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INTRODUCTION

The control of boost DC-AC converters is usually accomplished tracking a reference (sinusoidal) signal. The use of this external signal makes the closed-loop control system to be nonautonomous and thus, making its analysis involved. In [START_REF] Gordillo | Autonomous oscillation generation in electronic converters[END_REF][START_REF] Pagano | Autonomous oscillation generation in the boost converter[END_REF] a different approach was used: a control law was designed for the boost converter in order to stabilize a limit cycle corresponding to the desired behavior. No external signals were needed. Nevertheless, the use of a boost converter prevents the achievement of zero-crossing signals and, thus, AC current was not achieved. This problem was solved in [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] with the use of a double boost converter as was proposed in [START_REF] Caceres | A boost DC-AC converter: analysis, design, and experimentation. Power Electronics[END_REF]. A phase-lock loop was necessary for the correct operation of the circuit as well as for synchronization with the electrical grid. Only the case of known resistive load was considered. In [START_REF] Albea | Adaptive control of the boost DC-AC converter[END_REF] unknown loads were considered using an adaptation mechanism.

The control law designed in [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] does not achieve global stability due to two reasons: on one hand, the ideal control signal cannot ⋆ This research has been partially supported by the MCyT-FEDER grant DPI2006-07338.

be implemented globally because of the saturation of the actual circuit. On the other hand, the circuit imposes physical constraints in some state variables -namely, the capacitor voltages cannot be negative. In this paper we deal with the problem of estimating the resultant region of attraction. This is a difficult problem due to the nonlinear character of both, the open-loop system and the control law, which is solved by Sums of Squares optimization [START_REF] Prajna | Introducing SOSTOOLS: a general purpose sum of squares programming solver[END_REF].

The rest of the paper is organized as follows: in Sect. 2 the model of the double boost converter (boost inverter) is presented. Section 3 states the problem and Sect. 4 recalls the sum of squares optimization technique. In Sect. 5 this technique is used to solve the problem and Sect. 6 presents the conclusions.

BOOST INVERTER MODEL

The boost inverter is specially interesting because it generates an AC output voltage larger than the its DC input. This converter achieves DC-AC conversion. It is composed of two DC-DC converters and a load connected as shown in Fig. 1. Each converter produces a DC-biased sine wave output, V 1 and V 2 , so that each source generates an unipolar voltage. The circuit implementation is shown in Fig. 2. Voltages V 1 and V 2 should present a phase shift equal to 180 • , which maximizes the voltage excursion across the load [START_REF] Caceres | A boost DC-AC converter: analysis, design, and experimentation. Power Electronics[END_REF].

It is here assumed that:

• all the components are ideal and the currents of the converter are continuous, • the inductances L 1 = L 2 , and the capacitances C 1 = C 2 , are known and symmetric.

V 1 V 2 + + load - - converter converter A B Fig. 1. Basic representation of the boost inverter. Vo V in vc 1 vc 2 C 2 C 1 R 0 L 1 L 2 Q 1 Q 2 Q 3 Q 4 + + + - - - Fig. 2. Ideal Boost DC-AC Converter.
The circuit in Fig. 2 is driven by the transistor ON/OFF inputs Q i . This yields four modes of operations as illustrated in Fig. 3. Following [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF], the converter dynamic equation are

L 1 di L1 dt = -u 1 v c1 + V in C 1 dv c1 dt = u 1 i L1 - v c1 R + v c2 R L 2 di L2 dt = -u 2 v c2 + V in C 2 dv c2 dt = u 2 i L2 + v c1 R - v c2 R
As usual, we consider an averaged model described in terms of the mean currents and voltages values. Hence, u 1 and u 2 , which reflect the mean duty-cycle activation percent of each circuit, are regarded continuous variables, u i ∈ [0, 1], i = 1, 2, being more suited for control because it is described by a "continuous"time smooth and nonlinear ODE by using the following change of variables

Vo Vo V in V in C 2 C 2 C 1 C 1 R 0 R 0 L 1 L 1 L 2 L 2 Q 1 Q 1 Q 2 Q 2 Q 3 Q 3 Q 4 Q 4 + + + + + + + + + + - - - - - - - - - - vc 1 vc 1 vc 2 vc 2 i L1 i L1 i L2 i L2 ON ON ON ON OF F OF F OF F OF F º Vo Vo V in V in C 2 C 2 C 1 C 1 R 0 R 0 L 1 L 1 L 2 L 2 Q 1 Q 1 Q 2 Q 2 Q 3 Q 3 Q 4 Q 4 + + + + + + + + + + - - - - - - - - - - vc 1 vc 1 vc 2 vc 2 i L1 i L1 i L2 i L2 ON ON ON ON OF F OF F OF F OF F Fig. 3. Operation modes x 1 = 1 V in L 1 C 1 i L1 (1) 
x 2 = v C1 V in (2) 
x 3 = 1 V in L 1 C 1 i L1 (3) x 4 = v C1 V in (4) and defining t = 1 √ L 1 C 1 t (5) 
This averaging process yields the normalized model described next.

Normalized averaged Model

A normalized model, in terms of the averaged current x 1 , x 3 and the averaged voltage x 2 , x 4 is:

ẋ1 = -u 1 x 2 + 1 (6) ẋ2 = u 1 x 1 -ax 2 + ax 4 (7) ẋ3 = -u 2 x 4 + 1 (8) ẋ4 = u 2 x 3 + ax 2 -ax 4 (9)
where u 1 and u 2 are treated as continuous variables and a is defined as a = 1 R0 L1 C1 . R 0 may be known [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] or unknown (case of adaptive control [START_REF] Albea | Adaptive control of the boost DC-AC converter[END_REF]).

PROBLEM FORMULATION

In [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] a control law was designed for system (6)-( 9) in order to make the output y to oscillate as a sinusoidal signal with a given amplitude i.e.

y = x 2 -x 4 → y r = A cos(ωt + ϕ)
with a pre-specified value for A, and ω. The phase shift ϕ is no specified.

Under the assumption that a is constant and known, in [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] a nonlinear control law based on Hamiltonian approach was proposed. The design is based on the following change of coordinates: 10) 12)

η 1 = x 2 1 + x 2 2 2 (
η 2 = x 1 -ax 2 2 + ax 2 x 4 + η 20 (11) η 3 = x 2 3 + x 2 4 2 (
η 4 = x 3 -ax 2 4 + ax 2 x 4 + η 40 (13)
The aim of the control design is to render the following functions

Γ 1 = ω 2 (η 1 -η 10 ) 2 + (η 2 -η 2 20 ) 2 -µ Γ 2 = ω 2 (η 3 -η 30 ) 2 + (η 4 -η 2 40
) 2 -µ tend to zero. These goals describe two ellipses in the current-voltage plane. η 10 , η 20 and η 30 , η 40 are the respective centers and ω, µ are related to their size. These parameters can be computed from the desired output behavior. Based on this definition, the nonlinear control law as proposed in [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] has the following form:

u 1 = 1 + 2a 2 x 2 2 -3a 2 x 2 x 4 + a 2 x 2 4 + ax 2 ẋ4 x 2 + 2ax 1 x 2 -ax 4 x 1 + kΓ 1 (η 2 -η 20 ) + ω 2 (η 1 -η 10 ) x 2 + 2ax 1 x 2 -ax 4 x 1 (14) u 2 = 1 + 2a 2 x 2 4 -3a 2 x 2 x 4 + a 2 x 2 2 + ax 4 ẋ2 x 4 + 2ax 3 x 4 -ax 2 x 3 + -kΓ 2 (η 4 -η 40 ) + ω 2 (η 3 -η 30 ) x 4 + 2ax 3 x 4 -ax 2 x 3 ( 15 
)
The design is completed with an additional outer loop (PLL) that has the function of synchronize the phase shift of 180 • between the two voltages V 1 , and V 2 reaching in that way the desired objective.

In [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] it is proved that, with this control law, for all initial conditions except the origin the trajectories of the resultant system tend to the curve Γ i = 0; i = 1, 2. Nevertheless, there exist several constraints in the state variable that make this analysis useless from the practical point of view. These constraints are of several types:

C1. Constraints 0 ≤ u i ≤ 1; i = 1, 2 makes control law ( 14)-( 15) not to be feasible in the full state space. In practice u i = 1 when the above expressions give values greater than 1 and, on the contrary, u i = 0 when the expressions give negative value. This constraint is soft in the following sense: if the system arrives at a point where the constraints are violated, the analysis of [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] is not longer valid for the system with constraints, but this point might be in the attraction domain of the desired limit cycle. C2. Capacitor voltages cannot be negative in this circuit, which implies x i ≥ 0; i = 2, 4. This is a hard constraint since this situation should be avoided. C3. Finally, control law is not feasible when any of the denominators in ( 14)-( 15) is zero.

Really, this constraint is contained in the previous one, since denominators close to zero would imply large (positive or negative) values for u.

The objective of this paper is to obtain a (possibly conservative) estimation for the region of attraction of the resultant system taking into account these physical constraints.

SUM OF SQUARES OPTIMIZATION

Sum of squares optimization is an optimization technique based on the sum of squares decomposition for multivariate polynomials. A multivariate polinomial p(x) is said to be a sum of squares (SOS) if there exist polynomials f 1 (x), ..., f m (x), such that

p(x) = m i=1 f 2 i (x)
and therefore, p(x) ≥ 0 [START_REF] Prajna | SOSTOOLS, Sum of Squares Optimization Toolbox for MATLAB[END_REF].

A sum of squares (SOS) program has the form [START_REF] Prajna | SOSTOOLS, Sum of Squares Optimization Toolbox for MATLAB[END_REF]:

Minimize the linear objective function

w T c,
where c is a vector formed from the (unknown) coefficients of:

• polynomials p i (x), for i = 1, 2, ..., N 1 • sum of squares p i (x), for i = N 1 + 1, ..., N 2 such that a 0,j (x) + N i=1 p i (x)a i,j (x) = 0 for j = 1, 2, , . . . , M 1 . a 0,j (x) + N i=1 p i (x)a i,j (x) are SOS, for j = M 1 + 1, . . . , M 2 .
where w is the vector of weighting coefficients of the linear objective function, and a i,j (x) are some scalar constant coefficient polynomials.

Currently, sum of squares programs are solved by reformulating them as semidefinite programs (SDPs), which in turn are solved efficiently e.g. using interior point methods. Several commercial as well as non-commercial software packages are available for solving SDPs. SOSTOOLS [START_REF] Prajna | Introducing SOSTOOLS: a general purpose sum of squares programming solver[END_REF] is a Matlab toolbox that performs this conversion automatically and call the SDP solver, and converts the SDP solution back to the solution of the original problem.

ESTIMATION OF THE REGION OF ATTRACTION

The problem at stake can be considered to belong to the following class of problems: Given a control system ẋ = f (x, u) with constraints in both the state variables and the control input g x (x) ≥ 0, g u (u) ≥ 0. Assume that a control law u = u(x) has been designed such that stability is proved when no constraints are taken into account. The problem is to estimate a region of attraction for the real system with constraints when this control law is applied.

Notice that the control objective is not necessarily stabilization of an equilibrium point, and that stabilization of limit cycles, as in our case, can be considered.

A further assumption will be adopted: stability for system with no constraints is assumed to be proved by LaSalle invariance principle.

Assumption 1. There exist a radially unbounded Lyapunov function V (x) such that, inside a compact positively invariant set Ω, V ≤ 0 (for the unconstrained system). Let M be the largest invariant subset of the set for which V = 0 in Ω.

By LaSalle invariance principle, this assumption guarantees that the trajectories of the unconstrained system tend to M . It is implicitly assumed that this is the desired behavior.

A (conservative) estimation for the attraction domain of the system with constraints is given by the following theorem Theorem 1. Under the previous assumption, assume that there exists a constant c > 0 such that in the set Ω c = {x : V (x) ≤ c} all the constraints are fulfilled. Then, all trajectories of the system with constraints starting at Ω c tend to M ∩ Ω c .

Proof Since in Ω c the constraints are fulfilled, the results for the unconstrained system are valid in Ω c . Therefore, V ≤ 0 in Ω c and Ω c is positively invariant. Fuerthermore, since V (x) is radially unbounded Ω c is compact. By applying LaSalle invariance principle the statement is proved.

Remark 1. Since M ∩ Ω c ⊂ M the theorem guarantees that the asymptotic behavior for the system with constraints is the desired one.

Remark 2. As other techniques for estimation of attraction domain, the present method is conservative. In this case is mainly due to two facts:

• The estimation of the region of attraction is restricted to surfaces of the form V = c. • The method searches for points that do not violate the constraints. Nevertheless, there may be points of this type in the actual attraction domain.

Using Theorem 1, the problem reduces to find a value c > 0 such that for V (x) < c we have g i ≥ 0, i = 1, . . . , N . When the system and the constraints are polynomial, we can raise the following SOS problem:

Maximize c subject to:

(V (x) -c) + p i (x)g i (x) -ε i are SOS; i = 1, . . . , N, (16) 
where p i are unknown SOS polynomials. The purpose of constraints ( 16) is the fulfillment of the hypothesis of Theorem 1 as is stated in the following. Notice that at the boundary of the set Ω c , V (x) = c and, thus, the above constraints reduce to p i (x)g i (x) ≥ ε i > 0. As polynomials p i are SOS, points at the boundary of Ω c fulfill the constraints g i (x) ≥ 0. Furthermore, at the interior of this set, V (x) -c < 0 and the constraint is also fulfilled. Polynomials p i introduce more degree of freedom in order to increase the problem feasibility. Constants ε i are pre-specified, small constants that are needed in order to avoid problems at the points where p i (x) = 0. The introduction of parameters ε i is a new source of conservatism.

Application to the boost inverter

In [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] it is proved that, under no constraints, for all trajectories (except the one starting at the origin) of system ( 6)-( 9) with control law ( 14)-(15) tend to the desired limit cycle. The proof was based on LaSalle invariance principle. The Lyapunov function used is:

V = Γ 2 1 2 + Γ 2 2 2 . ( 17 
)
The constraints are (only constraints C1 and C2 are presented here; constraint C3 will be discussed later):

• u i (x) ≤ 1 i = 1, 2 • u i (x) ≥ 0 i = 1, 2 • x 2 ≥ 0 • x 4 ≥ 0.
The expressions for u 1 and u 2 , which are given by ( 14) and ( 15) are not polynomial but rational functions. Nevertheless, writing them as quotient of polynomials u i (x) = n i (x)/d i (x) all the constraint can be formulated in standard form. By taking a value for x in the desired curve, it can be seen that d i (x) < 0, i = 1, 2 in the domain of interest since, by continuity, in order d i to become positive, it must vanish at some points and constraint C3 would be violated. Thus, as u i (x) ≥ 0 we have n i (x) ≤ 0 as well. Taking into account that d i must be negative, the constraint u i (x) ≤ 1 yields n i (x) ≥ d i (x). In this way the constraints become:

• n i (x) -d i (x) ≥ 0 i = 1, 2 • -n i (x) ≥ 0 i = 1, 2 • x 2 ≥ 0 • x 4 ≥ 0
Thus, the problem to solve is Minimize (-c) (18) subject to:

(V (x) -c) + p 1 (x)(n 1 (x) -d 1 (x)) -ε 1 ≥ 0 (19) (V (x) -c) + p 2 (x)(n 2 (x) -d 2 (x)) -ε 2 ≥ 0 (20) (V (x) -c) -p 3 (x)n 1 (x) -ε 3 ≥ 0 (21) (V (x) -c) -p 4 (x)n 2 (x) -ε 4 ≥ 0 (22) (V (x) -c) + p 5 (x)x 2 -ε 5 ≥ 0 (23) (V (x) -c) + p 6 (x)x 4 -ε 6 ≥ 0 (24)
Notice that constraint C3 is also imposed. Indeed, if d 1 (x) = 0, then constraint (19) reads

V (x) -c ≥ -p 1 (x)n 1 (x) + ε 1 > 0
This means that d 1 (x) cannot vanish in the domain V (x) ≤ c. The same reasoning can be applied to d 2 (x) in (20).

When this methodology is used, the achieved result is not restricted to the case of known resistive load but it is also valid for the case of unknown resistive load when the adaptation mechanism proposed in [START_REF] Albea | Adaptive control of the boost DC-AC converter[END_REF] is used. The reason is that the stability proof for the latter case is based on two-time-scales decomposition where the inverter dynamics are slow compared with the adaptation dynamics. This implies that the region of attraction for the non-adaptive case is conserved when adaptation is used.

Results

In order to test the previous results, we consider the following circuit parameters:

V in = 20V , R 0 = 100Ω, L 1 = L 2 = 1.5mH, C 1 = C 2 = 100µF . The desired output of the circuit is V out = 40 sin 50t V .
In order to obtain this voltage, the parameters are a = 0.039, ω = 0.121, A = 1, k = 1.2 and η 20 = η 40 = 0. The ellipse parameters result according to [START_REF] Albea | Control of the boost DC-AC converter by energy shaping[END_REF] are η 10 = η 30 = 12.842, µ = 0.37.

The tuning parameters ε i are chosen equal to 10 -12 .

Software SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MAT-LAB toolbox for optimization over symmetric cones[END_REF] was used as the SDP solver under SOSTOOLS. The solution is obtained in approximately two hours in a PC (1.7 GHz Centrino): c * = 0.39003.

This result is conservative as was pointed out in Remark 2. Nevertheless, taking into account the remarked limitations, the obtained value for c results to be close to the optimal value as it has been verified by simulations. Performing several tests, we have try to find points x(0) for which the constraints are violated and, on the other hand, are close to the curve V (x) = c * . One of the points found is

x(0) = (6.1, -0.2, 2.7, 2.7) ⊤

for which the Lyapunov function gives a value of V = 0.4206, while the corresponding value for control signal u 1 is equal to 1.0049. As 0.39003 is not far from c * we can consider that the previous estimation is a reasonable estimation of the form V (x) = c for the domain of attraction (and without violating the constraints).

CONCLUSIONS

An estimation of the region of attraction is presented for a nonlinear boost inverter taking into consideration the physical system constraints. The method is based on the search for a Lyapunov level surface where the constraints are fulfilled. The problem is difficult due to the system and control-law nonlinearities. This problem can be put as a Sum of Squares optimization problem, for which good numerical tools are available.

This approach has general applicability to cases where stability proof for the unconstrained problem is available (by means of Lyapunov methods) and extension to the constrained case is desired. The closed-loop system needs to be polynomial or rational (nevertheless, there exist cases where SOS programming have been applied to trigonometrical and other terms [START_REF] Papachristodoulou | On the construction of Lyapunov functions using the sum of squares decomposition[END_REF]). Conservativeness of the method has also been discussed.

The usefulness of the method has been shown by means of an example for the boost inverter.