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Space-time estimation of a particle system model

Introduction and description of the model

Consider a simple model of spread of a single species population evolving in Z 2 . Depending on some biological parameters, the dynamics is determined by specifying, for each site s 2 Z 2 , the conditional probability that site s will be in state X t+1 (s) = y 2 f0; 1g at time t + 1 given X t , the con…guration at time t. State 1 (respectively 0) means that there is a (respectively no) plant in s. In this paper we propose an estimator for the parameters of the model, based on observations of X at instants t = 0; : : : ; T on a …nite and …xed subset S of Z 2 and study the asymptotic properties of the estimator when the process is non vanishing on S. [START_REF] Fiocco | Statistical estimation for the supercritical contact process[END_REF] and [START_REF] Fiocco | Parameter estimation for the supercritical contact process[END_REF] considered the estimation problem based on one observation at time t, when t is su¢ ciently large.

We consider the discrete time version of the Contact Process (CP) as de…ned by [START_REF] Durrett | Stochastic spatial models: a user's guide to ecological applications[END_REF]. So, let us suppose that the transition probability at a site s and at time t is stationary in space and time and depends locally on x t 1 (N 1 (s)), the …rst order neighborhood of the site s at time t 1, where N d (s) = fu 2 Z 2 : ks uk 1 dg.

Denote @s = N 1 (s) n fsg. The system evolves as follows: a. Each plant alive at time t dies with a probability at time t + 1, b. If a plant in s at time t survives, then for each u 2 @s it produces an o¤spring that is sent to u at time t + 1 with probability (a surviving plant in s may produce 0 to 4 o¤springs in @s); the reproducing events for di¤erent s and u 2 @s are independent, c. If there is one or more o¤springs sent in u at time t + 1, or if a plant in u at time t survives, then X t+1 (u) = 1; otherwise X t+1 (u) = 0.

Furthermore, events de…ned on (a) and (b) are independent in space and time. This model depends on the parameter = ( ; ) and we suppose that 2]0; 1[ 2 . Other models are possible by de…ning di¤erent rules of evolution (cf. [START_REF] Durrett | Stochastic spatial models: a user's guide to ecological applications[END_REF][START_REF] Gri¤eath | The basic contact processes[END_REF]. The methods developed here can be generalized to processes with non invariant transition in space and/or in time. Denote = infft : X t (s) = 0 for each s 2 Z 2 g the extinction time of a CP starting from a single occupied site. A CP is supercritical [START_REF] Durrett | Ten lectures on particle systems[END_REF] if there is a positive probability for the species surviving forever, that is, P ( = +1) > 0. Since the "all 0 in Z 2 " is an absorbing state, we need a condition (I) of non-extinction of X on the domain of observation S to make sense for the asymptotic study. This condition, presented in §3, is veri…ed for a non vanishing supercritical CP.

The paper is organized as follows. In section 2 we de…ne the marginal pseudo-likelihood (MPL) estimator of and in section 3 we give a result which shows that the MPL allows to identify the parameter. The consistency and asymptotic normality of estimator are formulated in section 4. Proofs are postponed to section 6. Some numerical studies are presented in section 5.

Marginal pseudo-likelihood (MPL)

Let x(T ) = (x 0 ; x 1 ; ; x T ) be T + 1 successive con…gurations of X, S a …nite subset of Z 2 and S 1 = fu 2 Z 2 : 9v 2 S such that ku vk 1 1g. The estimator of we choose is a value which maximizes a Marginal Pseudo-Likelihood (MPL) of x(T ) observed on S 1 . The idea of pseudo-likelihood is classic in statistic: gaussian pseudo-likelihood for stationary …eld on Z d (Whittle, 1954), conditional pseudo-likelihood for a Markov …eld on a lattice [START_REF] Besag | Spatial Interaction and the Statistical Analysis of Lattice Systems[END_REF]. Besag proposed a similar method for the estimation of parameters of a simple statistical model for the spread of disease over a rectangular lattice of plants (see the discussion of Besag in Mollison, 1977).

For A S, and if x t (B) is the con…guration of X at time t on B, denote P A (x t ; x t+1 ; ) the transition-probability

P A (x t ; x t+1 ; ) = P (X t+1 (A) = x t+1 (A) j X t (S 1 ) = x t (S 1 )):
As the transition-probability for A = S is analytically intractable, as #(S); the number of sites of S, is large, we use a marginal pseudo-transition probability M S (x t ; x t+1 ; ) on S, in order to estimate . M S (x t ; x t+1 ; ) is the product of P fsg (x t ; x t+1 ; ) for s 2 I(x t ; S);

where:

I(x t ; S) = fs 2 S such that x t (N 1 (s)) 6 = 0g
Since 0 < P fsg (x t ; x t+1 ; ) < 1 for any x t+1 (s) when s 2 I(x t ; S) and P fsg (x t ; x t+1 ; ) = 0 or 1 when x t (N 1 (s)) = 0 only sites of I(x t ; S) are informative for . The product of these marginal pseudo-transitions at consecutive instants de…nes the MPL. For s 2 S and A a …nite subset of Z 2 , denote m(x t ; A) = P s2A x t (s), the number of sites of A occupied by

x t . As the model is isotropic in space, the law of X t+1 (s) given x t depends only on c(x t ; s), a summary for x t (N 1 (s)), where : c(x t ; s) = (x t (s); m(x t ; @s)) 2 C 1 = f0; 1g f0; 1; 2; 3; 4g.

(1)

More precisely, X t+1 (s) conditionally to x t is a Bernoulli random variable:

P fsg (x t ; x t+1 ; ) = p(x t ; s; ) 1 x t+1 (s) (1 p(x t ; s; )) 

if I(x t ; S) 6 = ;, and M (0; 0; ) = 1 otherwise.

The following property that states the dependency between the conditional variables on di¤erent sites, will be useful for the calculation of the variance of our estimator. Denote = + (1 )(1 ) 2 the probability of non-proliferation at time (t + 1) in the set fs; s 0 g of a plant present in u 2 @s \ @s 0 at time t, @sO@s 0 = (@snN 1 (s 0 )) [ (@s 0 nN 1 (s)); then, P (X t+1 (fs; s 0 g) = (0; 0) j x t ) = m(xt;fs;s 0 g) m(xt;@sO@s 0 ) m(xt;@s\@s 0 )

It follows that for s 6 = s 0 :

Cov(X t+1 (s); X t+1 (s 0 ) j x t ) = p(x t ; s; ) p(x t ; s 0 ; ) [b(x t ; s; s 0 ; ) 1]
where:

b(x t ; s; s

0 ; ) = 8 > > > > > > < > > > > > > : m(xt;fs;s 0 g) if s 0 2 N 1 (s) n fsg 2m(xt;@s\@s 0 ) m(xt;@s\@s 0 ) if s 0 2 N 2 (s) n N 1 (s) 1 if s 0 6 2 N 2 (s): (4) 
In particular if s 0 6 2 N 2 (s), (X t+1 (s) j x t ) and (X t+1 (s 0 ) j x t ) are independent.

Let us give the explicit expression of MPL based on observation of x(T ) on S 1 . Denote n(x t ) the number of informative sites of the con…guration x t on S: n(x t ) = ](I(x t ; S)); and n(x(T )) = X T 1 t=0 n(x t ):

For c 2 C 1 , let n(x t ; c) be the number of sites s 2 S with con…guration c: n(x t ; c) = ]fs 2 S : c(x t ; s) = cg; and n(x(T ); c) = X T 1 t=0 n(x t ; c):

Then n(x(T )) = P c6 =(0;0) n(x(T ); c). The normalized log-marginal pseudo-likelihood of x(T ) observed on S 1 is:

l T;S (x(T ); ) = 1 n(x(T )) T 1 X t=0 log M S (x t ; x t+1 ; ).
As S is …xed, we omit in most cases the subscript S; thus I(x) or M (x t ; x t+1 ; ) stand for I(x t ; S) or M S (x t ; x t+1 ; ). In the same way, for a …xed x(T ), we will write n(T ) for n(x(T )), n(T; c) for n(x(T ); c) and l T ( ) l T;S (x(T ); ). Using (3) we have:

l T ( ) = 1 n(T ) T 1 X t=0 X s2I(xt) f[1 x t+1 (s)] log p(x t ; s; ) + x t+1 (s) log[1 p(x t ; s; )]g. (5)
The maximum MPL estimator of (or MPLE) is a value which maximizes the MPL,

^ T = arg max l T ( ).

Marginal PL allows identi…cation of

In this section we show that Marginal PL allows identi…cation of under the condition (I) of non-extinction of X on S :

(I) : I 1 = fx = (x t ; t 0) such that n(x(T )) ! 1 as T ! 1g.
In order to obtain this result we need to show that c are strictly positive for two linearly independent con…gurations, where:

c = lim T !1 n(T; c) n(T ) :
Let C 1 be the set of con…gurations on N 1 (0) such that x(0) = 1. The following Lemma states the positivity c > 0 for c 2 C 1 under the condition (I) and is a particular case of a the subergodicity result (see Lemma 4 in section 6) useful to prove positivity of some pseudo-information matrix.

Lemma 1 There exists > 0 such that, 8c 2 C 1 , and 8x 2 I 1 , we have c : under (I), the probability that each con…guration c of C 1 appears on S converges to 1 when T ! 1.

Under (I)

Remarks :

1. As a non-vanishing supercritical process is ergodic, with a spatially translationinvariant limite law [START_REF] Durrett | Ten lectures on particle systems[END_REF] 

satisfying f0g (1) > 0, it follows that c = lim T !1 n(T;c) n(T )
exists and is strictly positive.

2. Space and/or time invariance of the transitions model is not crucial in the proof of the subergodicity result: a similar result can be proved for non translation invariant models under some convenient condition that transition probabilities are uniformly positive.

4 Consistency and normality of the MPL estimator

The results

Let f : U ! R be a real function twice continuously di¤erentiable on an open subset U of R d and f (1) ( ) the vector of …rst derivatives. The following result sets up the consistency and asymptotic normality of the maximum MPLE ^ T associated with ( 5). The proof is postponed to section 6.

Let q(c;

) = P (X t+1 (s) = 0 j c(x t ; s) = c), and A T ( o ), B T ( o ) the 2 2 matrices: A T ( o ) = 1 n(T ) T 1 X t=0 X s2I(xt) p (1)t [p (1) ] p(1 p) (x t ; s; o ) (6) = X c6 =(0;0) n(T; c) n(T ) q (1) t [q (1) ] q(1 q) (c; o ) B T ( o ) = 1 n(T ) T 1 X t=0 X s6 =s 0 2I(xt) [b(x t ; s; s 0 ; o ) 1] p (1) (x t ; s; o ) t [p (1) (x t ; s 0 ; o )] [1 p(x t ; s; o )] [1 p(x t ; s 0 ; o )] (7) 
with p(x t ; s; ) given by (2) and b(x t ; s; s 0 ; o ) by ( 4).

Theorem 1 Let o = ( o ; o ) be an interior point of a compact ]0; 1[ 2 and the true unknown value of the parameter . Under condition (I):

(1) The maximum MPL estimator is consistent: (2) This estimator is asymptotically normal,

lim T !1 ^ T a:s: = o :
p n(T ) [A T ( o ) + B T ( o )] 1=2 A T ( o )( ^ T o ) d ! G 2 (0; I 2 )
where I 2 is the 2 2 identity matrix.

Numerical studies

In this section we give some empirical results with S the 64 64 square lattice and initial con…guration 'all sites occupied'. To avoid boundary e¤ects we have used periodic boundary conditions.

In Fig. 1 we present the evolution of the bias and the standard deviation of ^ T and Empirical study of asymptotic normality of estimators for a supercritical CP is based on 100 simulations with T = 99. Histograms are presented in Fig. 2. Asymptotic normality is checked by using a chi-squared test at level 5% and de…ning 9 equiprobable classes.

Normality is accepted for ^ (resp. ^ ) since 2 = 1:7 (resp. 2 = 4:4) and 2 0:95 (6) = 12:59.

We also compared the estimated theoretical standard errors ^ ^ ; ^ ^ and empirical stan- Finally, Table 2 gives the estimations of o and o for twelve CP with parameters ( o ; o ) 2 (0:2; 0:4; 0:6) (0:1; 0:2; 0:3; 0:4). In these simulations, T = 4 and 40% of randomly chosen sites were occupied at time t = 0. 6 Proofs of Theorem 1 6.1 Proof of the consistency of ^ T Denote n 1 (x t ; c) the number of occupied sites s 2 S at time t + 1 with con…guration c(x t ; s) = c at time t, I A (x t ) = I(x t )\A, n A (x t ) = ](I A (x t )) and n 1 (T; c) = P T 1 t=0 n 1 (x t ; c):

dard
= 0:1 = 0:2 ^ 4 ^ ^ 4 ^ 4 ^ ^ 4 n(4) ^ 4 ^ ^ 4 ^ 4 ^ ^ 4 n ( 
Lemma 2 For each subset A S: V ar h P s2I A (xt) X t+1 (s) j x t i (13=4) n A (x t ):
Proof : This follows as (X t+1 (s) j x t ), (X t+1 (s 0 ) j x t ) are independent Bernoulli variables when s 0 6 2 N 2 (s), ](N 2 (s)) = 13 and V ar[X t+1 (s) j x t ] 1=4. . . . . . . . . . . . . . . . .

Lemma 3 Let c 2 C 1 . If n(T; c) ! 1 when T ! 1, then n 1 (T;c) n(T;c) a:s: ! 1 q(c; o ).
Proof : We apply the following result: if (a n ) is a sequence of real positive numbers

and b n = P n k=1 a k then P 1 n=1 an b 2 n < 1. For I(x; c) = fs : s 2 I(x); c(x; s) = cg, let: t (c; o ) = X s2I(x t 1 ;c) fX t (s) [1 q(c; o )]g for 1 t T S T (c; o ) = X t=1;T t (c; o ), and F T = (X t ; t T ) (S T (c; o )) is a (F T )-martingale.
To prove the announced result, we apply Theorem 2.18

of [START_REF] Hall | Martingale limit theory and its application[END_REF] with X T = T (c; o ); U T = n(T; c). It is su¢ cient to show that:

1 X T =1 E o [ T (c; o )] 2 j x T 1 [n(T; c)] 2 < 1. This follows from lemma 2 since E o [ T (c; o )] 2 j x T 1 (13=4) n(x T 1 ; c) . . . . . . . . .
To prove the consistency of ^ T , we apply Theorem 3.4.3 of Guyon (1995; see also Dacunha-Castelle D. and Du ‡o, M., 1986). Let: Denote U T ( ) = l T ( ), the opposite of log-MPL. Then:

k c ( o ; ) = [1 q(c; o )] log 1 q(c; o ) 1 q(c; ) log q(c; o ) q(c; ) + log q(c; o ) q(c; ) ; K( o ; ) = X c6 =(0;0) c k c ( o ; ): K( o ; )
U T ( ) = X c6 =(0;0) n(T; c) n(T ) n 1 (T; c) n(T; c) log 1 q(c; ) q(c; ) + log[ q(c; )]
Since n 1 (T;c) n(T;c) as ! 1 q(c; o ), it follows that:

lim T !1 [U T ( ) U T ( o )] K( o ; ) a.s. on I 1 .
It remains to prove that there exists k ! 0 such that P o (lim

T !1 (W T (1=k) k )) = 1
where W T ( ) is the modulus of continuity of U T ( ). This is a direct consequence of the compacity of ]0; 1[ 2 and the fact that q is continuously di¤erentiable. This completes the proof. 

Proof of asymptotic normality of ^ T

We apply Theorem 3.4.5 of [START_REF] Guyon | Random …elds on a network: modelling, statistics and applications[END_REF] by verifying conditions (H1)-(H3) for the asymptotic normality of the mimimum U n -contrast consistent estimator :

(H1) There exists a neighorhood V of o over which U n is twise continuously di¤erentiable and P o -integrable r.v. h such that for all 2 V , U

n ( ; x) h(x).

(H2) There exists a sequence (a n ) ! 1 such that J n = V ar( p a n U

(1)

n ( o ))
exists and satis…es:

(1) There exists J > 0 such that J n > J from a certain point on.

(2)

p a n J 1=2 n U (1) n ( o ) ! N (0; I p ):
(H3) There exists a sequence of nonstochastic matrices I n such that I n I > 0 from a certain point and lim n!1 (U

(2) n ( o ) I n ) = 0 in P o probability.
It is easy to check that the condition (H2) is equivalent to: (H2') There exists (a n ) ! 1 and matrices J n satisfying ( 1) and ( 2) of the condition (H2)

To prove asymptotic normality of ^ T we need to verify conditions (H1), (H2') and (H3). Let us denote p (1) (x t ; s; ) the vector of …rst derivatives of p(x t ; s; ) with respect to ,

u t+1 (x t ; s; ) = [ X t+1 (s) 1 p 1] p (1) p (x t ; s; ); t+1 ( ) = X s2I(xt)
u t+1 (x t ; s; );

J T ( o ) = A T ( o ) + B T ( o ) := 1 n(T ) T 1 X t=0 V ar[ t+1 ( o ) j x t ]
where A T ( o ) and B T ( o ) are given respectively by ( 6) and ( 7).

We proceed in two steps: …rstly we calculate U

(1)

T ( o ), then U (2) T ( o ), the matrix of second derivatives of U T ( o ), I T = A T ( o ), J T = J T ( o )
, the pseudo-information matrices, and show in Lemma 5 the existence of

I = A( 0 ) > 0, J = J( 0 ) > 0 such that A T ( o ) A( 0 ), J T ( o )
o J( 0 ) for some o > 0. Secondly, we prove in Lemma 6 a Central Limit Theorem for

p n(T )J 1=2 T ( o )U (1)
T ( o ). We have :

U (1) T ( o ) = 1 n(T ) T 1 X t=0 t+1 ( o ), U (2) T ( o ) = A 0 T ( o ) + C T ( o )
, where :

A 0 T ( o ) = X c6 =(0;0) n(T; c) n(T ) n 1 (T; c) n(T; c) q (1) (c; o ) t q (1) (c; o ) q(c; o )[1 q(c; o )] 2 , C T ( o ) = X c6 =(0;0) n(T; c) n(T ) n 1 (T; c) n(T; c) 1 1 q(c; o ) 1 (log q) (2) (c; o ).
Let L = fL i ; i 2 Ig be a partition of S, L = fL i(t) ; t 0g, an in…nite sequence of elements of L and (c; 0) the con…guration of N 2 (0) such that x(N 1 (0)) = c and x(N 2 (0)nN 1 (0)) 0.

De…ne L c;0 = lim T !1 P T 1 t=0 n L i(t) (x t ; c; 0) n(T )
where n L (x t ; c; 0) is the number of sites of S \ L with con…guration (c; 0). Let now state the sub-ergodicity result:

Lemma 4 Let C 1 be the set of con…gurations on N 1 (0) such that x(0) = 1. Then there exists > 0 and L, a sequence of elements of L, such that, 8c 2 C 1 , and 8x 2 I 1 , we have L c;0

:

Proof. We make use of the the following result : if (Y n ; n 1) is a sequence of independent Bernoulli variables with parameter (q n ; n 1) such that = minfq n ; n 1g > 0, then, a.s., lim N !1

1 N P n=1;N Y n =2. The condition > 0 is satis…ed if n = (k n ) > 0; n 1,
where k n 2 K = f1; : : : ; Kg is a …nite set.

Let C 3 be the set of con…gurations on N 3 (0) such that x(0) = 1. We will de…ne two sequence of instants. The …rst one, 0 T 1 < T 2 < < T m T T 2 is the sequence of informative instants between 0 and T 2 such that x t (N 1 (s)) 6 = (0; 0) for at least one site

s 2 S. Let us denote s T k a site at time T k such that x T k (N 1 (s T k )) 6 = (0; 0). The second one, 0 T 1 < T 2 < < T m T T 2
, is the subsequence of the precedent such that x t (s) = 1 for at least one site of S; let us denote s T k an informative site at time T k .

Furthermore, we will choose sites s and s such that

s T k = s T k when T k = T k .
De…ne L as follows: (i) for each informative instant t = T k , let L i(T k +1) be the subset of L containing s T k ; (ii) at the others instants, L i(t) may be chosen arbitrarily in L.

For each con…guration c of C 1 and k = 1; : :

: ; m T let Z k = 1fX T k +1 (N 2 (s T k )) =
(c; 0)g. As P (X t+1 (N 2 (s)) j x t ) depends only on x t (N 3 (s)), the variables (Z k ; k = 1; : : : ; m T ) are independent Bernoulli variables with parameter

q(x T k (N 3 (s T k )); c) = P (x T k +1 (N 2 (s T k )) = (c; 0) j x T k (N 3 (s T k ))): As x T k (s T k ) = 1, every con…guration (c; 0), c 2 C 1 , of x T k +1 (N 2 (s T k ))
is obtained with positive probability, it follows that:

= inffq(x T k (N 3 (s T k )); c) : x T k (N 3 (s T k )) 2 C 3 ; c 2 C 1 , T k , for k 1g > 0: Let, W k = X T k +1 (s T k ) for k = 1; : : : ; m T . P (X t+1 (s) j x t ) depending only on x t (N 1 (s)),
the variables (W k ; k = 1; m T ) are independent Bernoulli variables with parameter

q(x T k (N 1 (s T k ))) = P (X T k +1 (s T k ) = 1 j x T k (N 1 (s T k ))): Since x t (N 1 (s T k )) 6 = (0; 0); the con…guration X T k +1 (s T k ) = 1 is obtained with positive probability, that is: = inffq(x T k (N 1 (s T k ))); x T k (N 1 (s T k )) 6 = (0; 0), T k , for k 1g > 0:
On the one hand, as

Z k = 1 contributes by 1 in n L i(T k +1) (x T k +1 ; c; 0), T 2 X t=0 n L i(t+1) (x t+1 ; c; 0) m T X k =1 n L i(T k +1) (x T k +1 ; c; 0) m T X k =1 Z k : (8) 
On the other hand, as there exists at most m T informative instants, each with at most

](S) informative sites, T 2 X t=0 n L i(t+1) (x t+1 ) m T X k=1 n(x T k +1 ) ](S) m T P k=1;m T W k m T . (9) 
Furthermore m T P k=1;m T W k . It follows from ( 8) and ( 9) that:

P T 2 t=0 n L i(t+1) (x t+1 ; c; 0) P T 2 t=0 n L i(t+1) (x t+1 ) 1 ](S) 1 m T m T X k=1 Z k 1 m T m T X k=1 W k : (10) 
The choice of L entails:

P T 2 t=0 n L i(t+1) (x t+1 ) n(T ) n(1) = P T 2 t=0 n L i(t+1) (x t+1 ) P T 2 t=0 n(x t+1 ) 1 ](S) (11) 
since n L i(t+1) (x t+1 ) 1 ](S) n(x t+1 ), at each informative instant t, and n L i(t+1) (x t+1 ) = n(x t+1 ) = 0, for the other instants. The result of the Theorem 1 with = =(4 f](S)g 2 ) is a consequence of ( 10) and (11) as n(T ) n( 1) n(T )

! 1 when T ! 1.

In the case L = fSg we obtain the result of Lemma 1 as c S c;0 .

In order to de…ne J( o ), let L = f4 Z 2 g [ f4 Z 2 + (2; 2)g, and for 0 k; l 2, k + l < 4 and i = 3k + l + 1, L i = fL + (k; l)g \ S. Let L = fL 1 ; : : : ; L 8 g the associated partition of S and L = fL i(t) ; t 0g the sequence de…ned by Lemma 4. Let A( o ), J( o )

be the matrices de…ned by:

A( o ) = X c6 =(0;0) c q (1) t [q (1) ] q[1 q] (c; o ), J( o ) = X c6 =(0;0) L c;0 q (1) t [q (1) ] [1 q] 2 [ q] 2 (c; o ).
Note that variables f(X t+1 (s) j x t+1 (S 1 nI L 0 (x t )); x t ); s 2 I L 0 (x t )g are independent where I L 0 (x t ) = fs 2 L : x t (N 2 (s) n N 1 (s)) 0g. Indeed, for A S 1 nI L 0 (x t ) and s 2 I L 0 (x t )nA:

P [X t+1 (s) = 0 j x t+1 (A); x t ] = xt(s) o (1 o ) m(x t+1 ;@s) (12) = P X t+1 (s) = 0 j x t+1 (S 1 nI L 0 (x t )); x t (13) 
as @s \ I L 0 (x t ) = ;.

We have the following result: Proof :

a) A( o ) is a positive semide…nite matrix. Indeed for each = ( 1 ; 2 ) 2 R 2 : t A( o ) = X c6 =(0;0) c q(c; o )[(1 q(c; o ))] 1 t (log q) (1) (c; o ) 2 0 as c > 0, 0 < q(c; o ) < 1 for c 2 C 1 . It remains to prove that = 0 when t A( o ) = 0.
Let c a = (u a ; v a ) and c b = (u b ; v b ) be two linearly independent con…gurations of C 1 and suppose that t A( o ) = 0. It follows that t (log q) (1) (c a ; o ) = t (log q) (1) (c b ; o ) = 0

and 1 = 2 = 0. Finally, as c = lim T !1 n(T;c) n(T ) , lim T !1 A T ( o ) = A( o ).
b) We show in a similar way that

J( o ) > 0, since L c;0 > 0 for each c 2 C 1 . The proof of lim T !1 J T ( o ) o J( o ) is based upon inequality: V ar(X) = E G (V ar(X j G)) + V ar G (E(X j G)) E G (V ar(X j G)) (14) 
where G is some -…eld that we have to choose. This idea was initially proposed by J.

Jensen and is used in other estimation contexts: Ising model [START_REF] Guyon | Asymptotic comparison of estimators in the Ising model[END_REF], point processes [START_REF] Jensen | On asymptotic normality of pseudo-likelihood estimate for pairwise interaction processes[END_REF], dynamic of lattice data process [START_REF] Guyon | Markov chain Markov …eld dynamics: Models and Statistics[END_REF].

Applying ( 14) for t = 0; : : :

; T 1 with X = ( t+1 ( o ) j x t ), G = G t+1 = fX t+1 (s); s 2 S 1 nI L 0 (x t )g and L = L i(t)
and using (12), for s 2 I L 0 (x t ) and m(X t+1 ; @s) 1 it follows that:

E G t+1 [V ar(X t+1 (s) j G t+1 ; x t )] o := o (1 o )(1 o ) 5 (15) 
where

o = o + (1 o )(1 o ) 4 . Indeed V ar(X t+1 (s) j G t+1 ; x t ) o (1 o ) 5 as o (1 o ) 4 P (X t+1 (s) = 0 j G t+1 ; x t ) 1 o . Furthermore, P [m(X t+1 ; @s) = 0 j 20 x t )]
0 as s 2 I(x t ) and ( 15) is a consequence of

E G t+1 [V ar(X t+1 (s) j G t+1 ; x t )] o (1 o ) 5 X m 1 P [m(X t+1 ; @s) = m j x t )]:
Then, for s 2 I L 0 (x t ), (15) implies:

E G t+1 [V ar(u t+1 (x t ; s; o ) j G t+1 ; x t )] o p (1) t [p (1) ] [1 p] 2 [p] 2 (x t ; s; o ):
Finally, since conditional random variables f(X t+1 (s) j G t+1 ; x t ); s 2 I L 0 (x t )g are independent, it follows that:

E G t+1 V ar t+1 ( o ) j G t+1 ; x t = E G t+1 X s2I L 0 (xt) V ar (u t+1 (x t ; s; o ) j G t+1 ; x t ) o X s2I L 0 (xt) p (1) t [p (1) ] [1 p] 2 [p] 2 (x t ; s; o )):
The result follows from the last inequality, and where:

V ar[ t+1 ( o ) j x t ] 1 n(T ) X T 1 t=0 E G t+1 V ar t+1 ( o ) j G t+1 ; x t : Lemma 6 As T tends to 1: p n(T ) J 1=2 T ( o ) U (1) T ( o ) d ! G 2 (0; I 2 ) Proof : We will show that for each 2 R 2 , 6 = 0, 1 p n(T ) t J 1=2 T ( o ) P T 1 t=0 t+1 ( o ) d ! G 1 (0; t ).
S T;t = 1 p n(T ) t J 1=2 T ( o ) X t 0 =0;t 1 t 0 +1 ( o ), and 
F T;t = (X t 0 ; 1 t 0 t) F t :
Since for each T 0 and 1

t T; E[ t+1 ( o ) j F T;t ] = E[ t+1 ( o ) j x t ] = 0,
fS T;t ; F T;t ; 1 t T g is a zero-mean, square-integrable martingale for each T 0.

From (??) we get:

V T;T = 1 n(T ) t J 1=2 T ( o ) T 1 X t=0 V ar[ t+1 ( o ) j x t ] J 1=2 T ( o ) = t > 0:
It remains to verify the Lindeberg condition. Let B 2 = max i;j=1;2 jb i b j j where for i = 1; 2, b i = sup o2 ;c2C 1 j log q

(1) i (c; o ) j 2 q(c; o) 1 q(c; o) . It follows that:

T 1 X t=0 E 1 n(T ) [ t J 1=2 T ( o ) t+1 ( o )] 2 1 j 1 p n(T ) t J 1=2 T ( o) t+1 ( o)j> j x t ! B 2 n(T ) t J 1 T ( o ) T 1 X t=0 P j t J 1=2 T ( o ) t+1 ( o ) j> p n(T ) j x t B 4 n(T ) [ t J 1 T ( o ) ] 2 13 4 2 :
Clearly, for a …xed , t J 1 T ( o ) is bounded in T . Indeed, let J T ( o ); J ( o ) be respectively the smallest eigenvalue of J T ( o ) and J( o ). From Lemma 5 lim T J T ( o )

o J( o ) > 0: It follows that J T ( o ) o J ( o ) > 0 and:

t J 1 T ( o ) sup t J 1 T ( o ) = [ J T ( o )] 1 [ o J ( o )] 1 :
Since for each …xed > 0, B 4 n(T ) [ t J 1 T ( o ) ] 2 13 4 2 ! 0 as T ! 1, the Lindeberg condition is ful…lled and the proof of Lemma completed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We are now able to establish the asymptotic normality of ^ T . As ^ T a:s:

! o , it is enough to verify conditions (H1), (H2') and (H3) of Theorem 3.4.5 [START_REF] Guyon | Random …elds on a network: modelling, statistics and applications[END_REF]. Let a T = p n(T ).

(H1) is satis…ed as p(x t ; s; ) is two times continuously di¤erentiable on and 0 is an interior point of , a compact of ]0; 1[ 2 . Furthermore, denoting K 2 = max i;j=1;2 (k ij )

where k i;j = maxfsup c2C 1 ; o2 j fq (1) t q (1) (c; o)gi;j q(c; o)[1 q(c; o)] 2 j; sup c2C 1 ; o2 j (log q)

(2) i;j (c; o)

[1 q(c; o)] jg for i; j = 1; 2, it follows that jU 

  and for large T , ! l T ( ) allows identi…cation of . Indeed: if x(T ) realizes two linearly independent con…gurations c a = (u a ; v a ) and c b = (u b ; v b ), then 7 ! l T ( ) is an injective function;

Figure 1 :

 1 Figure 1: Evolution of the bias (solid lines) and standard deviation (multiplied by 100, dotted lines) for the estimators of o (left) and o (right) for the supercritical CP with parameters o = 0:35; o = 0:25.

Figure 2 :

 2 Figure 2: Histograms of 100 estimations of o (left) and o (right) for the supercritical CP with parameters o = 0:35; o = 0:25.

  have a single minimum at o : indeed, K( o ; o ) = 0, and K( o ; ) > 0 if 6 = o since k c ( o ; ) > 0 and from Theorem 1, c > 0 for c 2 C 1 .
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Lemma 5

 5 For o 2 and under the condition (I) :a) A( o ) is positive de…nite and lim T !1 A T ( o ) = A( o ), b) J( o ) is positive de…nite and lim T !1 J T ( o ) o J( o ) for some o > 0.

T

  ( o )j = jA 0 T ( o ) + C T ( o )j [ P c6 =(0;0) n 1 (T; c)=n(T ) 2 + 1] K 2 .(H2') a T = p n(T ) ! 1 since the process survives forever on S. Lemma 5 establishes the existence of J( o ) > 0 and Lemma 6 the asymptotic normality of p a T J

(

  H3) lim T !1 A T ( o ) = A( o ) from Lemma 5. Finally, as n 1 (T; c)=n(T; c) a:s: ! 1 q(c; o ) when T ! 1, it follows that C T ( o ) a:s: ! 0 and A 0 T ( o ) A T ( o ) a:s: ! 0 and this completes the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 :

 1 errors s ^ ; s ^ for the supercritical CP with parameter o = 0:35, o = 0:25. The values ^ ^ 4 ; ^ ^ 4 are obtained from a single simulation with T = 4 by applying Theorem 1 whereA 4 ( o ) (resp. B 4 ( o )) are approximated by A 4 ( ^ 4 ) (resp. B 4 ( ^ 4 )).The empirical standard errors s ^ 4 ; s ^ 4 are empirical estimations obtained from the 100 estimations associated to the 100 simulations. The results are presented in table 1. We note that, as expected, there are few di¤erences between estimated theoretical standard errors and empirical standard errors. Theoretical and empirical standard errors of the estimators.

	^ ^ 4	s ^ 4	^ ^ 4	s ^ 4
	Estimations 0.0076 0.0079 0.0059 0.0064

Table 2 :

 2 Estimation of the parameters and their standard deviation.
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