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Abstract

Let X be a discrete time contact process (CP) on Z2 as de�ned by Durrett and

Levin (1994). We study the estimation of the model based on space-time evolution of

X, that is, T + 1 successive observations of X on a �nite subset S of sites. We con-

sider the maximum marginal pseudo-likelihood (MPL) estimator and show that, when

T ! 1, this estimator is consistent and asymptotically normal for a non vanishing

supercritical CP. Numerical studies con�rm these theoretical.

Key words: contact process, parameter estimation, supercritical process, sub-

ergodicity, marginal pseudo-likelihood, triangular martingale array.

AMS Classi�cation: 62M30, 62M05, 62F12

1 Introduction and description of the model

Consider a simple model of spread of a single species population evolving in Z2. Depending

on some biological parameters, the dynamics is determined by specifying, for each site

s 2 Z2, the conditional probability that site s will be in state Xt+1(s) = y 2 f0; 1g at time

t + 1 given Xt, the con�guration at time t. State 1 (respectively 0) means that there is

a (respectively no) plant in s. In this paper we propose an estimator for the parameters

of the model, based on observations of X at instants t = 0; : : : ; T on a �nite and �xed

subset S of Z2 and study the asymptotic properties of the estimator when the process is

non vanishing on S. Fiocco (1997) and Fiocco & Zwet (2003) considered the estimation

problem based on one observation at time t, when t is su¢ ciently large.

We consider the discrete time version of the Contact Process (CP) as de�ned by

Durrett & Levin (1994). So, let us suppose that the transition probability at a site s and
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at time t is stationary in space and time and depends locally on xt�1(N1(s)), the �rst

order neighborhood of the site s at time t� 1, where Nd(s) = fu 2 Z2 : ks� uk1 � dg.

Denote @s = N1(s) n fsg. The system evolves as follows:

a. Each plant alive at time t dies with a probability 
 at time t+ 1,

b. If a plant in s at time t survives, then for each u 2 @s it produces an o¤spring that is

sent to u at time t+1 with probability � (a surviving plant in s may produce 0 to 4

o¤springs in @s); the reproducing events for di¤erent s and u 2 @s are independent,

c. If there is one or more o¤springs sent in u at time t+ 1, or if a plant in u at time t

survives, then Xt+1(u) = 1; otherwise Xt+1(u) = 0.

Furthermore, events de�ned on (a) and (b) are independent in space and time.

This model depends on the parameter � = (
; �) and we suppose that � 2]0; 1[2. Other

models are possible by de�ning di¤erent rules of evolution (cf. Durrett & Levin, 1994;

Gri¤eath, 1981). The methods developed here can be generalized to processes with non

invariant transition in space and/or in time.

Denote � = infft : Xt(s) = 0 for each s 2 Z2g the extinction time of a CP starting

from a single occupied site. A CP is supercritical (Durrett, 1995) if there is a positive

probability for the species surviving forever, that is, P (� = +1) > 0. Since the �all 0 in

Z2�is an absorbing state, we need a condition (I) of non-extinction of X on the domain

of observation S to make sense for the asymptotic study. This condition, presented in §3,

is veri�ed for a non vanishing supercritical CP.

The paper is organized as follows. In section 2 we de�ne the marginal pseudo-likelihood

(MPL) estimator of � and in section 3 we give a result which shows that the MPL allows
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to identify the parameter. The consistency and asymptotic normality of estimator are

formulated in section 4. Proofs are postponed to section 6. Some numerical studies are

presented in section 5.

2 Marginal pseudo-likelihood (MPL)

Let x(T ) = (x0; x1; � � � ; xT ) be T + 1 successive con�gurations of X, S a �nite subset of

Z2 and S1 = fu 2 Z2 : 9v 2 S such that ku� vk1 � 1g. The estimator of � we choose is a

value which maximizes a Marginal Pseudo-Likelihood (MPL) of x(T ) observed on S1. The

idea of pseudo-likelihood is classic in statistic: gaussian pseudo-likelihood for stationary

�eld on Zd (Whittle, 1954), conditional pseudo-likelihood for a Markov �eld on a lattice

(Besag, 1974). Besag proposed a similar method for the estimation of parameters of a

simple statistical model for the spread of disease over a rectangular lattice of plants (see

the discussion of Besag in Mollison, 1977).

For A � S, and if xt(B) is the con�guration of X at time t on B, denote PA(xt; xt+1; �)

the transition-probability

PA(xt; xt+1; �) = P (Xt+1(A) = xt+1(A) j Xt(S1) = xt(S1)):

As the transition-probability for A = S is analytically intractable, as #(S); the number of

sites of S, is large, we use a marginal pseudo-transition probability MS(xt; xt+1; �) on S,

in order to estimate �. MS(xt; xt+1; �) is the product of Pfsg(xt; xt+1; �) for s 2 I(xt; S);

where:
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I(xt; S) = fs 2 S such that xt(N1(s)) 6= 0g

Since 0 < Pfsg(xt; xt+1; �) < 1 for any xt+1(s) when s 2 I(xt; S) and Pfsg(xt; xt+1; �) = 0

or 1 when xt(N1(s)) = 0 only sites of I(xt; S) are informative for �. The product of these

marginal pseudo-transitions at consecutive instants de�nes the MPL. For s 2 S and A a

�nite subset of Z2, denote m(xt; A) =
P
s2A xt(s), the number of sites of A occupied by

xt. As the model is isotropic in space, the law of Xt+1(s) given xt depends only on c(xt; s),

a summary for xt(N1(s)), where :

c(xt; s) = (xt(s);m(xt; @s)) 2 C1 = f0; 1g � f0; 1; 2; 3; 4g. (1)

More precisely, Xt+1(s) conditionally to xt is a Bernoulli random variable:

Pfsg(xt; xt+1; �) = p(xt; s; �)
1�xt+1(s)(1� p(xt; s; �))xt+1(s),

with parameter 1� p(xt; s; �) where:

p(xt; s; �) = 

xt(s)�m(xt;@s): (2)

� = 
 + (1 � 
)(1 � �) = 1 � � + 
� controls non-proliferation at time t + 1 in s from a

plant present in s0 2 @s at time t. De�ne

MS(xt; xt+1; �) =
Y

s2I(xt;S)
p(xt; s; �)

1�xt+1(s)(1� p(xt; s; �))xt+1(s) (3)
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if I(xt; S) 6= ;, and M(0; 0; �) = 1 otherwise.

The following property that states the dependency between the conditional variables

on di¤erent sites, will be useful for the calculation of the variance of our estimator. Denote

� = 
+(1�
)(1��)2 the probability of non-proliferation at time (t+1) in the set fs; s0g

of a plant present in u 2 @s \ @s0 at time t, @sO@s0 = (@snN1(s0)) [ (@s0nN1(s)); then,

P (Xt+1(fs; s0g) = (0; 0) j xt) = 
m(xt;fs;s
0g)�m(xt;@sO@s

0)�m(xt;@s\@s
0)

It follows that for s 6= s0:

Cov(Xt+1(s); Xt+1(s
0) j xt) = p(xt; s; �) p(xt; s0; �) [b(xt; s; s0; �)� 1]

where:

b(xt; s; s
0; �) =

8>>>>>><>>>>>>:

��m(xt;fs;s
0g) if s0 2 N1(s) n fsg

��2m(xt;@s\@s
0)�m(xt;@s\@s

0) if s0 2 N2(s) n N1(s)

1 if s0 62 N2(s):

(4)

In particular if s0 62 N2(s), (Xt+1(s) j xt) and (Xt+1(s0) j xt) are independent.

Let us give the explicit expression of MPL based on observation of x(T ) on S1. Denote

n(xt) the number of informative sites of the con�guration xt on S:

n(xt) = ](I(xt; S)); and n(x(T )) =
XT�1

t=0
n(xt):
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For c 2 C1, let n(xt; c) be the number of sites s 2 S with con�guration c:

n(xt; c) = ]fs 2 S : c(xt; s) = cg; and n(x(T ); c) =
XT�1

t=0
n(xt; c):

Then n(x(T )) =
P
c 6=(0;0) n(x(T ); c). The normalized log-marginal pseudo-likelihood of

x(T ) observed on S1 is:

lT;S(x(T ); �) =
1

n(x(T ))

T�1X
t=0

logMS(xt; xt+1; �).

As S is �xed, we omit in most cases the subscript S; thus I(x) or M(xt; xt+1; �) stand

for I(xt; S) or MS(xt; xt+1; �). In the same way, for a �xed x(T ), we will write n(T ) for

n(x(T )), n(T; c) for n(x(T ); c) and lT (�) � lT;S(x(T ); �). Using (3) we have:

lT (�) =
1

n(T )

T�1X
t=0

X
s2I(xt)

f[1� xt+1(s)] log p(xt; s; �) + xt+1(s) log[1� p(xt; s; �)]g. (5)

The maximum MPL estimator of � (or MPLE) is a value which maximizes the MPL,

�̂T = argmax
�
lT (�).

3 Marginal PL allows identi�cation of �

In this section we show that Marginal PL allows identi�cation of � under the condition

(I) of non-extinction of X on S :

(I) : I1 = fx = (xt; t � 0) such that n(x(T ))!1 as T !1g.
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In order to obtain this result we need to show that �c are strictly positive for two linearly

independent con�gurations, where:

�c = limT!1
n(T; c)

n(T )
:

Let C�1 be the set of con�gurations on N1(0) such that x(0) = 1. The following Lemma

states the positivity �c > 0 for c 2 C�1 under the condition (I) and is a particular case

of a the subergodicity result (see Lemma 4 in section 6) useful to prove positivity of some

pseudo-information matrix.

Lemma 1 There exists � > 0 such that, 8c 2 C�1 , and 8x 2 I1, we have �c � �:

Under (I) and for large T , � ! lT (�) allows identi�cation of �. Indeed:

� if x(T ) realizes two linearly independent con�gurations ca = (ua; va) and cb =

(ub; vb), then � 7! lT (�) is an injective function;

� under (I), the probability that each con�guration c of C�1 appears on S converges to

1 when T !1.

Remarks :

1. As a non-vanishing supercritical process is ergodic, with a spatially translation-

invariant limite law � (Durrett, 1995) satisfying �f0g(1) > 0, it follows that �c =

limT!1
n(T;c)
n(T ) exists and is strictly positive.

2. Space and/or time invariance of the transitions model is not crucial in the proof of

the subergodicity result: a similar result can be proved for non translation invariant
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models under some convenient condition that transition probabilities are uniformly

positive.

4 Consistency and normality of the MPL estimator

4.1 The results

Let f : U ! R be a real function twice continuously di¤erentiable on an open subset U of

Rd and f (1)(�) the vector of �rst derivatives. The following result sets up the consistency

and asymptotic normality of the maximum MPLE �̂T associated with (5). The proof is

postponed to section 6.

Let q(c; �) = P (Xt+1(s) = 0 j c(xt; s) = c), and AT (�o), BT (�o) the 2� 2 matrices:

AT (�o) =
1

n(T )

T�1X
t=0

X
s2I(xt)

p(1)t[p(1)]

p(1� p) (xt; s; �o) (6)

=
X
c 6=(0;0)

n(T; c)

n(T )
� q

(1) t[q(1)]

q(1� q) (c; �o)

BT (�o) =
1

n(T )

T�1X
t=0

X
s 6=s02I(xt)

[b(xt; s; s
0; �o)�1]

p(1)(xt; s; �o)
t[p(1)(xt; s

0; �o)]

[1�p(xt; s; �o)] [1�p(xt; s0; �o)]
(7)

with p(xt; s; �) given by (2) and b(xt; s; s0; �o) by (4).

Theorem 1 Let �o = (
o; �o) be an interior point of a compact � �]0; 1[2 and the true

unknown value of the parameter �. Under condition (I):

(1) The maximum MPL estimator is consistent:

lim
T!1

�̂T
a:s:
= �o:
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Figure 1: Evolution of the bias (solid lines) and standard deviation (multiplied by 100,
dotted lines) for the estimators of 
o (left) and �o (right) for the supercritical CP with
parameters 
o = 0:35; �o = 0:25.

(2) This estimator is asymptotically normal,

p
n(T ) [AT (�o) +BT (�o)]

�1=2AT (�o)(�̂T � �o)
d! G2(0; I2)

where I2 is the 2� 2 identity matrix.

5 Numerical studies

In this section we give some empirical results with S the 64 � 64 square lattice and

initial con�guration �all sites occupied�. To avoid boundary e¤ects we have used periodic

boundary conditions.

In Fig. 1 we present the evolution of the bias and the standard deviation of 
̂T and
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Figure 2: Histograms of 100 estimations of 
o (left) and �o (right) for the supercritical
CP with parameters 
o = 0:35; �o = 0:25.

�̂T for T = 1; : : : ; 99 for the supercritical CP with parameters 
o = 0:35; �o = 0:25.

Empirical study of asymptotic normality of estimators for a supercritical CP is based on

100 simulations with T = 99. Histograms are presented in Fig. 2. Asymptotic normality

is checked by using a chi-squared test at level 5% and de�ning 9 equiprobable classes.

Normality is accepted for 
̂ (resp. �̂) since �2 = 1:7 (resp. �2 = 4:4) and �20:95(6) = 12:59.

We also compared the estimated theoretical standard errors �̂
̂ ; �̂�̂ and empirical stan-

dard errors s
̂ ; s�̂ for the supercritical CP with parameter 
o = 0:35, �o = 0:25. The values

�̂
̂4 ; �̂�̂4 are obtained from a single simulation with T = 4 by applying Theorem 1 where

A4(�o) (resp. B4(�o)) are approximated by A4(�̂4) (resp. B4(�̂4)). The empirical standard

errors s
̂4 ; s�̂4 are empirical estimations obtained from the 100 estimations associated to
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the 100 simulations. The results are presented in table 1. We note that, as expected, there

are few di¤erences between estimated theoretical standard errors and empirical standard

errors.

�̂
̂4 s
̂4 �̂�̂4 s�̂4
Estimations 0.0076 0.0079 0.0059 0.0064

Table 1: Theoretical and empirical standard errors of the estimators.

Finally, Table 2 gives the estimations of 
o and �o for twelve CP with parameters

(
o; �o) 2 (0:2; 0:4; 0:6) � (0:1; 0:2; 0:3; 0:4). In these simulations, T = 4 and 40% of

randomly chosen sites were occupied at time t = 0.

� = 0:1 � = 0:2


 
̂4 �̂
̂4 �̂4 �̂�̂4 n(4) 
̂4 �̂
̂4 �̂4 �̂�̂4 n(4)

0.2 0.210 0.006 0.104 0.003 14598 0.189 0.006 0.193 0.004 15286
0.4 0.391 0.008 0.106 0.004 12402 0.399 0.008 0.188 0.005 13565
0.6 0.597 0.009 0.100 0.005 9224 0.607 0.009 0.206 0.008 10452

� = 0:3 � = 0:4


 
̂4 �̂
̂4 �̂4 �̂�̂4 n(4) 
̂4 �̂
̂4 �̂4 �̂�̂4 n(4)

0.2 0.202 0.006 0.294 0.006 15761 0.198 0.008 0.400 0.008 15843
0.4 0.394 0.008 0.305 0.007 14729 0.393 0.009 0.400 0.009 15106
0.6 0.596 0.009 0.292 0.010 11468 0.604 0.009 0.386 0.012 12402

Table 2: Estimation of the parameters and their standard deviation.

6 Proofs of Theorem 1

6.1 Proof of the consistency of �̂T

Denote n1(xt; c) the number of occupied sites s 2 S at time t + 1 with con�guration

c(xt; s) = c at time t, IA(xt) = I(xt)\A, nA(xt) = ](IA(xt)) and n1(T; c) =
PT�1
t=0 n1(xt; c):
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Lemma 2 For each subset A � S: V ar
hP

s2IA(xt)Xt+1(s) j xt
i
� (13=4) � nA(xt):

Proof : This follows as (Xt+1(s) j xt), (Xt+1(s0) j xt) are independent Bernoulli

variables when s0 62 N2(s), ](N2(s)) = 13 and V ar[Xt+1(s) j xt] � 1=4. . . . . . . . . . . . . . . . . �

Lemma 3 Let c 2 C1. If n(T; c)!1 when T !1, then n1(T;c)
n(T;c)

a:s:! 1� q(c; �o).

Proof : We apply the following result: if (an) is a sequence of real positive numbers

and bn =
Pn
k=1 ak then

P1
n=1

an
b2n
<1. For I(x; c) = fs : s 2 I(x); c(x; s) = cg, let:

�t(c; �o) =
X

s2I(xt�1;c)
fXt(s)� [1� q(c; �o)]g for 1 � t � T

ST (c; �o) =
X

t=1;T
�t(c; �o), and FT = �(Xt; t � T )

(ST (c; �o)) is a (FT )-martingale. To prove the announced result, we apply Theorem 2.18

of Hall & Heyde (1980) with XT = �T (c; �o); UT = n(T; c). It is su¢ cient to show that:

1X
T=1

E�o
�
[�T (c; �o)]

2 j xT�1
�

[n(T; c)]2
<1.

This follows from lemma 2 since E�o
�
[�T (c; �o)]

2 j xT�1
�
� (13=4) � n(xT�1; c) . . . . . . . . .�

To prove the consistency of �̂T , we apply Theorem 3.4.3 of Guyon (1995; see also

Dacunha-Castelle D. and Du�o, M., 1986). Let:

kc(�o; �) = [1� q(c; �o)]
�
log
1� q(c; �o)
1� q(c; �) � log

q(c; �o)

q(c; �)

�
+ log

q(c; �o)

q(c; �)
;

K(�o; �) =
X

c 6=(0;0)
�c � kc(�o; �):
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K(�o; �) have a single minimum at �o: indeed, K(�o; �o) = 0, and K(�o; �) > 0 if � 6= �o

since kc(�o; �) > 0 and from Theorem 1, �c > 0 for c 2 C�1 .

Denote UT (�) = �lT (�), the opposite of log-MPL. Then:

UT (�) = �
X
c 6=(0;0)

n(T; c)

n(T )

�
n1(T; c)

n(T; c)
� log1� q(c; �)

q(c; �)
+ log[ q(c; �)]

�

Since n1(T;c)
n(T;c)

as! 1� q(c; �o), it follows that:

limT!1[UT (�)� UT (�o)] � K(�o; �) a.s. on I1.

It remains to prove that there exists �k ! 0 such that Po(limT!1(WT (1=k) � �k)) = 1

where WT (�) is the modulus of continuity of UT (�). This is a direct consequence of the

compacity of � �]0; 1[2 and the fact that q is continuously di¤erentiable. This completes

the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

6.2 Proof of asymptotic normality of �̂T

We apply Theorem 3.4.5 of Guyon (1995) by verifying conditions (H1)-(H3) for the as-

ymptotic normality of the mimimum Un-contrast consistent estimator :

(H1) There exists a neighorhood V of �o over which Un is twise continuously

di¤erentiable and Po-integrable r.v. h such that for all � 2 V , U (2)n (�; x)

� h(x).

(H2) There exists a sequence (an) ! 1 such that Jn = V ar(
p
anU

(1)
n (�o))

exists and satis�es:
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(1) There exists J > 0 such that Jn > J from a certain point on.

(2)
p
anJ

�1=2
n U

(1)
n (�o) �! N(0; Ip):

(H3) There exists a sequence of nonstochastic matrices In such that In � I > 0

from a certain point and limn!1(U
(2)
n (�o)� In) = 0 in Po probability.

It is easy to check that the condition (H2) is equivalent to:

(H2�) There exists (an) ! 1 and matrices Jn satisfying (1) and (2) of the

condition (H2)

To prove asymptotic normality of �̂T we need to verify conditions (H1), (H2�) and

(H3). Let us denote p(1)(xt; s; �) the vector of �rst derivatives of p(xt; s; �) with respect to

�,

ut+1(xt; s; �) = [
Xt+1(s)

1� p � 1]� p
(1)

p
(xt; s; �); �t+1(�) =

X
s2I(xt)

ut+1(xt; s; �);

JT (�o) = AT (�o) +BT (�o) :=
1

n(T )

T�1X
t=0

V ar[�t+1(�o) j xt]

where AT (�o) and BT (�o) are given respectively by (6) and (7).

We proceed in two steps: �rstly we calculate U (1)T (�o), then U
(2)
T (�o), the matrix of

second derivatives of UT (�o), IT = AT (�o), JT = JT (�o), the pseudo-information matrices,

and show in Lemma 5 the existence of I = A(�0) > 0, J = J(�0) > 0 such that AT (�o) �

A(�0), JT (�o) � �o �J(�0) for some �o > 0. Secondly, we prove in Lemma 6 a Central Limit
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Theorem for
p
n(T )J

�1=2
T (�o)U

(1)
T (�o). We have :

U
(1)
T (�o) =

1

n(T )

T�1X
t=0

�t+1(�o), U
(2)
T (�o) = A

0
T (�o) + CT (�o), where :

A0T (�o) =
X
c 6=(0;0)

n(T; c)

n(T )
� n1(T; c)
n(T; c)

� q(1)(c; �o)
tq(1)(c; �o)

q(c; �o)[1� q(c; �o)]2
,

CT (�o) =
X
c 6=(0;0)

n(T; c)

n(T )

�
n1(T; c)

n(T; c)

1

1� q(c; �o)
� 1
�
(log q)(2)(c; �o).

Let L = fLi; i 2 Ig be a partition of S, L = fLi(t); t � 0g, an in�nite sequence of elements

of L and (c; 0) the con�guration of N2(0) such that x(N1(0)) = c and x(N2(0)nN1(0)) � 0.

De�ne

�Lc;0 = limT!1

PT�1
t=0 n

Li(t)(xt; c; 0)

n(T )

where nL(xt; c; 0) is the number of sites of S \ L with con�guration (c; 0). Let now state

the sub-ergodicity result :

Lemma 4 Let C�1 be the set of con�gurations on N1(0) such that x(0) = 1. Then there

exists � > 0 and L, a sequence of elements of L, such that, 8c 2 C�1 , and 8x 2 I1, we

have �Lc;0 � �:

Proof. We make use of the the following result : if (Yn; n � 1) is a sequence of

independent Bernoulli variables with parameter (qn; n � 1) such that � = minfqn; n �

1g > 0, then, a.s., limN!1
1
N

P
n=1;N Yn � �=2. The condition � > 0 is satis�ed if

�n = �(kn) > 0; n � 1, where kn 2 K = f1; : : : ;Kg is a �nite set.

Let C�3 be the set of con�gurations on N3(0) such that x(0) = 1. We will de�ne two

sequence of instants. The �rst one, 0 � T1 < T2 < � � � < TmT � T � 2 is the sequence of
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informative instants between 0 and T � 2 such that xt(N1(s)) 6= (0; 0) for at least one site

s 2 S. Let us denote sTk a site at time Tk such that xTk(N1(sTk)) 6= (0; 0). The second

one, 0 � T �1 < T �2 < � � � < T �m�
T
� T � 2, is the subsequence of the precedent such that

xt(s) = 1 for at least one site of S; let us denote s�T �
k�
an informative site at time T �k� .

Furthermore, we will choose sites s and s� such that sTk = s
�
T �
k�
when Tk = T �k� .

De�ne L as follows: (i) for each informative instant t = Tk, let Li(Tk+1) be the subset

of L containing sTk ; (ii) at the others instants, Li(t) may be chosen arbitrarily in L.

For each con�guration c of C�1 and k� = 1; : : : ;m�
T let Zk� = 1fXT �

k�+1
(N2(s�T �

k�
)) =

(c; 0)g. As P (Xt+1(N2(s)) j xt) depends only on xt(N3(s)), the variables (Zk� ; k� =

1; : : : ;m�
T ) are independent Bernoulli variables with parameter

q(xT �
k�
(N3(s�T �

k�
)); c) = P (xT �

k�+1
(N2(s�T �

k�
)) = (c; 0) j xT �

k�
(N3(s�T �

k�
))):

As xT �
k�
(s�T �

k�
) = 1, every con�guration (c; 0), c 2 C�1 , of xT �k�+1(N2(s

�
T �
k�
)) is obtained with

positive probability, it follows that:

�� = inffq(xT �
k�
(N3(s�T �

k�
)); c) : xT �

k�
(N3(s�T �

k�
)) 2 C�3 ; c 2 C�1 , T �k , for k� � 1g > 0:

Let, Wk = XTk+1(sTk) for k = 1; : : : ;mT . P (Xt+1(s) j xt) depending only on xt(N1(s)),

the variables (Wk; k = 1;mT ) are independent Bernoulli variables with parameter

q(xTk(N1(sTk))) = P (XTk+1(sTk) = 1 j xTk(N1(sTk))):

17



Since xt(N1(sTk)) 6= (0; 0); the con�guration XTk+1(sTk) = 1 is obtained with positive

probability, that is:

� = inffq(xTk(N1(sTk))); xTk(N1(sTk)) 6= (0; 0), Tk, for k � 1g > 0:

On the one hand, as Zk� = 1 contributes by 1 in n
Li(T�

k�+1)(xT �
k�+1

; c; 0),

T�2X
t=0

nLi(t+1)(xt+1; c; 0) �
m�
TX

k�=1

n
Li(T�

k�+1)(xT �
k�+1

; c; 0) �
m�
TX

k�=1

Zk� : (8)

On the other hand, as there exists at most mT informative instants, each with at most

](S) informative sites,

T�2X
t=0

nLi(t+1)(xt+1) �
mTX
k=1

n(xTk+1) � ](S) �
mTP

k=1;mT
Wk

�m�
T . (9)

Furthermore m�
T �

P
k=1;mT

Wk. It follows from (8) and (9) that:

PT�2
t=0 n

Li(t+1)(xt+1; c; 0)PT�2
t=0 n

Li(t+1)(xt+1)
� 1

](S)
� 1
m�
T

m�
TX

k=1

Zk� �
1

mT

mTX
k=1

Wk: (10)

The choice of L entails:

PT�2
t=0 n

Li(t+1)(xt+1)

n(T )� n(1) =

PT�2
t=0 n

Li(t+1)(xt+1)PT�2
t=0 n(xt+1)

� 1

](S)
(11)

since nLi(t+1)(xt+1) � 1
](S)n(xt+1), at each informative instant t, and n

Li(t+1)(xt+1) =

n(xt+1) = 0, for the other instants. The result of the Theorem 1 with � = ����=(4�f](S)g2)
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is a consequence of (10) and (11) as n(T )�n(1)n(T ) ! 1 when T !1. �

In the case L = fSg we obtain the result of Lemma 1 as �c � �Sc;0 � �.

In order to de�ne J(�o), let L = f4 � Z2g [ f4 � Z2 + (2; 2)g, and for 0 � k; l � 2,

k + l < 4 and i = 3k + l + 1, Li = fL + (k; l)g \ S. Let L = fL1; : : : ; L8g the associated

partition of S and L = fLi(t); t � 0g the sequence de�ned by Lemma 4. Let A(�o), J(�o)

be the matrices de�ned by:

A(�o) =
X
c 6=(0;0)

�c �
q(1) t[q(1)]

q[1� q] (c; �o), J(�o) =
X
c 6=(0;0)

�Lc;0 �
q(1) t[q(1)]

[1� q]2[ q]2 (c; �o).

Note that variables f(Xt+1(s) j xt+1(S1nIL0 (xt)); xt); s 2 IL0 (xt)g are independent where

IL0 (xt) = fs 2 L : xt(N2(s) n N1(s)) � 0g. Indeed, for A � S1nIL0 (xt) and s 2 IL0 (xt)nA:

P [Xt+1(s) = 0 j xt+1(A); xt] = 
xt(s)o � (1� �o)m(xt+1;@s) (12)

= P
�
Xt+1(s) = 0 j xt+1(S1nIL0 (xt)); xt

�
(13)

as @s \ IL0 (xt) = ;.

We have the following result:

Lemma 5 For �o 2 � and under the condition (I) :

a) A(�o) is positive de�nite and limT!1AT (�o) = A(�o),

b) J(�o) is positive de�nite and limT!1JT (�o) � �o � J(�o) for some �o > 0.

Proof :
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a) A(�o) is a positive semide�nite matrix. Indeed for each � = (�1; �2) 2 R2:

t� A(�o) � =
X

c 6=(0;0)
�c q(c; �o)[(1� q(c; �o))]�1

�
t� (log q)(1)(c; �o)

�2
� 0

as �c > 0, 0 < q(c; �o) < 1 for c 2 C�1 . It remains to prove that � = 0 when t�A(�o)� = 0.

Let ca = (ua; va) and cb = (ub; vb) be two linearly independent con�gurations of C�1 and

suppose that t�A(�o)� = 0. It follows that t�(log q)(1)(ca; �o) = t�(log q)(1)(cb; �o) = 0

and �1 = �2 = 0. Finally, as �c = limT!1
n(T;c)
n(T ) , limT!1AT (�o) = A(�o).

b) We show in a similar way that J(�o) > 0, since �Lc;0 > 0 for each c 2 C�1 . The proof

of limT!1JT (�o) � �o � J(�o) is based upon inequality:

V ar(X) = EG(V ar(X j G)) + V arG(E(X j G)) � EG(V ar(X j G)) (14)

where G is some �-�eld that we have to choose. This idea was initially proposed by J.

Jensen and is used in other estimation contexts: Ising model (Guyon & Künsch, 1992),

point processes (Jensen & Künsch, 1994), dynamic of lattice data process (Guyon &

Hardouin, 2001).

Applying (14) for t = 0; : : : ; T �1 with X = (�t+1(�o) j xt), G = Gt+1 = �fXt+1(s); s 2

S1nIL0 (xt)g and L = Li(t) and using (12), for s 2 IL0 (xt) and m(Xt+1; @s) � 1 it follows

that:

EGt+1 [V ar(Xt+1(s) j Gt+1; xt)] � �o := 
o(1� �o)(1� �o)5 (15)

where �o = 
o + (1 � 
o)(1 � �o)4. Indeed V ar(Xt+1(s) j Gt+1; xt) � 
o(1 � �o)5 as


o � (1 � �o)4 � P (Xt+1(s) = 0 j Gt+1; xt) � 1 � �o. Furthermore, P [m(Xt+1; @s) = 0 j
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xt)] � �0 as s 2 I(xt) and (15) is a consequence of

EGt+1 [V ar(Xt+1(s) j Gt+1; xt)] � 
o(1� �o)5 �
X
m�1

P [m(Xt+1; @s) = m j xt)]:

Then, for s 2 IL0 (xt), (15) implies:

EGt+1 [V ar(ut+1(xt; s; �o) j Gt+1; xt)] � �o
p(1) t[p(1)]

[1� p]2 [p]2 (xt; s; �o):

Finally, since conditional random variables f(Xt+1(s) j Gt+1; xt); s 2 IL0 (xt)g are indepen-

dent, it follows that:

EGt+1
�
V ar

�
�t+1(�o) j Gt+1; xt

��
= EGt+1

�X
s2IL0 (xt)

V ar (ut+1(xt; s; �o) j Gt+1; xt)
�

� �o
X

s2IL0 (xt)
p(1) t[p(1)]

[1� p]2 [p]2 (xt; s; �o)):

The result follows from the last inequality, and

V ar[�t+1(�o) j xt] �
1

n(T )

XT�1

t=0
EGt+1

�
V ar

�
�t+1(�o) j Gt+1; xt

��
: �

Lemma 6 As T tends to 1:
p
n(T ) J

�1=2
T (�o) U

(1)
T (�o)

d�! G2(0; I2)

Proof : We will show that for each� 2 R2, � 6= 0, 1p
n(T )

t�J
�1=2
T (�o)

PT�1
t=0 �t+1(�o)

d!

G1(0;
t��). We apply a result for triangular martingale arrays (see Hall & Heyde, Theo-

rem 3.2, Dacunha-Castelle & Du�o, Theorem 2.8.43) to (ST;t; 1 6 t � T ); (FT;t; 1 6 t � T )
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where:

ST;t =
1p
n(T )

t� J
�1=2
T (�o)

X
t0=0;t�1

�t0+1(�o), and FT;t = �(Xt0 ; 1 � t0 � t) � Ft:

Since for each T � 0 and 1 � t � T; E[�t+1(�o) j FT;t] = E[�t+1(�o) j xt] = 0,

fST;t;FT;t; 1 � t � Tg is a zero-mean, square-integrable martingale for each T � 0.

From (??) we get:

VT;T =
1

n(T )
t� J

�1=2
T (�o)

T�1X
t=0

V ar[�t+1(�o) j xt] J
�1=2
T (�o)� =

t�� > 0:

It remains to verify the Lindeberg condition. Let B2 = maxi;j=1;2 jbi � bj j where for

i = 1; 2, bi = sup�o2�;c2C1 j log q
(1)
i (c; �o) j �

2�q(c;�o)
1�q(c;�o) . It follows that:

T�1X
t=0

E

 
1

n(T )
[t� J

�1=2
T (�o)�t+1(�o)]

2 � 1j 1p
n(T )

t�J
�1=2
T (�o)�t+1(�o)j>�

j xt

!

� B2

n(T )
t�J�1T (�o)� �

T�1X
t=0

P
�
j t�J�1=2T (�o)�t+1(�o) j> �

p
n(T ) j xt

�
� B4

n(T )
[t�J�1T (�o)�]

2 � 13
4�2
:

Clearly, for a �xed �, t�J�1T (�o)� is bounded in T . Indeed, let �JT (�o); �J(�o) be re-

spectively the smallest eigenvalue of JT (�o) and J(�o). From Lemma 5 limTJT (�o) �

�o J(�o) > 0: It follows that �JT (�o) � �o�J(�o) > 0 and:

��t�J�1T (�o)�
�� � sup� ��t�J�1T (�o)�

�� = [�JT (�o)]�1 � [�o�J(�o)]�1:
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Since for each �xed � > 0, B4

n(T ) [
t�J�1T (�o)�]

2 � 13
4�2
! 0 as T !1, the Lindeberg condition

is ful�lled and the proof of Lemma completed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

We are now able to establish the asymptotic normality of �̂T . As �̂T
a:s:! �o, it is

enough to verify conditions (H1), (H2�) and (H3) of Theorem 3.4.5 (Guyon, 1995). Let

aT =
p
n(T ).

(H1) is satis�ed as p(xt; s; �) is two times continuously di¤erentiable on � and �0 is

an interior point of �, a compact of ]0; 1[2. Furthermore, denoting K2 = maxi;j=1;2(kij)

where ki;j = maxfsupc2C1;�o2� j
fq(1) tq(1)(c;�o)gi;j
q(c;�o)[1�q(c;�o)]2 j; supc2C1;�o2� j

(log q)
(2)
i;j (c;�o)

[1�q(c;�o)] jg for i; j = 1; 2,

it follows that jU (2)T (�o)j = jA0T (�o) + CT (�o)j � [
P
c 6=(0;0) n1(T; c)=n(T ) � 2 + 1] �K2.

(H2�) aT =
p
n(T )!1 since the process survives forever on S. Lemma 5 establishes

the existence of J(�o) > 0 and Lemma 6 the asymptotic normality of
p
aTJ

�1=2
T (�o)U

(1)
T (�o).

(H3) limT!1AT (�o) = A(�o) from Lemma 5. Finally, as n1(T; c)=n(T; c)
a:s:! 1�q(c; �o)

when T ! 1, it follows that CT (�o)
a:s:! 0 and A0T (�o) � AT (�o)

a:s:! 0 and this completes

the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�
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