
HAL Id: hal-00256642
https://hal.science/hal-00256642

Submitted on 15 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traction patterns of tumor cells
Davide Ambrosi, Alain Duperray, Valentina Peschetola, Claude Verdier

To cite this version:
Davide Ambrosi, Alain Duperray, Valentina Peschetola, Claude Verdier. Traction patterns of tumor
cells. Journal of Mathematical Biology, 2009, 58, pp.163-181. �10.1007/s00285-008-0167-1�. �hal-
00256642�

https://hal.science/hal-00256642
https://hal.archives-ouvertes.fr


Journal of Mathematical Biology manuscript No.

(will be inserted by the editor)

Traction patterns of tumor cells

D. Ambrosi · A. Duperray · V. Peschetola ·

C. Verdier

Received: date / Revised: date

Abstract The traction exerted by a cell on a planar deformable substrate can be in-

directly obtained on the basis of the displacement field of the underlying layer. The

usual methodology used to address this inverse problem is based on the exploitation of

the Green tensor of the linear elasticity problem in a half space (Boussinesq problem),

coupled with a minimization algorithm under force penalization. A possible alternative

strategy is to exploit an adjoint equation, obtained on the basis of a suitable minimiza-

tion requirement. The resulting system of coupled elliptic partial differential equations

is applied here to determine the force field per unit surface generated by T24 tumor

cells on a polyacrylamide substrate. The shear stress obtained by numerical integration

provides quantitative insight of the traction field and is a promising tool to investigate

the spatial pattern of force per unit surface generated in cell motion, particularly in

the case of such cancer cells.

Introduction

Cell locomotion occurs through complex interactions that involve, among others, actin

polymerization, matrix degradation, chemical signaling, adhesion and pulling on sub-

strate and fibers [27]. When focusing on mechanical aspects only, a major issue is the

determination of the dynamic action of the cells on the environment during migration:

the cells adhere, pull on the surrounding matrix and move forward. As a cell can have

more than one hundred focal adhesion sites, it is quite difficult to obtain a pointwise
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description of the force per unit surface exerted by moving cells on a direct basis. Con-

siderations of this kind suggest that the dynamics of cell locomotion can be fruitfully

studied as an inverse problem, an idea that dates back to the seminal paper of Harris

and coworkers [17]. A thin elastic film is deformed by cell traction into a wrinkled pat-

tern and the size of the crimps is correlated to the shear load. Unfortunately, buckling

of thin film is an essentially nonlinear phenomenon and a quantitative reconstruction

of the exerted traction field would call for a non–trivial stability analysis in nonlinear

elasticity.

A quantitative methodology that obviates such a problem has been proposed in 1996

by Dembo et al. [10], using pre–stressed silicone rubber, an approach further improved

by Dembo and Wang in 1999 [9]. They deduce the traction exerted by a fibroblast

on a polyacrylamide substrate from the measured displacement of several fluorescent

beads merged in the upper layer of the gel. The gel is soft enough to remain in a linear

elasticity regime and no wrinkles form.

CELL

BEAD

GEL

Fig. 1 The experiment by Dembo and Wang. The cell exerts a traction (filled-hat arrows) on
the gel. The beads, embedded in the substrate, move from the former position (continuous-line
circle) to the new one (dashed circles). The difference in these positions gives the displacement
of the gel (empty-head arrows).

In a recent paper [2] the same biomechanical issue studied by Dembo and Wang

has been addressed using a different mathematical approach, based on the classical

functional analysis framework due to Lions [21]. The minimization of the distance be-

tween the measured and the computed displacement under penalization of the force

magnitude is stated before the elasticity equations are solved [28]. Standard derivation

of the cost function leads to two sets of elastic–type problems: the direct and the ad-

joint one. The unknown of the adjoint equation is just the shear stress exerted by the

cells we are looking for. The two systems of equations are then solved numerically by

a coupled finite element discretization.

In the present work, the adjoint method is applied to determine the traction field ex-
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erted by tumoral T24 cells on a polyacrylamide substrate of known mechanical proper-

ties. Our aim is to obtain a spatial detail of the tension field on substrates of different

stiffness, and to compare the behaviour of the cells in such a varying environment

(forces, displacements, migration velocities).

The paper is organized as follows. Methods for measuring traction forces are first pre-

sented Section 1.1, with emphasis on the classical methodology by Dembo and Wang

detailed in Section 1.2. Then the adjoint method is summarized in Section 2. Materials

and methods are detailed in Section 3. Section 4 contains the results of the computed

shear stress field as exerted by a T24 cell on a flat surface. The last section is devoted to

a comparison between the different methods including a discussion about the present

results.

1 Determination of traction forces

1.1 Methods for measuring traction forces

Several methods are available to determine traction forces exerted by cells as they move

on rigid substrates. They can be classified as follows:

– Wrinkles on elastomeric surfaces.

This is the original method proposed earlier by Harris [17] who showed that cells

in contact with an elastic medium deform the latter, enabling the formation of

wrinkles. The wrinkling patterns come from the large deformations of the sub-

strate undergoing buckling. Previous observations first reported on the possibility

to follow cell division using silicone–rubber substrates [5]. The method was fur-

ther improved when coupled with DIC–microscopy to determine accurate forces

as in the case of keratocyte migration [6]. This method is interesting but requires

complex integration due to the nonlinearity of the buckling equations.

– Beads in an elastic matrix.

This is certainly the most popular method as originally proposed by Lee et al. [20]

who used silicone substrates to study cell migration after inserting 1µm–beads at

the substrate surface. Calibration was achieved by looking at the bead motion while

applying known forces with needles (whose deflection was measured). Using this

idea, the authors determined the traction forces exerted by keratocytes, which are

larger on the sides (around 20nN), due the special motion of such crawling cells.

Using this concept, Dembo and Wang [9] used smaller fluorescent beads (200nm

in size) and determined their positions as compared to the initial one, to obtain

displacements. Then they solved the elasticity problem using the method which is

presented in more details in the next part. Usually, polyacrylamide gels are used

because their mechanical properties can be tuned (generally between 5 − 30kPa).

Several issues have been addressed by these authors, in particular the ’durotaxis’

problem [22], i.e. cells move from less rigid surfaces to more rigid ones, this being

correlated with larger traction forces (i.e. stronger focal adhesions) on the rigid

substrate. Another approach [26] has focused on the levels of forces exerted by

endothelial cells over time during spreading, showing levels reaching around 8kPa

after a few hours. This method can give a continuous description of the force field

when carried out with the proper integration method.

– Regular arrays of microneedles – the ’fakir carpet’.
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A direct way to determine local forces was proposed by Galbraith and Sheetz

[16] who developed a microsystem allowing small pillars/needles deflections to give

access to local forces exerted by cells at the adhesion sites. The method was further

improved by Balaban et al. [3] who measured stresses at focal adhesion sites (around

5nN/µm2) on different micropatterned surfaces. Finally Tan et al. [33] engineered

arrays of microneedles regularly spaced, which improved the accuracy of the method

without further calculations. Using this tool, they showed that cell morphology

controls the levels of forces exerted. Furthermore, it seems that cells adapt their

forces [29] according to the substrate’s rigidity in a linear manner. Finally the use

of similar microneedles arranged in an anisotropic fashion proved that epithelial

growth can be controlled by anisotropic rigidity [30]. Although this method is

quite promising and has a good resolution, it can only give a discrete map of

traction forces, as opposed to the classical method of Dembo and Wang [9] which,

in principle, provides the value of traction forces at any point.

1.2 The method of Dembo and Wang (1999) and recent improvements

1.2.1 Description

We assume that the polyacrylamide substrate (on which cells are deposited) is elastic

when observed at a time scale of the order of minutes to hours; this means that such

a material may actually be viscoelastic, but relaxation times are much larger than

the observation time. Under assumptions of isotropy (no preferential directions) and

homogeneity (no explicit dependence on space), the deformations are supposed to be

small: in a quantitative sense, this means that

trace
“

(∇u)T ∇u
”

≪ 1, (1.1)

where u(x, y, z) = (u, v, w) is the displacement field. Neglecting body forces and inertia,

the balance equations for the substrate read

−∇ · T = 0, (1.2)

where

T = µ(∇u + (∇u)T ) + λ∇ · ∇u, (1.3)

is the Cauchy stress tensor and µ, λ are the Lamé coefficients. The following boundary

conditions apply:

Tn = f(x, y), z = 0,

u → 0, z → −∞.
(1.4)

where n is the vector pointing in the z direction (vertical) and f is the traction exerted

by the cell at the surface. If the displacement of the substrate is known at some points

on the surface, say uo its value, it is quite obvious that we cannot plug this directly

into (1.2) to obtain f . The motivations are twofold: since u is constrained to equal uo

in some portions of the domain only, there are many f that can produce this known

displacement. Secondly, inverse problems are well known to excite high frequency com-

ponents of the (always present) experimental error and a regularization procedure is

therefore needed [32].
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Simple dimensional arguments can show that the substrate displacement is non–negligible

within heights of a few microns [32]. Since substrates are typically one hundred microns

in height, the approximation of infinitely deep half space applies and a relatively simple

Green function provides the solution of the elasticity problem. For thinner and finite

substrates, there is a much more intricate Green formulation [23]. The solution of the

problem (1.2-1.4) can then be rewritten in integral form using the Green tensor G of

the elasticity equation for the half space domain [19]:

u(x) =

Z

G(x − x
′)f(x′)dx′, (1.5)

where the integration domain is the support of f , that is the area covered by the cell.

If any information about the focal adhesion points is available, they can be used at

this stage. In practice, for every non–trivial f the integral (1.5) has to be evaluated

numerically. Three assumptions are now commonly adopted before solving the problem

numerically:

1. The substrate material is incompressible.

2. The cell exerts shear stress only, so that f = (fx, fy , 0).

3. The measured displacement uo corresponds to beads located at the very surface of

the matrigel. From a practical point of view, the focus length of the experimental

pictures must be much smaller than the characteristic vertical length of decay of

the tensional field. As the latter is of the order of few microns, both beads radius

and focus length should be order of a micron at most.

If assumptions 1 and 2 apply, the vertical component of the displacement at the surface

is identically zero and the Green tensor takes the following simplified form [32]

Gij =
3

4πEr

“

δij +
xixj

r2

”

, (1.6)

where x1 = x, x2 = y, r2 = x2 + y2. In terms of the Lamé coefficients, the Young

modulus E is defined by

E =
µ(3λ + 2µ)

λ + µ
. (1.7)

The Green tensor allows one to calculate the surface displacement by the following

simplified version of the convolution (1.5)

ui(x, y) =

Z

Gij(x − x′, y − y′)fj(x
′, y′)dx′dy′ (1.8)

Formula (1.8) provides the horizontal displacement at z = 0 given a pure shear stress fi.

If the beads are sufficiently small and shallow, assumption 3 applies and the computed

displacement field uj can be compared with the measured one.

The target of this methodology is to find the force per unit surface fi generating a

displacement very near to the experimental one in a suitable sense. The usual approach

is to minimize the quadratic mean error under force penalization [9] [32] to ensure

regularization. The basic idea of the Tikhonov regularization method is also used in

the next section in a different framework; therefore no details are provided herein

and the reader is referred to the cited literature for details. In this context we just

remark that the error minimization procedure is decoupled from the mechanical one and

applies to the discrete problem obtained covering the cell area by polygons (triangles

or quadrilaterals) where the numerical integration (1.8) is carried out.
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1.2.2 Improvements

The Fourier Transform Traction Cytometry (FTTC) method used by Butler and co-

workers [7] is based on the observation that equation (1.8) can be conveniently solved

in the Fourier components space, taking advantage of the properties of the convolution

product. A simple linear relationship between the displacements and the forces in the

Fourier space is obtained. The method has been used successfully to compute the

motion of smooth muscle cells on elastic substrates [7].

Recently, the use of thinner substrates [23] has been proposed and it seems to give

rise to accurate results, due to improved spatial resolution. This has been made possible

thanks to the use of the Green function for finite thickness elastic layer.

Finally, a recent paper [31] came to our attention recently where the authors com-

pared the efficiency and accuracy of the methods above (Boundary Element Method

BEM [9], Fourier Traction Force Cytometry FTTC [7], and Traction Reconstruction

with Point Forces [32]). It was shown that the first two methods can be improved to

reach spatial resolutions of 1µm, and combined with the third one can lead to new

advances in cell mechanics understanding.

2 Force balance and adjoint equation

In this section we briefly describe an alternative approach to obtain the pattern of

the shear stress exerted by the cell: the adjoint method [2]. If Ω is the half space, the

displacement vector field u(x) is known in a subset of the domain of the elasticity

equation Ω0 ⊂ Ω, where beads are located. The target function u0(x) has support

in Ω0. In this problem the shear stress is exerted just on the portion of the domain

where the cell lies; let us call this subdomain Ωc ⊂ Ω (see figure 2). The cell actually

adheres to the substrate just in specific small regions called focal adhesion sites, which

can be experimentally localized [1] using fluorescence for instance. No reason prevents

restricting the force support to these areas and, as a matter of fact, this information

is included in refinements of the algorithm of Dembo and Wang [31]. This assumption

is not applied here just because the information is missing from the experiments.

Here the three–dimensional elasticity system of equations is approximated by a two–

dimensional plane–stress one by vertical averaging along an effective thickness h:

−µ̂∆u − (µ̂ + λ̂)∇ (∇ · u) = f , u|∂Ω = 0, (2.1)

where

µ̂ = h
E

2(1 + ν)
, λ̂ = h

Eν

1 − ν2
.

and E and ν are the Young modulus and the Poisson ratio respectively. h is the

averaging depth fixed by the depth of field of the microscope. In our case h is 1.5

microns; the beads lying below such vertical coordinate are not in focus and therefore

their position is not measured. Consequently the displacement u should be understood

as the average displacement along h, which is nearly the displacement of the center of

the beads.

The functional J(f) measures the difference between the displacement field produced

by f and the experimental one u0 under penalization of the square norm of the force



7

Ωc

Ω
Ω

Ω
Ω

o

o

o

Fig. 2 The domain Ω of the elasticity equation contains the subdomain Ωc, the area covered
by the cell, where the force applies: in the figure it is enclosed by the continuous bold line.
The dashed circles are centered at the beads location and their collection represents the Ω0

subdomain where the displacement is known.

field itself. It is defined as follows:

J(f) =

Z

Ω0

|u − u0|
2 dV + ε

Z

Ω
|f |2dV, (2.2)

where ε is a real positive number. We look for g minimizing J :

J(g) ≤ J(f), ∀f ∈ Vc, (2.3)

where Vc ⊂ L2(Ω) is the space of the finite energy functions with support in Ωc. The

minimization of J accomplishes the minimization of the distance of the solution from

the measured value u0 under penalization of the magnitude of the associated force per

unit surface f . The penalty parameter ε balances the two requirements.

Variational derivation of J(f) and introduction of the adjoint differential equation

yields the following direct and inverse systems of partial differential equations [2]

−µ̂∆u − (µ̂ + λ̂)∇ (∇ · u) = −
χc

ε
p, u|∂Ω = 0,

−µ̂∆p − (µ̂ + λ̂)∇ (∇ · p) = χou − u0, p|∂Ω = 0.
(2.4)

The value of the penalty parameter ε and the averaging depth h can be fixed on the

basis of arguments suggested by modal analysis. In the special case Ω0 = Ωc = Ω under

periodic boundary conditions, modal analysis applies and the system of Equations (2.4)

rewrites just like a Tikhonov filter. The amplitude of the Fourier components of the
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solution uk, pk satisfies the algebraic relation

hEk2uk ≃−
1

ε
pk,

hEk2pk ≃uk − u0,k,

(2.5)

that is

uk ≃
u0,k

1 + εh2E2k4
. (2.6)

where u0,k represents the amplitude of the k-th Fourier component of u0. Accord-

ing to equation (2.6), if the data is known all over the domain the system of equa-

tions (2.4) is nothing but a filter damping the modes corresponding to wavenumbers

& ε−1/4h−1/2E−1/2. The choice of ǫ can be interpreted in terms of filtering modes

falling below the experimental accuracy. A closer inspection of Equation (2.6) reveals

that the key parameter of the inversion procedure is actually h2ǫ and the solution does

not change for combinations of the averaging layer h and penalty parameter ǫ that

preserve this quantity.

The choice of the penalty parameter (also called regularization parameter in discrete

inverse problems) is a delicate subject and it has been extensively discussed in the rele-

vant literature. Basically it should be chosen to damp components whose wavenumber

has no physical meaning because they are below the experimental resolution. It is ev-

ident that no inversion technique can account for variations of the shear stress at a

spatial scale smaller than the minimum distance between two beads and, even though

the beads are quite dense, the determination of the position of their centers is subject

to a noise. Several possible strategies can be addressed to find out the optimal value

of ǫ in a suitable way; the interested reader can refer to the very accurate paper by

Schwarz et al. [32]. In this work we simply take the minimum value of ǫ that does not

yield erratic results in the displacement (the L-curve criterion).

3 Materials and methods

In this paper the mathematical methodology illustrated above is applied to determine

the stress field exerted by T24 tumor cells on a flat deformable substrate. The experi-

mental procedures that have been used are based on the work by Dembo and Wang [9]

and are given below.

– Gels of different stiffness have been prepared by tuning the ratio between poly-

acrylamide and bis–acrylamide components. Three different gels have been used

containing x% of polyacrylamide (x taking the values 5 − 7.5 − 10 going from the

softer to the harder gel) and the bis–acrylamide percentage is 0.03%. Their me-

chanical properties have been measured by conventional dynamic rheometry tests

(Malvern rheometer, Gemini 150). Sinusoidal oscillations with a known deforma-

tion γ = γ0 sin(ωt) are applied within the linear regime (small enough deformation

γ0 ∼ 0.01) at different angular frequencies ω. The stress response σ = σ0 sin(ωt+φ)

(where σ0 is a constant stress and φ is the phase angle) is measured and the elastic

(G′) and viscous moduli (G”) are deduced.

Experiments show a constant G′ (elastic modulus) when the frequency ω ranges

from 0.1 to 10Hz. The loss modulus G” is usually lower by two orders of magnitude

(data not shown). We deduce the value of the elastic modulus E = 3G′ and find
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1.95 kPa, 6.3 kPa and 9.9 kPa for the soft, medium and hard gels respectively.

Note that the hypothesis that E = 3G′ is relevant here in view of a recent work [4]

showing that ν ∼ 0.48 in such polyacrylamide gels. This means that our hypothesis

of incompressible material (i.e. ν = 0.5) is quite good, and is not responsible for the

differences found as compared to other methods. Such comparisons are shown in

Figure 3 where our results are found to be close to the ones obtained by Pelham and

Wang [25] or Boudou et al. [4]. Since our method relies on no further hypotheses

and is based on the use of large samples, we have good confidence in our data. Other

techniques which can be used are traction tests [13, 25], micropipette experiments

[4], AFM [13,14], or rheometry [35].

Fig. 3 Elastic moduli E (kPa) as a function of the bis-acrylamyde percent. Values from other
authors are also reported [4, 13, 14, 25, 35] for the case of 10% polyacrylamide concentration
and a few other concentrations.

Gels were prepared on a silanated square coverglass 22mm x 22mm and covered

with a circular coverglass (35mm diameter) functionalized with NaOH (0.1M),

APTMS (10mn), and 0.5% glutaraldehyde (30mn).

– Fluorescent beads (Molecular Probes) of 0.2 micrometers of radius were seeded as

the gels were prepared. After addition of the cross–linker, beads were added, the

gels were set onto the square coverglass, and the circular coverglass was brought

carefully to capture the gel and the square coverglass. This avoided to flip the

preparation. Indeed beads need to sediment fast so that there will come close to

the gel upper surface.
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– After the gel was polymerized (nearly 30 minutes), the square coverglass was re-

moved and sulfo–Sanpah 1mM was added to functionalize the gel (15 minutes

under UV). This was achieved twice, and the surface was rinced with PBS. Finally

a 20µg/ml fibronectin solution was used overnight to bind the above surface.

– Cancer cells of epithelial bladder type (T24) were then seeded. They adhered usu-

ally rapidly and spred. This cell line is known to be of an average invasive type.

– The coverglass was attached at the bottom of a 35mm–culture dish (containing

culture medium) in order to carry out microscopic observations. Two types of

images were made: a phase contrast one to observe the cell and its contour, and a

fluorescent one focused on the beads (at a slightly different z–position). The depth

of field of the images was 1.5 micrometers. Everything was carried out automatically

in order to take one set of images at regular time steps (10mn, for example).

– Images were then collected and treated using the ImageJ software [18], to determine

trajectories and/or displacements with respect to the initial position. The initial

beads position was determined at the end of the experiment by adding distilled

water to detach the cells.

4 Numerical results

Equations (2.4) have been discretized by a finite element method using linear ba-

sis functions on an unstructured mesh. The two resulting linear systems were solved

numerically using a global conjugate gradient method, thus avoiding any iterative cou-

pling [28]. The computational domain was a square box with side of about 100 microns.

The Young moduli of the substrates are 9.9 kPa, 6.3 kPa, 1.95 kPa, as detailed in the

previous section.

In Figure 4 an example of the numerical setup is shown: in a part of the domain, the

cell contour, the displacement of the beads and the computational mesh are plotted.

The cell contour represents the boundary between internal and external elements. Note

that some nodes of the mesh correspond to the original beads location while others do

not: they have been created for the sake of regularity of the computational grid. The

present approach ensures a full flexibility in this respect. According to the notations

introduced in the previous sections, the cell contour defines Ωc while the collection of

the elements that have at least one node with measured displacement defines Ω0.

The computed displacement u is in general different from uo, the difference increasing

for larger ε. The mean difference between the calculated and the measured solution for

the specific case of Figure 4 is

1

n

v

u

u

t

n
X

i=1

(ui − u0,i)2 = 5.3 10−3 µm (4.7)

where the sum runs over all the nodes where uo is known. The mean quadratic error

has this order of magnitude for all the computations to be shown below.

In Figures 5-7 cell pictures are shown together with the numerical results corresponding

to gels showing decreasing stiffnesses. The first image is (a) the phase-contrast image

of the cell; note that in this representation the beads are not visible: as they fluoresce

they are recorded with the fluorescent microscopy technique. Beads displacements are

shown in (b) after particle tracking is performed thanks to the ImageJ software. The

shear stress is shown in terms of vectors (c) or color map showing the magnitude (d).
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Fig. 4 Graphical representation of the numerical setup: the computational mesh, made of
triangles, is represented in light grey. The mesh satisfies two constraints: it has a node at every
point where displacement is known (the arrows have been measured and a sequence of element
sides coincides with the boundary of the cell. The reference vector at the bottom left corner is
0.5 microns long.

The experimental and numerical results show some features that are well known in

the relevant literature and here read as a confirmation of the validity of the procedures.

Cells are more convex and more active when adhering to a soft substrate, whereas they

are more elongated and develop larger forces on a stiff substrate. Secondly, the force

per unit surface generated by tumor cells (∼ 100 pN/µm2) is weaker than the one

typically exerted by fibroblasts, which is of the order of thousands of picoNewton per

micron squares, and have been originally used in the literature to apply this kind of

methodology [9,22].
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(a) (b)

(c) (d)

Fig. 5 T24 cell adhering on a stiff polyacrylamide substrate (E = 9.9 kPa). The cell is quite
flattened on the surface and exhibits a spiky contour (a). Some displacement vectors below and
around the cell are known (b). The axis scale is in microns. The shear stress is shown in terms
of vectors (c) or color map of the magnitude (d). The traction force has maximum magnitude
corresponding to about 200 pN/µm2. Note that on this substrate the cell produces filopodia
which appear on the edges and attach the gel out of the cell contour. Filopodia seem to have a
minor dynamical effect being essentially aimed at addressing the direction of the motion and
their role is not taken into account in the present model. Reference vectors for displacement
and stress stand for 0.5 µm and 100 pN/µm2 respectively.

The migration of T24-cells on the most rigid substrate, as an example of random

migration for such invasive cells, is shown in Figure 8. The T24–cell is first adhering

in the lower right part. Then it begins to move in a random manner until it elongates

a bit then it starts to move its upper right part to each side to see whether it can bind

efficiently. This is achieved after roughly 16mn and new adhesions are formed in the
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(a) (b)

(c) (d)

Fig. 6 T24 cell adhering on a medium stiffness polyacrylamide substrate (E = 6.3 kPa). The
cell is more rounded than in the rigid case (a) while the displacement field appears to be
of the same order of magnitude (b). The axis scale is in microns. The shear stress is shown
in terms of vectors (c) or color map of the magnitude (d). The traction force has maximum
magnitude corresponding to about 140 pN/µm2. Note that in this case few beads are detected
in focus under the cell and consequently the stress field is less reliable. Reference vectors for
displacement and stress stand for 0.5 µm and 100 pN/µm2 respectively.

upper left part. This can be seen by the larger forces in red in Figure 8d-e. At the

same time, the high forces produced make it break its lower right adhesion site (in red

also) as seen in Figure 8e-f. This large adhesion site is removed and the cell contracts

its rear part to join the rest of the cell (upper right).

Discussion

4.1 Modelling aspects

In this paper an adjoint–based method has been applied for solving the inverse problem

to obtain the shear stress exerted by T24 tumor cells on an elastic substrate. The

novelty of the paper is the application of a recent methodology (alternative to Dembo

and Wang) to determine the stress exerted by a particular cell line (T24 tumor cells)

not yet investigated.
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(a) (b)

(c) (d)

Fig. 7 T24 cell adhering on a very soft polyacrylamide substrate (E = 1.95 kPa). The cell is
more convex than in the rigid case (a) while the displacement field appears to be of the same
magnitude (b). The axis scale is in microns. The shear stress is shown in terms of vectors (c)
or color map of the magnitude (d). The traction force has maximum magnitude corresponding
to nearly 50 pN/µm2. Reference vectors for displacement and stress stand for 0.5 µm and
100 pN/µm2 respectively.

A few comments can be drawn on a theoretical basis. The classical method of

Dembo and Wang is based on the knowledge of the exact solution of the elasticity

equation in a half plane under linearity assumptions, and for an isotropic and homo-

geneous medium. By numerical quadrature such an exact solution is part of a discrete

minimization algorithm that provides the shear stress under regularization based on

the Tikhonov method.

Conversely, the adjoint method does not exploit the knowledge of an exact solution

and does not decouple the direct and inverse problems: variational arguments yield

two coupled sets of partial differential equations to be solved by a suitable numerical

method (Finite Elements, for instance).

The computational cost of the two methods can be estimated for a shear force

f to be calculated at N points. The method by Dembo and Wang requires N sums

to compute the integral (1.8) for all the N nodes, while the solution of the linear
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Motion of a T24 cell on a rigid gel (E = 9.9kPa), t = 0, 8, 16, 24, 30, 40 mn. The cell
first adheres strongly (red region) at its lower right part (a), then starts to move upward left
by random migration (b-c-d) until it eventually forms new adhesion sites at the upper left sites
(d-e). At this precise time, it is able to contract and detach its rear by first decreasing forces
while elongating (e), then achieving detachment to bring the rest of the body to the upper left
part (f). Note that the colour scale is reset to range between minimum and maximum in each
frame.

system arising from the finite element discretization is usually solved by an iterative

linear solver that typically involves order N operations. Therefore the computational

cost of the adjoint method scales like N , while the usual one scales like N2. This

difference is essentially due to the local nature of the finite element basis, leading to a

sparse stiffness matrix. Conversely, the quadrature (1.8) is an (explicit) sum spanning

the whole computational domain. This issue has been addressed by Sabass et al. [31]

who proposed a splitting of the elastic field into spatial ranges that require a different

numerical accuracy.

The adjoint method is approximate because it does not use an exact solution of

the elasticity equation, but a vertically averaged system of equations between 0 and

−h. However, the non–dimensional number characterizing the differential equations

involves this somehow arbitrary vertical height through a combination of h and ǫ,

which is an actual parameter to be fixed by the regularization method. Both methods

require numerical integration. A specific character of the adjoint method is that it

automatically satisfies the force equilibrium condition: integrating equation (2.4) over

a domain containing Ω, making use of the divergence theorem, then one immediately

finds that the average force f is zero, as expected for a system in equilibrium.
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4.2 Experimental results

In order to compare our results with previously published works, we first looked at the

results by Dembo and Wang [9] and compared them with Lo et al. [22] where migrating

3T3 fibroblasts on collagen–coated gels are studied. For the 6kPa polyacrylamide gel,

maximum traction forces on the edges are about 7kPa [9]. In the second paper [22],

respective values of 6kPa and 11kPa are found for the forces exerted on gels of rigidity

14kPa and 30kPa respectively, and velocities are roughly 0.4µm/mn and 0.2µm/mn.

This means that lower values are found. Finally, in the recent work of Sabass et al. [31],

mouse embryo fibroblasts are shown to develop maximum traction forces of 2kPa on a

10kPa polyacrylamide substrate. These values are more or less in the same range and

give an order of magnitude, although they do not seem to be reproducible. Another

approach uses epithelial Madin-Darby canine kidney cells (MDCK) on an array of

microneedles [12]. It is a bit difficult to compare the data because the matrix rigidity

is not exactly determined (the crosslinked silicone substrate making the microneedles

is known to have an elastic modulus of 1.5 MPa, but nothing is said about the whole

equivalent substrate). On such a substrate, MDCK cells exert stresses of 1kPa, a value

similar to the ones developed by fibroblasts. Our results on T24 cell migration clearly

show much smaller values of maximum forces, in the range 0.05 − 0.2kPa. This is

a new and promising result, suggesting possible applications of this study to cancer

cell migration in general. Other comparisons can be made with endothelial cells [26]

moving on RGD–coated polyacrylamide gels (2.5kPa) with traction forces in the range

of 2− 8kPa. To our knowledge, the only case where such small forces are found is that

of airway smooth muscle cells (HASM) advancing on collagen–coated polyacrylamide

gels (E = 1.2kPa) [7] exhibiting traction forces in the range of 0.1 − 0.4kPa. The

precise mechanisms to explain such behaviors still need to be understood.

Durotaxis has been studied previously and reveals the ability of cells to develop

large focal adhesions when in contact with a rigid substrate. This type of mechanism,

discussed by Choquet et al. [8] is dependent on the growth of contact adhesions mainly

of the integrin–cytoskeleton type. In particular, it was shown [22] that traction forces

are stronger when the matrix rigidity increases. This work is another confirmation of

this result because, as shown in Table 1, the maximum force exerted by T24 cells

increases (from 0.05kPa to 0.2kPa) with the elastic gel modulus (from 1.95kPa to

9.9kPa). Although this result is not new, it shows that this cancer cell line behaves in

a similar manner on an elastic gel. In another approach, Saez et al. [29] have shown

that MDCK cells on a ’fakir’ substrate with different needles rigidity exert traction

forces proportional to the elastic spring constant of the needles. This would mean that

the ratio of force to elasticity is constant, in other words the deformations are the same

whatever the rigidity. This is also what was postulated by Discher et al. who made the

same observations [11] and found that typical strains on such deformable substrates

come close to 3− 4%. As shown in table 1, it seems that such an assumption is not so

crude, because our findings come close to a constant ratio of the parameter Maxstress
Rigidity ,

of the order 2% within experimental uncertainty.

In Figure 8, we exhibited for the first time the motion pattern of a whole cell in

terms of traction forces. This way of locomotion is similar for several types of cells.

Only keratocytes [6, 20] have the ability to move with a ’crescent’ shape by pulling

mainly on the sides. The way T24 cells move is more standard and comparable to

the classical four–step picture [1] which requires the formation of a lamellipodium at

the front, the development of new focal adhesions, the contraction of the cell, and the
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Table 1 Features of T24 cells on different gels.

Gel rigidity Max. stress Velocity of migration Stress/Rigidity

(kPa) (kPa) (µm/mn) (adimensional)

1.95 0.05 1.2 0.026
6.3 0.14 0.4 0.022
9.9 0.2 0.2 0.02

release of bonds at the rear. Figure 8 illustrates these mechanisms perfectly in terms

of forces. Our T24 cell first explores new regions until it binds, then it pulls on these

bonds to detach the rear part (uropod). We have determined the velocity of migration

of such a motion; it is presented in Table 1. We can clearly see that the cell velocity is

larger on less rigid gels. This is in agreement with other works [11,22], and this idea is

explained by the ability of a less–adhering cells to move faster, as they do not require

to detach strong bonds. Finally, we may conclude that cell migration is a very complex

mechanism which requires to take into account several aspects: cell adhesion/substrate

affinity, cell microrheology [34] i.e. its ability to change its mechanical properties, and

cell signaling as well as biochemical activity. A clear example of this complexity is

given by the bell shape of the migration velocity curve as a function of substrate

ligand density [24]. We do not pretend to give an answer to this difficult mechanism,

but the simple resolution proposed here already retains the major common aspects of

cell migration.

The present method has been applied to study the traction ability of T24 cancer

cells adhering to a polyacrylamide substrate of tuned stiffness, with Young moduli

ranging roughly from 2 kPa to 10 kPa. Further statistical analysis are still required to

investigate more results. Although this technique may not be as accurate as recently

proposed ones [23,31], it still allows to confirm features already observed with other cells

(influence of substrate rigidity, forces, velocities), as shown here. It may become a very

valuable tool to quickly study the dynamics of migrating cancer cells, in relation with

their invasiveness. In addition, other aspects of cell properties (interactions, collective

effects, time-dependent processes) might also be studied efficiently.
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tielles, Dunod et Gauthier–Villard, Paris (1968).
22. Lo, C.M., Wang, H. B., Dembo, M. and Wang, Y. L., Cell movement is guided by the

rigidity of the substrate, Biophys. J., 79:144–152 (2000).
23. Merkel, R., Kirchgessner, N., Cesa, C.M. and Hoffman, B., Cell force microscopy on elastic

layers of finite thickness, Biophys. J, 93:3314–3323 (2007).
24. Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A. and Horwitz, A.F.,

Integrin-ligand binding properties govern cell migration speed through cell-substratum
adhesiveness, Nature, 385:537-540 (1997).

25. Pelham, R.J. and Wang, Y., Cell locomotion and focal adhesions are regulated by substrate
flexibility, Proc. Natl Acad. Sci. USA, 94, 13661–13665 (1997).

26. Reinhart-King, C.A., Dembo, M. and Hammer, D.A. The dynamics and mechanics of
endothelial cell spreading, Biophys. J., 89:676–689 (2005).

27. Ridley, A.J., Schwartz, M.A., Burridge, K, Firtel, R.A., Ginsberg M.H., Borisy, G., Par-
sons, J.T., Horwitz, A.R., Cell Migration: Integrating Signals from Front to Back, Science

302:1704–1709 (2003).
28. Rincon, A. and Liu, I.S., On numerical approximation of an optimal control problem in

linear elasticity, Divulgaciones Matemáticas, 11:91–107 (2003).
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