

If Z and Y are independent, then Eq. ( 19) shows that this strategy involves an increase of the variance of the estimator by a factor 2: Var( FCS (y)) ≃ 2δ/n compared to the empirical estimator Var( FEE (y)) ≃ δ/n.

If Z and Y are so strongly correlated that the probability of the joint event Z ≤ z 1-2δ and Y > y 1-δ is negligible, then Eq. ( 19) shows that this strategy involves a variance reduction by a factor smaller than 2δ: Var( FCS (y)) ≤ 2δ 2 /n. This means that the variance reduction can be very substantial in the case where the variables Y and Z are correlated.

3.2. Quantile estimation. Here we consider the problem of the estimation of the α-quantile of Y , with α close to 1. From the previous results, we can propose the estimator of the α-quantile of Y given by ŶCS (α) = inf y, FCS (y) > α where FCS (y) is the CS estimator of the cdf of Y . The estimator ŶCS (α) is asymptotically normal

√ n( ŶCS (α) -y α ) n→∞ -→ N (0, σ 2 CS ), σ 2 CS = m j=1 (α j -α j-1 ) 2 β j P j (y α ) -P 2 j (y α ) p 2 (y α )
If Z and Y are positively correlated, then it is profitable to allocate more points in the cdf tail of Z, so as to increase the number of potentially relevant realizations.

In the following we carry out numerical simulations on a toy example in which n = 200 and α = 0.95. We apply the CS method with m = 4 strata described here above (α 1 = 0.5, α 2 = 0.9, α 3 = 0.95, N j = n/4 imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008 for j = 1, ..., 4). We underline that this example is very simple and the reduced model could certainly be improved. In particular, a Gaussian process approach would here provide a very good approximation with a few tens of simulations (see Section 5). The reduced model for this toy example has in fact been chosen so as to have approximately the same quality (in terms of correlation coefficients ρ and ρ I ) as the one we expect in the case of the real example addressed in Section 5. Our goal here is to validate and calibrate the CS strategy on this toy example for which we can check the CS estimations in terms of bias and standard deviation and to show that it can give good results with the parameters n = 200 and α = 0.95 even in the case in which ρ I is relatively small, which is the context of the real example addressed in Section 5.

Toy example. 1D function

Let us consider the following configuration. X is assumed to be a Gaussian r.v. with mean zero and variance one. The functions f and f r are given by

f r (x) = x 2 , f (x) = 0.95x 2 [1 + 0.5 cos(10x) + 0.5 cos(20x)] (20)
The quantiles of Z = f r (X) are given by z

α = Φ -1 ((1 + α)/2)
2 , where Φ is the cdf of the N (0, 1)-distribution. The quantiles of Y are not known analytically, as can be seen in the plot of the pdf of Y in Figure 1a, obtained by a series of 5 10 7 Monte Carlo simulations. By using these Monte Carlo simulations, we have evaluated the theoretical 0.95-quantile of Y : y 0.95 = 3.66, and the correlation coefficient between Y and Z: ρ = 0.84. The efficiency of the CS method is related to the value of the indicator correlation coefficient ρ I , which can be computed from the simulations and equation ( 11): ρ I = 0.62. We compare the CS estimator with the empirical estimator and the CV estimator of the α-quantile (Figure 1b). One can observe that the quantile is poorly predicted by the empirical estimator, slightly better predicted by the CV estimator, while the CS estimator seems more efficient.

Adaptive controlled stratification (ACS).

We first show that there exists an optimal choice for the allocation of the simulation points in the strata. Let us consider the CS estimation of the cdf of Y as described in Section 3.1. Let us fix y ∈ R. The CS estimator (16) of F (y) is asymptotically normal and its reduced variance σ 2 CS is given by ( 18). In fact, if the rounding errors are neglected, σ 2 CS /n is the variance of the CS estimator FCS (y) for any n by ( 17).

We note that, if we choose to allocate the simulation points proportionally in the strata, i.e. we choose β j = α jα j-1 , then the reduced variance of the CS estimator is equivalent to the reduced variance of the PS estimator (15). The important point is that this proportional allocation is not efficient, as we now show.

If the number m of strata is fixed, as well as the cutpoints (α j ) j=0,...,m and the total number n of simulations, then it is possible to choose the numbers of simulations [β j n] per stratum so as to minimize the variance of the CS estimator. The fact that an optimal allocation policy for standard stratification is known [START_REF] Fishman | Monte Carlo concepts, algorithms, and applications[END_REF][START_REF] Glasserman | Stratification issues in estimating Value-at-Risk[END_REF]). Here we show that an optimal allocation policy exists for CS, in which the strata are determined by the metamodel. By denoting q j = (α jα j-1 ) 2 P j (y) -P 2 j (y) , the minimization problem argmin β m j=1 q j β j with the constraints β j ≥ 0,

m j=1 β j = 1
has the unique solution

β * j = q 1/2 j m l=1 q 1/2 l , j = 1, ..., m
With this optimal choice the reduced variance of the CS estimator FCS (y) is

σ 2 OCS = m j=1
(α jα j-1 ) P j (y) -P 2 j (y) Note that the optimal allocation β * j depends on y in general, which means that it is not possible to propose an allocation that is optimal for the estimation of the whole cdf of Y . However, we can observe that 1) if the control is weak, then P j (y) depends weakly on y, and the optimal allocation is then β * j = α jα j-1 . 2) If the control is strong, then we should allocate more simulations in the strata (z α j-1 , z α j ] around F (y).

For instance, let us assume a very strong control, in the sense that Z = ψ(Y ) is an increasing function of Y . Then

P j (y) = P(Y ≤ y|Z ∈ (z α j-1 , z α j ]) = P(Y ≤ y|Y ∈ (ψ -1 (z α j-1 ), ψ -1 (z α j )]) is equal to 1 if z α j ≤ ψ(y) (i.e. α j ≤ F (y)) and to 0 if z α j-1 > ψ(y) (i.e. α j-1 > F (y))
. In these two cases, q j and the optimal β * j are zero, and all simulations should be allocated in the stratum (z α j 0 -1 , z α j 0 ], for which α j 0 -1 < F (y) ≤ α j 0 . Of course, the very strong control assumed here is not realistic, but this example clearly illustrates the optimal allocation of simulations in the different strata.

We now know that there exists an optimal allocation of the n simulations in the m strata. This allocation depends on the P j (y), which are the quantities that we want to estimate. We can therefore propose an adaptive procedure: 1) First apply the CS method with n = n γ simulations, γ ∈ (0, 1), and an a priori choice of the β j . We then obtain a first estimation of the conditional probabilities P j (y):

P j (y) = 1 [β j n] [β j n] i=1 1 Y (j) i ≤y
2) Estimate the optimal allocation β * j by:

β j = (α j -α j-1 ) P j (y) -P j (y) 2 1/2 m l=1 (α l -α l-1 ) [ p l (y) -p l (y) 2 ] 1/2
3) Carry out the nn last simulations by allocating the simulations in each stratum in order to achieve the estimated optimal number [n β j ] for all j. 4) Estimate P j (y) and F (y) by

Pj (y) = 1 [ β j n] [ β j n] i=1 1 Y (j) i ≤y , FACS (y) = m j=1 Pj (y)(α j -α j-1 )
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The ACS estimator is unbiased conditionally on β j > 0 for the j's such that β * j > 0. The probability of the complementary event is of the order of exp(-cñ) which can be usually neglected. The ACS estimator FACS (y) is asymptotically normal

√ n FACS (y) -F (y) n→∞ -→ N (0, σ 2 ACS ) , σ 2 ACS = m j=1
(α jα j-1 ) P j (y) -P 2 j (y)

1/2 2 (22)
The expression of the reduced variance σ 2 ACS is the same as ( 21), which is the one of the CS estimator with the optimal allocation β * j . The difference is that the variance σ 2 ACS /n is only reached asymptotically as n → ∞ in the case of the ACS estimator, while the variance is σ 2 OCS /n for all n in the case of the CS estimator with the optimal allocation. Note that the convergence of the ACS estimator is ensured whatever the choice of the positive a priori numbers β j . In practice, a good a priori choice will speed up the convergence.

We now present an asymptotic analysis of the variance reduction for the CV, PS, CS, and ACS methods in the case of m = 2 strata.

In the PS method, or in the CS method if we choose the proportional allocation β j = α jα j-1 , the reduced variance in ( 18) is

σ 2 PS = F (y)(1 -F (y)) 1 -ρ 2 I ( 23 
)
where ρ I is the correlation coefficient between 1 Y ≤y and 1 Z≤zα defined by (8). σ 2 PS is also the reduced variance of the CV estimator (7). The fact that the PS and CV estimators are equivalent was already noticed in Hesterberg and [START_REF] Hesterberg | Control variates for probability and quantile estimation[END_REF]. In the ACS method, the expression of the reduced variance σ 2 ACS in ( 22) is

σ 2 ACS = F (y)(1 -F (y))K 2 , K = α 1 + ρ I (1 -α)(1 -F (y)) αF (y) 1 2 1 2 1 -ρ I (1 -α)F (y) α(1 -F (y)) 1 2 1 2 +(1 -α) 1 + ρ I αF (y) (1 -α)(1 -F (y)) 1 2 1 2 1 -ρ I α(1 -F (y)) (1 -α)F (y) 1 2 1 2
If we assume that the correlation coefficient ρ I is small, then we get the following expansion with respect to ρ I

σ 2 ACS = F (y)(1 -F (y)) 1 - ρ 2 I 8F (y)(1 -F (y)) + O(ρ 3 I ) (24)
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These results show that the CV, PS, CS, and ACS methods involve a variance reduction of the same order when the goal is to estimate the cdf around the median F (y) ∼ 1/2. However, when the goal is to estimate the cdf tail F (y) ∼ 0 or 1, then the ACS method gives a larger variance reduction. Of course, the CS method with a nearly optimal allocation policy gives the same performance as the ACS method, but the implementation of this method requires some a priori information on the correlation between Y and Z to guess the correct allocation, while the ACS method finds it.

The expressions that we have just derived also give indications for the choice of the cutpoint α. Indeed, the variance reduction is all the larger as the correlation coefficient ρ I is larger. For instance, if we assume that Z = ψ(Y ) is an increasing function of Y , which models a very strong control, then one finds

ρ I =          α(1 -F (y)) (1 -α)F (y) 1/2 if z α < ψ(y) (1 -α)F (y) α(1 -F (y)) 1/2 if z α ≥ ψ(y)
As a function of α, this function is maximal when α = F (y). This shows that, if the goal is to estimate the cdf of Y around some y, then it is interesting to choose α = F (y).

We can also revisit the asymptotic analysis of the variance reduction for the CV, PS, CS, and ACS methods in the case of a large number m of strata. In the PS method and in the CS method with the proportional allocation β j = α jα j-1 , the reduced variance is (18). If the conditional probability P(Y ≤ y|Z) has a continuous density g * with respect to the Lebesgue measure, then (18) is a Riemann sum that has the following limit as m → ∞

σ 2 PS = E P(Y ≤ y|Z) -P(Y ≤ y|Z) 2 = F (y) -E P(Y ≤ y|Z) 2
This is actually the reduced variance of the optimal CV estimator, when the optimal control function g * defined by ( 12) is used. In the ACS method, the expression of the reduced variance σ 2 ACS is (22) which has the following limit as m → ∞

σ 2 ACS = E P(Y ≤ y|Z) -P(Y ≤ y|Z) 2 1/2 2
The Cauchy-Schwarz inequality clearly shows that the variance reduction is larger for the ACS method than for the optimal CV method using the optimal control function g * .

Whatever the value of m ≥ 2, we can also use Cauchy-Schwarz inequality to check that the reduced variance for the PS method (or for the CS method with the proportional allocation)

σ 2 PS = m j=1 (α j -α j-1 )[P j (y) -P 2 j (y)]
is always larger than the reduced variance ( 22) for the ACS method. Finally, it is relevant to estimate the additional computational cost of controlled stratification compared to empirical estimation. It is of the order of (N rn)T X + N r T fr , where N r is the number of evaluations of f r and X, T X is the computational time for the generation of a realization of the input r.v. X, and T fr is the computational time for the call of the function f r . For the CS method with the allocation β j , we have

E[N r ] = n m j=1 β j α j -α j-1 ≤ n min j (α j -α j-1 )
where the last inequality holds uniformly in β. Besides N r has fluctuations of the order of √ n. The same estimate holds true for the ACS method. In the real example we have in mind (in which the computational time for the call function f is 20 minutes), this additional cost is completely negligible.

3.4. Quantile estimation by adaptive controlled stratification. In this section we use the ACS strategy to estimate the α-quantile of Y , with α close to 1. We propose the following procedure: 1) First apply the CS method with n = n γ simulations, γ ∈ (0, 1), and with an a priori allocation policy β j , so that a first estimate of the conditional probabilities P j (y) can be obtained:

P j (y) = 1 [β j n] [β j n] i=1 1 Y (j) i ≤y
The corresponding estimators of the cdf and the α-quantile of Y are

F (y) = m j=1 (α j -α j-1 ) P j (y) , Y α = inf y, F (y) > α
2) Estimate the optimal allocation β * j for the estimated α-quantile Y α by: 3) Carry out the nn final simulations by allocating the simulations in each stratum in order to achieve the estimated optimal number [ β j n]. 4) Estimate P j (y) and F (y) by

β j = (α j -α j-1 ) P j ( Y α ) -P j ( Y α ) 2 1/2 m l=1 (α l -α l-1 ) p l ( Y α ) -p l ( Y α ) 2 1/2 ( 
Pj (y) = 1 [ β j n] [ β j n] i=1 1 Y (j) i ≤y , FACS (y) = m j=1 Pj (y)(α j -α j-1 )
The ACS estimator of the α-quantile y α is

ŶACS (α) = inf y, FACS (y) > α
The estimator ŶACS (α) is asymptotically normal

√ n( ŶACS (α) -y α ) n→∞ -→ N (0, σ 2 ACS ) , σ 2 ACS = m j=1 (α j -α j-1 ) P j (y α ) -P 2 j (y α ) 1/2 2 p 2 (y α )
To summarize, we have found the following expressions of the reduced variance for the different methods: -for the empirical estimator

σ 2 EE = α(1 -α) p 2 (y α )
-for the PS estimator or for the CV estimator with the proportional allocation β j = α jα j-1 (see ( 10))

σ 2 PS = α(1 -α) p 2 (y α ) × (1 -ρ 2 I )
-for the ACS estimator with two strata separated by α:

σ 2 ACS = α(1 -α) p 2 (y α ) × 1 - ρ 2 I 8α(1 -α) + O(ρ 3 I )
Here ρ I is the correlation coefficient between 1 Y ≤yα and 1 Z≤zα given by ( 11). This shows that the CV, PS, CS and ACS methods give variance reductions of the same order when the goal is to estimate quantiles close to the median α ∼ 1/2. However, when the goal is to estimate large quantiles α ∼ 0 or 1, the ACS method is much more efficient. 3.65 0.12 3.5. Simulations. We now present a series of numerical simulations that illustrate the theoretical results presented in this paper. These examples are simple and they are used to calibrate the ACS method when n = 200, α = 0.95 and the reduced model has poor quality (i.e. ρ I is small). We will address in Section 5 a real example in which these conditions hold.

Toy example. 1D function

Let us revisit the toy example based on the 1D function ( 20) and look for the α-quantile of Y with α = 95%. We compare the performances of the empirical estimator (2), the CV estimator (9) with the control variate Z, and the ACS estimator. The ACS method is first implemented with two strata [0, α 1 ] and (α 1 , 1] with the cutpoint α 1 = α. We use ñ = 2 n/10 simulations for the estimation (25) of the optimal allocation, with n/10 simulations in each stratum. The results extracted from a series of 10000 simulations are summarized in Table 1. Note that the ACS method allocates 85% of the simulations in the stratum [0, 0.95], and 15% in the stratum (0.95, 1]. This shows that we deal with a configuration where the number of simulations in the stratum (0.95, 1] has to be increased compared to the expected value in the case where there is no control, where only 5% of the simulations should be allocated in the stratum (0.95, 1].

We have also implemented the ACS method with 3 strata [0, α 1 ], (α 1 , α 2 ], (α 2 , 1], with cutpoints α 1 = 0.85 and α 2 = 0.95. We use 3 n/10 simulations for the evaluation (25) of the optimal allocation, with n/10 simulations in each of the three strata. The results extracted from a series of 10000 simulations are presented in Table 1. The variance reduction for the ACS method with three strata is very important. The standard deviation of the ACS estimator is 3 times smaller compared to the empirical estimator of the CV estimator. Note that the optimal allocation should attribute a fraction β 1 < 0.1 to the first stratum, but the number 0.1 cannot be lowered due to the fact that n/10 simulations in the first stratum [0, α 1 ] were already used in the first step of the estimation. The previous simulations were carried out with the sample size n = 2000. In such a case, the ACS method is robust, in the sense that the choice of the number ñ of simulations devoted to the estimation of the optimal allocation is not critical. When n is smaller, such as n = 200, then the choice of ñ becomes critical: if ñ is too small, then the estimation of the optimal allocation may fail during the first step of the ACS method; if ñ is too large, then nñ may be too small and it may be impossible to allocate the estimated optimal number of simulations to each stratum during the second step of the ACS method. We have applied the ACS method with n = 200 to the example 1, and it turns out that the ACS method with ñ = n/10 is still efficient. However, we cannot claim that this will be the case for all applications. The results obtained from a series of 10000 simulations are summarized in Table 2. The standard deviations of the estimations of the β j 's are much larger than in the case n = 2000, but the quality of the estimation of the optimal allocation is just good enough to allow for a significant variance reduction for the quantile estimation. The standard deviation of the ACS estimator is here 2 times smaller compared to the empirical estimator or the CV estimator. If n = 100, then the ACS method fails (in the sense that some simulations give β1 = 0), and the CS method with an allocation of the simulation points prescribed by the user should be chosen.

Quantile estimation with Controlled Importance Sampling (CIS).

We consider the same problem as in the previous sections. In this section we show that the reduced model can be used to help designing a biased distribution of the input r.v. X in order to implement an efficient importance sampling (IS) strategy. The standard IS method consists in simulating the n-sample of the r.v. X according to a biased distribution, and to multiply the output by a likelihood ratio to recover an unbiased estimator.

In the case where the biased distribution favors the occurrence of the event of importance, the variance of the estimator can be drastically reduced compared to the standard empirical Monte Carlo estimator. Adaptive versions of the IS procedure have been proposed and studied, whose principle is to estimate first a"good" biased distribution, that is to say a distribution that properly favors the occurrence of the event of importance, before using this biased distribution as in the standard IS estimation. We will propose an estimator of the cdf of Y first, then an estimator of the α-quantile of Y , by a controlled importance sampling (CIS) procedure, where the reduced model f r and the associated r.v. Z = f r (X) are used to determine the biased distribution, while the complete model f is used to perform the estimation.

Estimation of the distribution function. An IS estimator of the cdf of

Y = f (X) is FIS (y) = 1 n n i=1 1 f (X i )≤y q ori (X i ) q(X i ) , X i ∼ q (26)
where q ori is the original pdf of X and q is the biased pdf chosen by the user. In practice, it can be useful to use a variant in which the denominator n in ( 26) is replaced by n i=1 q ori (X i )/q(X i ), in order to enforce FIS (y) → 1 as y → ∞. Other alternatives can be found in [START_REF] Hesterberg | Average importance sampling and defensive mixture distributions[END_REF]. The estimator FIS (y) converges almost surely to F (y) when n → ∞. In fact, the estimator FIS (y) is unbiased as soon as the support of the original pdf q ori is included in the support of the biased pdf q. The variance of ( 26) is given by Var[ FIS (y)] = 1 n

1 f (x)≤y q ori (x) 2 q(x) dx -F (y) 2 (27)
The IS can involve a dramatic variance reduction compared to the standard empirical estimator if the biased pdf q is properly chosen. The variance of FIS (y) is minimal [START_REF] Rubinstein | Simulation and the Monte Carlo method[END_REF] when the biased pdf is taken to be equal to the optimal pdf defined by

q * (x) = 1 f (x)≤y q ori (x) 1 f (x ′ )≤y q ori (x ′ )dx ′ (28)
This result cannot be processed directly to perform the simulations because the normalizing constant of the optimal pdf is the quantity that is sought. However, this remark gives the basis of an adaptive procedure where the optimal density is estimated. The parametric approach for the adaptive IS approach is the following one. We first choose a family of pdfs Q = {q γ ; γ ∈ Γ} and we then try to estimate the parameter γ. In this section we assume that the family of pdfs Q is parameterized by the first two moments γ = (λ, C): λ ∈ R d is the expectation and C ∈ M d (R) is the covariance matrix of X when the pdf of X is q γ . The strategy to determine the best biased density in the family Q is based on the following remark. The theoretical optimal density is q * and it is given by ( 28). The expectation and covariance matrix of the random vector X under q * is

λ * = x1 f (x)≤y q ori (x)dx 1 f (x)≤y q ori (x)dx and C * = xx t 1 f (x)≤y q ori (x)dx 1 f (x)≤y q ori (x)dx -λ * λ * t (29)
The idea is to choose in the family Q the pdf q γ which has expectation λ * and covariance matrix C * , that is to say we choose the pdf q γ * with γ * = (λ * , C * ).

The problem is now reduced to the estimation of λ * and C * . If we assume that the reduced model is so cheap that we can use as many simulations based on f r as desired, then we can estimate λ * and C * by:

             λ = ñ i=1 X i 1 Z i ≤y q ori (X i )/q 0 (X i ) ñ i=1 1 Z i ≤y q ori (X i )/q 0 (X i ) Ĉ = ñ i=1 X i X t i 1 Z i ≤y q ori (X i )/q 0 (X i ) ñ i=1 1 Z i ≤y q ori (X i )/q 0 (X i ) -λλ t , X i ∼ q 0 (30)
where q 0 is a pdf chosen a priori by the user. If no a priori information is available, then the choice q 0 = q ori is natural. The estimators λ and Ĉ are well-defined on ∪ ñ i=1 {Z i ≤ y}. For completeness we can set λ = 0 and Ĉ = I d on the complementary event, whose probability is of the form exp(-cñ). As ñ → ∞, the estimators λ and Ĉ converge almost surely to

λ * r =
x1 fr(x)≤y q ori (x)dx 1 fr(x)≤y q ori (x)dx and C * r =

xx t 1 fr(x)≤y q ori (x)dx

1 fr(x)≤y q ori (x)dx -λ * r λ * r t
which are close to λ * and C * if f r is a good enough reduced model. The variance of the CIS estimator of F (y) using the biased pdf determined by the metammodel is (27

) with q = q γ * r , γ * r = (λ * r , C * r ). It is asymptotically normal √ n( FCIS (y) -F (y)) n→∞ -→ N (0, σ 2 CIS ) , σ 2 CIS = 1 f (x)≤y q ori (x) 2 q γ * r (x) dx -F (y) 2
Note that the selected biased pdf depends on y. Indeed, it is not possible to propose a biased pdf that is efficient for all values of y. This is not surprising, since the principle of the IS method is to favor the realizations that probe a specific region of the state space, that is important for the target function whose expectation is sought (here, x → 1 f (x)≤y ). 4.2. Quantile estimation. In this subsection, we look for the α-quantile of Y . The CIS strategy consists in determining a biased pdf that is efficient for the estimation of the expectation

E 1 fr(X)≤zα = 1 fr(x)≤zα q ori (x)dx = α (31)
where f r is the reduced model and z α is the α-quantile of Z, which is assumed to be known. The determination of a biased pdf q that minimizes the IS estimator of the quantity (31) will give a pdf that probes the important regions for the estimation of the α-quantile of Z, and also of the α-quantile of Y if the reduced model is correlated to the complete computer model.

As in the previous subsection we will look for the biased pdf in a family Q of pdfs q γ parameterized by the first two moments γ = (λ, C). By using only the reduced model, we estimate the parameter γ with the estimator (30) with y = z α . Next we apply the IS estimator (26) of the cdf of Y by using the complete model and the biased density q γ , γ = ( λ, Ĉ). Finally the estimator of the α-quantile is ŶCIS (α) = inf{y, FIS (y) > α}. It is asymptotically normal

√ n( ŶCIS (α) -y α ) n→∞ -→ N (0, σ 2 CIS ) , σ 2 CIS = 1 p 2 (y α ) 1 f (x)≤yα q ori (x) 2 q γ * r (x) dx -α 2
In the case where the reduced model is not so cheap, adaptive IS strategies can be used with the reduced model to estimate the parameters of the biased density [START_REF] Oh | Adaptive importance sampling in Monte Carlo integration[END_REF]: roughly speaking, at generation k, the parameter γ k is estimated by using a standard IS strategy using the biased pdf γ k-1 obtained during the computations of the previous generation. 4.3. Simulations. Let us consider the case where X = (X 1 , X 2 ) is a random vector with independent Gaussian entries with zero mean and variance one. The functions f and f r are given by: The pdf of Y = f (X) and Z = f r (X) are plotted in Figure 2a. By using Monte Carlo simulations, we have evaluated the correlation coefficient between Y and Z: ρ = 0.90. From equation ( 11), we have also evaluated the indicator correlation coefficient: ρ I = 0.64. The empirical estimator and the CIS estimator of the α-quantile of Y are compared in Figure 2b. The family Q consists of the set of two-dimensional Gaussian pdfs parameterized by their means and covariance matrices. The comparison is also made with the CV estimator and the CS estimator and it appears that the variance of the CIS estimator is significantly smaller than the one of the other estimators. CIS is the best strategy in this example. However, CIS (in the present version) is successful only when one unique important region exists in the state space. For instance, in the case of the 1D function treated in the previous sections (where there are two equally important regions far away from each other due to the parity of the function f ) the CIS strategy fails in the sense that the algorithm to determine the biased pdf does not converge. The use of mixed pdf models should be considered to overcome this limitation and will be the subject of further research. The mean of the empirical estimations is 2.83 and their standard deviation is 0.52. The mean of the CV estimations is 2.74 and their standard deviation is 0.38. The mean of the CS estimations is 2.71 and their standard deviation is 0.25. The mean of the CIS estimations is 2.77 and their standard deviation is 0.21. The theoretical quantile (obtained from a series of 5 10 7 simulations) is yα ≃ 2.75.

f r (x) = |x 1 |x 1 + x 2 (32) f (x) = 0.95|x 1 |x 1 [1 + 0.5 cos(10x 1 ) + 0.5 cos(20x 1 )] +0.7x 2 [1 + 0.4 cos(x 2 ) + 0.3 cos(14x 2 )] (33)
5. Application to a nuclear safety problem. In this section we apply the controlled stratification and controlled importance sampling methodologies on a complex computer model used for nuclear reactor safety. It simulates a hypothetic thermo-hydraulic scenario: a large-break loss of coolant accident for which the quantity of interest is the peak cladding temper-ature. This scenario is part of the Benchmark for Uncertainty Analysis in Best-Estimate Modelling for Design, Operation and Safety Analysis of Light Water Reactors proposed by the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OCDE/NEA). It has been implemented on the computer code Cathare of the Commissariat à l'Energie Atomique (CEA). In this exercise the 0.95-quantile of the peak cladding temperature has to be estimated with less than 250 computations of the computer model. The CPU time is twenty minutes for each simulation. The complexity of the computer model lies in the high-dimensional input space: 53 random input parameters (physical laws essentially, but also initial conditions, material properties and geometrical modeling) are considered, with normal and log-normal distributions. This number is rather large for the metamodel construction problem.

Screening and linear regression strategy. To simplify the problem, we apply first a screening technique, based on a supersaturated design [START_REF] Lin | A new class of supersaturated design[END_REF] with 30 numerical experiments. This leads to the determination of the five most influential input parameters (U O 2 conductivity X 19 , film boiling heat transfer coefficient X 44 , axial peaking factor X 9 , critical heat flux X 42 , and U O 2 specific heat X 20 ). Then a stepwise regression procedure has been applied on the 30 experiments to obtain five additional input parameters and a linear regression procedure allows us to obtain a coarse linear metamodel of degree one f r (X) = 660. Note that the present strategy for the metamodel construction is relatively basic and not devoted to maximize ρ I . Controlled stratification. A first test with controlled stratification with 200 simulations was performed, which gave the following quantile estimation: 928 o C with a bootstrap-estimated standard-deviation of 7 o C, while the quantile estimation from the metamodel is 932 o C. A second test with controlled stratification with 200 simulations was performed, which gave the following quantile estimation: 929 o C with a bootstrap-estimated standarddeviation of 10 o C.

Controlled importance sampling. A biased distribution for the 10 important parameters of the metamodel has been obtained as follows. The original distributions of these independent parameters are normal or log-normal. We have considered a parametric family of biased pdfs with the same forms as the original ones, and we have selected their means and variances by (30) with y = z α and q 0 equals to the original pdf. A first test with controlled imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008 importance sampling with 200 simulations was performed, which gave the following quantile estimation: 929 o C with a bootstrap-estimated standarddeviation of 10 o C, while the quantile estimation from the metamodel is 932 o C. A second test with controlled importance sampling with 200 simulations was performed, which gave the following quantile estimation: 924 o C with a bootstrap-estimated standard-deviation of 8 o C.

Empirical estimation. A test sample of 1000 additional computations (with input parameters chosen randomly) was then carried out. We have first used this random sample to check the quality of the metamodel. We have found that ρ = 0.66, R 2 = 0.09, and ρ I = 0.54, which shows that the metamodel has poor quality (as it could have been expected). We also used the random sample to get empirical estimations of the quantile. For the full sample n = 1000 the empirical quantile estimation is 928 o C with a standard-deviation of 6 o C. For n = 200 the empirical quantile estimation is 926 o C with a standard-deviation of 12 o C. It thus appears that the controlled stratification estimator and the controlled importance sampling estimator performed with 230 simulations (30 for the screening and 200 for the controlled estimation) have better performances than the one of the empirical estimator with 200 simulations, and have performances close to the one of the empirical estimator with 1000 simulations. This shows that controlled stratification and controlled importance sampling can be used to substantially reduce the variance of quantile estimation, in the case in which a small number of simulations is allowed but a reduced cheap model is available, even if this reduced model has poor quality.

Gaussian process (Gp) strategies. In order to compare our approach (crude initial screening step before controlled stratification step) to a strategy including a more involved metamodel construction step, we propose to show some results with a Gp approach [START_REF] Sacks | Design and analysis of computer experiments[END_REF][START_REF] Schonlau | Screening the input variables to a computer model via analysis of variance and visualization[END_REF].

-First, we perform a numerical experimental design of 200 Cathare code simulations. We choose a maximin Latin hypercube sampling design, well adapted to the Gp model construction [START_REF] Fang | Design and modeling for computer experiments[END_REF]. This difficult fit (due to the high dimensionality and small database) can be realized thanks to the algorithm of [START_REF] Marrel | An efficient methodology for modeling complex computer codes with gaussian processes[END_REF], specifically devoted to this situation. The obtained Gp model contains a linear regression part (including 15 input variables) and a generalized exponential covariance part (including 7 input variables). We use the test sample of 1000 additional computations to check the predictor quality of this new metamodel: ρ = 0.84, R 2 = 0.70, and ρ I = 0.73. As expected, this Gp model quality is much better than the crude one. However, a brute-force Monte-Carlo estimation imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008 (with 10 6 computations) of the 0.95-quantile using the predictor of this metamodel gives 917 o C which underestimates the "true" quantile (928 o C). A better strategy, which could be applied in a future work, would be to choose sequentially the specific design points to improve the Gp fit around the quantile (as in [START_REF] Oakley | Estimating percentiles of uncertain computer code outputs[END_REF]).

-As a second comparison, we propose to perform the controlled stratification process with the predictor of a Gp model. We fit a Gp model with a smaller number of runs than the previous one, keeping other runs for the controlled stratification step. We choose a maximin Latin hypercube sampling design with 100 design points. Below this sampling size, Gp fitting becomes unfeasible because of the large dimensionality of our problem (53 input variables). The obtained Gp model contains a linear regression part (including 7 input variables) and a generalized exponential covariance part (including 6 input variables). The quality of this Gp model is measured via the test sample and gives ρ = 0.82, R 2 = 0.66, and ρ I = 0.37. The Gp predictivity is rather good but compared to previous one, the ρ I value shows a strong deterioration around the 0.95-quantile (the Gp model 0.95-quantile is worth 912 o C). Using the predictor of this Gp model, the controlled stratification with 200 simulations gives the following quantile estimation: 917 o C with a standard-deviation of 9 o C. This relatively poor and biased result confirms the importance of ρ I in the controlled stratification process: quantile estimation with a coarse metamodel (linear model of degree one with R 2 = 0.09), but adequate near the quantile region, is much better than quantile estimation with a refined metamodel (Gp model with R 2 = 0.66), but inadequate near the quantile region.

Table 3 summarizes all the results we have shown in this section. Other experiments, that will be shown in a future paper, have been made to compare different choices about the stratas (number and locations).

Conclusion.

In this paper, we have proposed and discussed variance reduction techniques for estimating the α-quantile of a real-valued r.v. Y in the case where: -the r.v. Y = f (X) is the output of a CPU time expensive computer code with random input X, -the auxiliary r.v. Z = f r (X) can be used at essentially free cost, where f r is a metamodel that is a coarse approximation of f . Our goal was to exploit the metamodel to obtain better control variates, stratification or importance sampling than could be obtained without it.

First, we have presented already known variance reduction techniques based on the use of Z as a control variate (CV). The CV methods allow a imsart-aoas ver. 2007/12/10 file: article_can_gar_ioo.hyper5562.tex date: February 18, 2008 variance reduction of the quantile estimator by associating to each of the n simulations Y i = f (X i ) weights that depend on Z i = f r (X i ). In the CV methods, n realizations (X i ) i=1,...,n are generated and the corresponding n outputs f (X i ) and f r (X i ) are computed. Second, we have developed an original controlled stratification (CS) method, that consists in accepting/rejecting the realizations of the input X based on the values of f r (X). A large number of realizations of the input X and a large number of evaluations of f r are used, compared to the CV methods, but the number of evaluations of the complete model f is fixed. In the adaptive controlled stratification (ACS) method, the realizations of the random input X i are sampled in strata determined by the reduced model f r , and the number of simulations allocated to each stratum is optimized dynamically. The variance reduction can be very substantial. By a theoretical analysis of the asymptotic variance of the estimator on the one hand and by numerical simulations on the other hand we have found that, if n is large enough, the ACS method is the most efficient one. Note that the a priori choice of the parameters for the CS and ACS strategies (choice of ñ, m, and β j ) plays no role in the asymptotic regime n → ∞. However, for n = 200 for instance, it plays a primary role. In this paper, a toy example with a metamodel that has the same quality (in terms of correlation coefficients) as the one we have in the real example has been used to calibrate the parameters of the CS strategy. For the time being, we have the feeling that it is the only reasonable strategy when n is not large enough to apply the asymptotic results.

Third, a controlled importance sampling (CIS) strategy has been analyzed, where the biased pdf for the CIS estimator is estimated by intensive simulations using only the reduced model. The variance reduction can be significant. However, an important condition in the present version is that only one important region exists in the state space. The use of mixed pdf models should be considered to overcome this limitation.

The methods presented in this paper suppose the availability of a reduced model or a metamodel. However, it seems to be sufficient to have a crude approximation of the computer model. In industrial practice, it is often the case due to the nonlinear effects, the high dimensionality of the inputs and the limited numbers of computer experiments [START_REF] Fang | Design and modeling for computer experiments[END_REF][START_REF] Volkova | Global sensitivity analysis for a numerical model of radionuclide migration, from the RRC[END_REF]. We can note also that a great advantage of these methods is that it is very easy to carry out the simulations on a parallel computer, with as many nodes as calls for the complex code f . One possible investigation way to improve our quantile estimation strategies for the applications would be to optimize the number of runs devoted to the metamodel construction and the number of runs devoted to the quantile estimation. Furthermore, the computer runs of the first step of the ACS method can also serve to update the metamodel; then this refined metamodel can be used in the second step. A further improvement would be to update the metamodel f r as one obtains more values of f (at least occasionally) during the second step. However this strategy goes against the parallelization of the method and one should be cautious and conservative in order to avoid bias, but it is certainly an interesting direction of research.

The different tests performed on our industrial application have shown that the metamodel quality has to be sufficient near the quantile region. The quality criterion ρ I has been identified as a good measure of the potential performance of the controlled stratification process. Another quantile estimation technique, the sequential construction of a Gaussian process model [START_REF] Oakley | Estimating percentiles of uncertain computer code outputs[END_REF][START_REF] Ranjan | Sequential experiment design for contour estimation from complex computer codes[END_REF], is devoted to optimize the metamodel construction near the quantile region. As a perspective of our work, we will try to apply this technique to our high-dimensional application.
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  Fig 1.Figure a: pdf of Y = f (X) and Z = fr(X) for X ∼ N (0, 1), obtained with 5 10 7 Monte Carlo simulations. Figure b: Estimation of the α-quantile of the r.v. Y = f (X) from a n-sample, with α = 95% and n = 200. The three histograms are obtained from two series of 10 4 experiments. The theoretical quantile is yα = 3.66. The mean of the 10 4 empirical estimations is 3.86 and their standard deviation is 0.83. The mean of the 10 4 CV estimations is 3.74 and their standard deviation is 0.744. The mean of the 10 4 CS estimations is 3.63 and their standard deviation is 0.381.
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  Fig 2.Figure a: pdf of Y = f (X1, X2) and Z = fr(X1, X2) for X1, X2 ∼ N (0, 1). Figure b: estimation of the α-quantile of Y from a n-sample, with α = 0.95 and n = 200.The four histograms are obtained from series of 5000 experiments. The mean of the empirical estimations is 2.83 and their standard deviation is 0.52. The mean of the CV estimations is 2.74 and their standard deviation is 0.38. The mean of the CS estimations is 2.71 and their standard deviation is 0.25. The mean of the CIS estimations is 2.77 and their standard deviation is 0.21. The theoretical quantile (obtained from a series of 5 10 7 simulations) is yα ≃ 2.75.
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Table 1

 1 Estimation of the α-quantile with α = 0.95, n = 2000, yα = 3.66

	Method	quantity mean standard deviation
	Empirical estimation	ŶEE(α)	3.66	0.33
	CV estimation	ŶCV(α)	3.65	0.29
	ACS method with 2 strata	β1	0.86	0.02
	[0, 0.95], (0.95, 1]	ŶACS(α)	3.65	0.28
		β1	0.10	0.02
	ACS method with 3 strata	β2	0.58	0.02
	[0, 0.85], (0.85, 0.95], (0.95, 1]	β3	0.32	0.01
		ŶACS(α)		

Table 2

 2 Estimation of the α-quantile with α = 0.95, n = 200, yα = 3.66
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  3 -61.79X 2 + 6.141X 6 + 589.9X 9 + 80.82X 11 -404.5X 19 +264.2X 20 -27.06X 35 + 6.161X 37 -255.7X 42 -31.99X 44

Table 3

 3 Estimation of the 0.95-quantile for the nuclear safety problem. Gp(100) (resp. Gp(200)) is the Gp model estimated from 100 (resp. 200) design points. Mm(30) is the metamodel fr estimated from 30 numerical experiments.

	Method	quantile	standard deviation
		estimation estimated by bootstrap
	EE from code (n = 1000)	928	6
	EE from code (n = 200)	926	12
	EE from Mm(30) (n = 10 6 )	932	∼ 0
	EE from Gp(100) (n = 10 6 )	912	∼ 0
	EE from Gp(200) (n = 10 6 )	917	∼ 0
	CS with Mm(30) test 1 (n = 200)	928	7
	CS with Mm(30) test 2 (n = 200)	929	10
	CS with Gp(100) (n = 200)	917	9
	CIS test 1 (n = 200)	929	10
	CIS test 2 (n = 200)	924	8
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