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2 V. KONAKOV ET AL.1.1. Global overview. Let us onsider in Rd ; d � 1 the Markov di�usionproess with generatorL = 12 Xi;j2[[1;d℄℄2aij(x)�2xixj + Xi2[[1;d℄℄bi(x)�xi :If the oe�ients of L are smooth enough, say C1(Rd ), bounded, and thedi�usion matrix A(x) = (aij(x)) is uniformly ellipti (8� 2 Rd ; hA�; �i 2[Æ; Æ�1℄ for an appropriate Æ > 0) then the assoiated proess (Xt)t�0 has atransition density p(t; x; y) whih is the fundamental solution of the paraboliproblem �tp(:) = Lxp(:); p(0; x; y) = Æy(x). Of ourse, one also has �tp(:) =L�yp(:); p(0; x; y) = Æx(y).Moreover, this density satis�es uniformly in t 2℄0; T ℄ the following Gaus-sian boundsM�1td=2 exp �M jx� yj2t ! � p(t; x; y) � Mtd=2 exp �jx� yj2Mt ! ;where the onstantM depends on T , d, the elliptiity onstant and the normsof the oe�ients in C1(Rd), see e.g. Aronson [Aro67℄ or Strook [Str88℄.The above estimations express the following physially obvious fat: if theproess starts from x0 2 Rd , then for small t > 0, in the neighborhood ofx0 it is "almost Gaussian" with the "frozen" di�usion tensor A(x0) and thedrift b(x0).The justi�ation of this fat requires the solution of the perturbative inte-gral equation for p(�) (so-alled Parametrix equation), where the leading termof the perturbation theory for p(�) is exatly the Gaussian kernel p0(�) orre-sponding to the "frozen" oe�ients at x0. For details onerning Parametrixequations we refer the reader to M Kean and Singer [MS67℄, Friedman[Fri64℄ or [KM85℄.If the matrix A(x) degenerates, but the oe�ients a; b are still smooth,the di�usion proess (Xt)t�0 with generator L exists (one an use the It�alulus for the diret onstrution of the trajetories), but has generallyspeaking no density.Consider now generators of the form L = kXi=1A2i + A0; k < d, where(Ai)i2[[0;k℄℄ are �rst order operators (vetor �elds) on Rd (or more gener-ally on smooth manifolds) with C1 oe�ients. Su�ient onditions for theexistene of the density an be formulated in terms of the struture of the Liealgebra of the vetor �elds on Rd , with usual linear operations and the Pois-son braketing [:; :℄. Namely, if the vetor �elds A1; :::; Ak ; [Al; Am℄(l;m)2[[0;k℄℄2 ,



PARAMETRIX FOR SOME DEGENERATE PROCESSES 3[Al; [Am; An℄℄(l;m;n)2[[0;k℄℄3; ::: span Rd then the density exists. This result isdue to Hörmander [Hör67℄, see also Norris [Nor86℄ for a Malliavin alulusbased probabilisti proof. Operators having the previous property are saidto be hypoellipti. Also, in [Hör67℄, Hörmander stressed that the seed of theidea of hypoelliptiity goes bak to Kolmogorov's note [Kol34℄.A. Kolmogorov made the following important observation. Let d = 2.For the generator L = 12�2xx + ax�y; a 6= 0, the solution of the assoi-ated SDE writes (Xt; Yt) = (x0 +Wt; y0 + a(x0t + R t0 Wsds)), where W isa standard one dimensional Brownian motion. Thus (Xt; Yt) has two di-mensional Gaussian distribution with mean (x0; y0 + ax0t) and ovarianematrix C =  t at22at22 a2t33 !. Note that the transition density for small thas higher singularity than the usual heat kernel. In Hörmander's formL = 12A21 + A0; A1 = �x; A0 = ax�y so that [A1; A0℄ = a�y and thus,A1; [A1; A0℄ have together rank 2.In this paper, using a parametrix approah derived from the work of MK-ean and Singer [MS67℄, we are able to derive a Gaussian upper bound, and a"partial" lower bound with the two previous time sales, and an assoiatedloal limit theorem in the following ase.1.2. Statement of the problem. We onsider Rd�Rd -valued di�usion pro-esses that follow the dynamis(1.1) 8>><>>: Xt = x+ Z t0 b(Xs; Ys)ds+ Z t0 �(Xs; Ys)dWs;Yt = y + Z t0 Xsds;where (Wt)t�0 is a standard d-dimensional Brownian motion de�ned on some�ltered probability spae (
;F ; (Ft)t�0;P) satisfying the usual assumptions.We assume that � is uniformly ellipti and that b; � are C1, bounded, Lip-shitz ontinuous funtions so that there exists a unique strong solution to(1.1).Suh kind of proesses appear in various appliative �elds. For instanein mathematial �nane, when dealing with Asian options, X represents thedynamis of the underlying asset and its integral Y is involved in the optionPay-o�. Typially, the prie of suh options write Ex [ (XT ; T�1YT )℄, wherefor the put (resp. all) option the funtion  (x; y) = (x�y)+ (resp. (y�x)+),see [BPV01℄ and [Tem01℄.The ross dependene of the dynamis of X in Y is also important whenhandling kinemati models or Hamiltonian systems. For a given Hamilton



4 V. KONAKOV ET AL.funtion of the form H(x; y) = V (y)+ jxj22 , where V is a potential and jxj22 thekineti energy of a partile with unit mass, the assoiated stohasti Hamil-tonian system would orrespond to b(Xs; Ys) = �(�yV (Ys) + F (Xs; Ys)Xs)in (1.1), where F is a frition term. When F > 0 natural questions arise on-erning the asymptoti behavior of (Xt; Yt), for instane the geometri on-vergene to equilibrium for the Langevin equation is disussed in Mattinglyand Stuart [MS04℄, numerial approximations of the invariant measures inTalay [Tal02℄, the ase of high degree potential V is investigated in Hérauand Nier [HN04℄. Under the previous boundedness assumption on b, equa-tion (1.1) desribes fritionless Hamiltonian systems with "almost linear"potential.Importantly, the two time-sales oming from Kolmogorov's example, andthat we obtain for the density assoiated to (1.1), an be exploited to in-vestigate small time asymptotis of the previous models. For instane, forthe Asian option, a normalization is required in the pay-o� to make bothquantities sale-homogeneous.As mentioned above, equation (1.1) provides one of the simplest formsof degenerated proesses and the previous assumptions guarantee that Hör-mander's theorem is satis�ed taking only the �rst Poisson brakets betweenthe vetor �elds assoiated to the drift and the di�usive part in (1.1). Ina more general hypoellipti setting, let us mention the work of Cattiaux[Cat90, Cat91℄ whose assumptions inlude the ase (1.1), but who obtainsless expliit ontrols, see his Proposition (1.12). Under the "strong" Hörman-der ondition that involves the Poisson brakets of the di�usive part of theproess, small time asymptotis of the density are disussed in Ben Arous[Ben88℄ or Ben Arous and Léandre [BL91℄. Eventually, in whole generalitytwo-sided bounds for the density of degenerate di�usions are investigated inKusuoka and Strook [KS87℄. All these work strongly rely on Malliavin al-ulus tehniques. We want to stress that the parametrix approah is not verywell suited to study general degenerate proesses. Anyhow, the ounterpartis that it gives by onstrution more expliit ontrols. In the non-degeneratease, for �-Hölder ontinuous oe�ients, it diretly gives two-sided Gaus-sian estimates. The lower bound on the diagonal in small time derives fromthe series representation and the global lower bound is obtained thanks to ahaining argument as in [KS87℄. Here, we still derive a lower bound in smalltime from the series, but do not sueed to do a haining argumentAlso, our ontrols remain valid if the oe�ients in (1.1) are uniformly�-Hölder ontinuous, a ase for whih Hörmander's Theorem breaks down,see Setion 3 Remark 3.1 for details.A natural question then onerns the Markov hain approximation of



PARAMETRIX FOR SOME DEGENERATE PROCESSES 5(1.1). For non degenerated proesses this aspet has been widely studied,see e.g. [KM00℄ for loal limit theorems. In [BT96℄, using Malliavin alulustehniques, Bally and Talay obtain an expansion at order one w.r.t. the timestep for the di�erene of the densities of the di�usion and a perturbed Eulersheme, i.e. the stohasti integrals are approximated by Gaussian variablesand an arti�ial visosity is added to ensure the disrete sheme has a den-sity. This rate orresponds to the usual "weak error" bound. Sine we followthe loal limit theorem approah we an handle a wider lass of randomvariables in the approximation but obtain a rate of order 1=2 w.r.t the timestep. Of ourse, plugging Gaussian random variables in our approximationyields to rate h as in [BT96℄.Importantly, as opposed to [BT96℄, we do not need to introdue an ar-ti�ial visosity to ensure the existene of the density for the underlyingdegenerate Markov hain. We develop analogously to the ontinuous ase aparametrix approah to express the density of the Markov hain in termof the density of an auxiliary frozen random walk. The random walk isdegenerated as well, but has a density after a su�ient number of timesteps, see Subsetion 4.4 for details. The loal limit theorem is then derivedfrom an aurate omparison of the parametrix expansions of the densi-ties of the proess and the hain. To motivate this result we an onsiderthe ase of the approximation of a "digital Asian all" i.e. of the quantityP[(T�1YT �XT )+ > K℄ for a given K 2 R+ . Indeed, the loal limit theoremassoiated to our sheme diretly relates the densities of the disrete andontinuous objets whih is not the ase if we only onsider a disretizationof the non degenerate omponent and a numerial estimation of the integral,sine in that ase the approximating ouple an fail to have a density.The paper is organized as follows. In Setion 1.3, we give our assumptionsand �x some notations. Then, sine the form of the Markov hain approxi-mation strongly relies on the proof of our results for the di�usion we hooseto divide this paper into two parts. Setions 2 and 3 deal with the resultsfor the di�usion and their proofs. Setion 4 is dediated to the Markov hainapproximation of (1.1), the assoiated onvergene results and the key pointsof the proofs. The omplete proof of the loal limit Theorem an be foundin the Appendix.1.3. Assumptions and Notations. We suppose that the oe�ients ofequation (1.1) satisfy the following assumptions.(UE) 9(�min; �max) 2 (0;1)2; 8z 2 Rd ; 8(x; y) 2 R2d ; �minjzj2 �ha(x; y)z; zi � �maxjzj2, denoting a(x; y) = ���(x; y). From now on we sup-pose that � is the unique symmetri matrix s.t. �� = a. We are interested



6 V. KONAKOV ET AL.in the density of the proess and its approximation at a given time. Hene,from the uniqueness in law, the previous assumption an be made withoutloss of generality.(B) The oe�ients b; � in (1.1) are C1, uniformly Lipshitz ontinuousand bounded.Throughout the paper we onsider the running di�usion (1.1) up to a�xed �nal time T > 0. We denote by C a generi positive onstant thatmay hange from line to line and only depends on T , and the parametersappearing in (UE), (B). We reserve the notation  for onstants that onlydepend on parameters from (UE), (B). Other possible dependenies areexpliitly indiated.2. Expliit parametrix and assoiated ontrols for the densityof the di�usion. The previous assumptions guarantee that Hörmander'sTheorem, see e.g. Nualart [Nua98℄, holds true, and therefore that 8t >0; (Xt; Yt) has a density w.r.t. the Lebesgue measure. Introdue the ve-tor �elds in R2d
A0(x; y) = 0BBBBBBBBB�

b1(x; y)...bd(x; y)x1...xd
1CCCCCCCCCA ; 8j 2 [[1; d℄℄; Aj(x; y) = 0BBBBBBBBB�

�1j(x; y)...�dj(x; y)0...0
1CCCCCCCCCA :(2.1)One diretly derives the followingProposition 2.1 For all (x; y) 2 R2d ,Span(A1(x; y); :::; Ad(x; y); [A0(x; y); A1(x; y)℄; :::; [A0(x; y); Ad(x; y)℄) = R2d ;where 8(i; j) 2 [[0; d℄℄2; [Ai; Aj ℄ = AirAj � AjrAi denotes the Poissonbraket.Fix T > 0 and 0 < t � T , (x; y) 2 R2d . Sine, we now know that(Xt; Yt) has a transition density, i.e. P[Xt 2 dx0; Yt 2 dy0jX0 = x; Y0 =y℄ = p(t; (x; y); (x0; y0))dx0dy0, our aim is to develop a parametrix for (1.1) toobtain an expliit representation of this density.Reall that we onsider the following SDE(2.2) ( dXs = b(Xs; Ys)dt+ �(Xs; Ys)dWs; X0 = x;dYs = Xsds; Y0 = y:



PARAMETRIX FOR SOME DEGENERATE PROCESSES 7For the parametrix development we need to introdue a "frozen" di�usionproess, ( eXs; eYs)s2[0;t℄ below. Namely for all (x0; y0) 2 R2d , de�ne(2.3) ( d eXt;x0;y0s = �(x0; y0 � x0(t� s))dWs + b(x0; y0)ds; eXt;x0;y00 = x;deY t;x0;y0s = eXt;x0;y0s ds; eY t;x0;y00 = y:The key point is that the above proess is gaussian. The arguments in theseond variable of the di�usion oe�ient an seem awkward at �rst sight,it inludes the transport of the frozen point x0 with a time reversal. Thispartiular hoie is atually imposed by the natural metri of the frozenproess, see Proposition 3.1, in order to allow the omparison of the singularparts of the generators.The proesses (Xs; Ys) and ( eXt;x0;y0s ; eY t;x0;y0s ); s 2 [0; t℄; have the followinggenerators: 8(x; y) 2 R2d ;  2 C2(R2d ),L (x; y) = �12Tr�a(x; y)D2x �+ hb(x; y);rx i+ hx;ry i�(x; y);eLt;x0;y0s  (x; y) = �12Tr�a �x0; y0 � x0(t� s)�D2x �+ hb �x0; y0�rx i+hx;ry i�(x; y):(2.4)From these operators we de�ne for 0 < t � T; ((x; y); (x0; y0)) 2 (R2d)2 thekernel H by H(t; (x; y); (x0; y0)) = (L� eL)ep(t; (x; y); (x0; y0));where ep(t; (x; y); (�; �)) := ept;x0;y0(t; (x; y); (�; �)); eL := eLt;x0;y00 respetivelystand for the density of the proess ( eXt;x0;y0t ; eY t;x0;y0t ) and the generator of( eXt;x0;y0s ; eY t;x0;y0s )s2[0;t℄ at time 0. We omit to expliitly emphasize the depen-dene in t; x0; y0 for notational onveniene.Remark 2.1 Note arefully that in the above kernel, beause of the linearstruture of the model the most singular terms, i.e. those involving derivativesw.r.t. y, vanish.The next proposition gives the expression of the density p in terms of anin�nite sum involving iterated onvolutions of the density ep with the kernelH. Namely,Proposition 2.2 (Parametrix expansion for (2.2))For all 0 � t � T; ((x; y); (x0; y0)) 2 (R2d)2,(2.5) p(t; (x; y); (x0; y0)) = +1Xr=0ep
H(r)(t; (x; y); (x0; y0));



8 V. KONAKOV ET AL.where f 
 g(t; (x; y); (x0; y0)) = Z t0 du ZR2d f(u; (x; y); (z; v))�g(t� u; (z; v); (x0; y0))dzdv;~p
H(0) = ~p and H(r) = H 
H(r�1); r > 0 denotes the r-fold onvolutionof the kernel H.The previous Proposition is a diret onsequene of the usual parametrixreurrene relations. For the sake of ompleteness we provide its proof inSetion 3.Now, sine for 0 < t � T ( ~Xs; ~Ys)s2[0;t℄, is a Gaussian proess, ep and itsderivatives are well ontrolled. The previous expression is the starting pointto derive the followingTheorem 2.1 (Gaussian bounds)There exist onstants ; C > 0 s.t. for all 0 � t � T; ((x; y); (x0; y0)) 2(R2d)2, one has:p(t; (x; y); (x0; y0)) � C bp(t; (x; y); (x0; y0))(2.6)wherebp(t; (x; y); (x0; y0)) := d3d=2(2�t2)d�exp0B��264 jx0 � xj24t + 3 ���y0 � y � (x+x0)t2 ���2t3 3751CAenjoys the semigroup property, i.e. 80 � s < t � T ,ZR2d dwdzp̂(s; (x; y); (w; z))p̂(t� s; (w; z); (x0; y0)) = p̂(t; (x; y); (x0; y0)):Also, for a given C0 > 0, 9t0 := t0(C0; ; C) s.t. for t � t0; [ jx0�xj24t +3 jy0�y� (x+x0)t2 j2t3 ℄ � C0; p(t; (x; y); (x0; y0)) � C�1bp�1(t; (x; y); (x0; y0)).Remark 2.2 The lower bound, obtained in small time and ompat sets,derives from the parametrix representation of Proposition 2.2 and the upperGaussian ontrol. It remains an open problem to �nd a well suited hainingargument to derive a global lower bound for this degenerate ase.Remark 2.3 Note that the above result would remain valid if we replaedthe dynamis of Yt in (1.1) by Yt = y + R t0 F (Xs)ds for a C2+�; � > 0,Lipshitz ontinuous mapping F : Rd ! Rd s.t. rFrF � is non degenerated,i.e. 90;8(�; x) 2 Rd�Rd ; jhrFrF �(x)�; �ij � 0j�j2. Indeed, in suh a ase,( �Xs; �Ys)s2[0;T ℄ := (F (Xs); Ys)s2[0;T ℄ follows a dynamis of type (1.1).



PARAMETRIX FOR SOME DEGENERATE PROCESSES 93. Proof of the main results: di�usion proess.3.1. Proof of Proposition 2.2: parametrix expansion. Following Cattiaux[Cat90℄ and Lemma 3.1 one derives that p; ep have ontinous densities withbounded derivatives. Hene, from the forward and bakward Kolmogorovequations assoiated to (X;Y ); ( eX; eY ) and denoting by L� the adjoint of L,we have p(t; (x; y); (x0; y0))� ep(t; (x; y); (x0; y0))= Z t0 du ��u ZR2d dwdzp(u; (x; y); (w; z))ep(t� u; (w; z); (x0 ; y0))= Z t0 du ZR2d dwdz ��p(u; (x; y); (w; z))�u ep(t� u; (w; z); (x0; y0))+p(u; (x; y); (w; z)) � �ep(t� u; (w; z); (x0 ; y0))�u �= Z t0 du ZR2d dwdz �L�p(u; (x; y); (w; z))ep(t� u; (w; z); (x0 ; y0))�eLep(t� u; (w; z); (x0; y0))p(u; (x; y); (w; z))i= Z t0 du ZR2d dwdzp(u; (x; y); (w; z))(L � eL)ep(t� u; (w; z); (x0; y0))= p
H(t; (x; y); (x0; y0)):A simple iteration ompletes the proof. �3.2. Proof of Theorem 2.1.3.2.1. Proof of the upper bound. The proof is divided into two parts. Firstan elementary ontrol on the density of ( eX; eY ) is stated in Lemma 3.1. Then,this ontrol is used to ontrol the kernel H and the onvolutions.Step 1: Gaussian ontrols for ( eX; eY ).Lemma 3.1 There exist onstants  > 0; C > 0, s.t. for all multi-index �,j�j � 3, 80 � u < t � T , 8(w; z); (x0; y0) 2 R2dj��w ep(t� u; (w; z); (x0; y0))j � C(t� u)�j�j=2 d3d=2(2�t2)d� exp�� " jx0 � wj24(t� u) + 3 jy0 � z � 12(x0 + w)(t� u)j2(t� u)3 #�:= C(t� u)� j�j2 bp(t� u; (w; z); (x0; y0));ep(t� u; (w; z); (x0; y0)) � 2C�1bp�1(t� u; (w; z); (x0; y0));



10 V. KONAKOV ET AL.where p̂ is as in Theorem 2.1 and enjoys the semi-group property.The proof is postponed to Setion 3.2.2.Step 2: Control of the kernel. Reall that under (B), the oe�ientsa; b are uniformly Lipshitz ontinuous. Hene, it is easy to get from Lemma3.1 and the previous de�nition of H that, up to a modi�ation of  > 0 inbp, that 9C1 > 0;8u 2 [0; t),(3.1) jH(t� u; (w; z); (x0 ; y0))j � C1pt� u bp(t� u; (w; z); (x0; y0)):Lemma 3.1 also yields that 9C2 > 0; 8u 2 (0; t℄; ep(u; (x; y); (w; z)) �C2bp(u; (x; y); (w; z)). Setting C := C1 _ C2, we �nally obtain��ep
H(t; (x; y); (x0; y0))��� Z t0 du ZR2d ep(u; (x; y); (w; z)) ��H(t� u; (w; z); (x0 ; y0))�� dwdz;� Z t0 du ZR2d C2bp(u; (x; y); (w; z)) 1pt� u bp(t� u; (w; z); (x0 ; y0))dwdz� C2t1=2B(1; 12)bp(t; (x; y); (x0; y0));using the semigroup property of bp in the last inequality and where B(m;n) =R 10 duum�1(1� u)n�1 denotes the �-funtion. By indution in r,���ep
H(r)(t; (x; y); (x0; y0))��� � Cr+1tr=2B(1; 12)B(32 ; 12)� :::�B(r + 12 ; 12)�bp(t; (x; y); (x0; y0)); r 2 N� :(3.2)This implies that the series representing the density p(t; (x; y); (x0; y0))p(t; (x; y); (x0; y0)) = 1Xr=0 ep
H(r)(t; (x; y); (x0; y0))is absolutely onvergent and the following estimate holds��p(t; (x; y); (x0; y0))�� � C bp(t; (x; y); (x0; y0)): �Remark 3.1 Note arefully that the above series still onverges if the oef-�ients b; � are only uniformly �-Hölder ontinuous. In suh ase Hörman-der's theorem does not hold, but one an show by standard tehniques, seee.g. Baldi [Bal78℄, that p(t; (x; y); (:; :)) := Xr2Nep 
 H(r)(t; (x; y); (:; :)) is aprobability density and derive with a Dynkin like argument, see e.g. Theo-rem 2.3 in [Dyn63℄, that it orresponds to the density of the weak solution of(1.1).



PARAMETRIX FOR SOME DEGENERATE PROCESSES 113.2.2. Proof of the partial lower bound. From the previous proof and thegaussian nature of ( eXt; eYt), see Lemma 3.1, one getsp(t; (x; y); (x0; y0)) � ep(t; (x; y); (x0; y0))� Ct1=2bp(t; (x; y); (x0; y0))� 2C�1bp�1(t; (x; y); (x0; y0))� Ct1=2bp(t; (x; y); (x0; y0))� C�1bp�1(t; (x; y); (x0; y0))for jx0�xj24t + 3 jy0�y� 12 (x0+x)tj2t3 � C0 and t small enough.3.2.3. Proof of the tehnial Lemmas.Proof of Lemma 3.1. We prove the statement for j�j = 0, i.e. withoutderivation. Indeed, sine our omputations only involve a �nite number ofderivations that introdue some polynomials in front of the exponential, thegeneral bound an be derived similarly and the result holds taking the worstonstants. Also, with respet to the statement of the lemma, we supposew.l.o.g. u = 0 for notational onveniene. We get from (2.3) with x = w; y =z that for all 0 < t � T ,eYt = (z + wt+ b �x0; y0� t22 )+ Z t0 �Z v0 � �x0; y0 � x0(t� s)� dWs� dv:= m2;t +At;At = Z t0 (t� s)� �x0; y0 � x0(t� s)� dWs := Z t0 (t� s)e�sdWs;(3.3)using It�'s formula for the last equality. Setting 8s 2 [0; t℄; eas = e�2s , reallfrom (UE) that e�s is symmetri, we �nally obtain that the ovariane matrix�t of the vetor ( eXt; eYt) is equal to�t =  R t0 easds R t0 (t� s)easdsR t0 (t� s)easds R t0(t� s)2easds ! :Note from (UE) that: 9 > 0; 8s 2 [0; T ℄; 8� 2 Rd ; heas�; �i � j�j2. Hene,by the Cauhy Shwarz inequality8Z 2 R2d ; h�tZ;Zi � =2hCtZ;Zi; Ct :=  tId t22 Idt22 Id t33 Id ! ;where Ct is atually the ovariane matrix of a d-dimensional standard Brow-nian motion and its integral.



12 V. KONAKOV ET AL.The mean vetor of ( eXt; eYt) is equal to (m1;t;m2;t), with m1;t = w +b(x0; y0)t and m2;t as in (3.3). Note that Ct = TAT �, whereT � =  Id t2Id0 Id ! ;A =  tId 00 t312Id ! :Hene, C�1t = (T �)�1A�1T�1 =  Id � t2Id0 Id ! t�1Id 00 12t�3Id ! Id 0� t2Id Id ! :Now, 8Z 2 R2d , E := �D��1t Z;ZE � �=2 
A(T�1Z); T�1Z�. In partiular,for Z = (Z1; Z2); Z1 = x0 � (w + b(x0; y0)t); Z2 = y0 � (z + wt+ b(x0; y0) t22 ),we get T�1Z =  x0 �w � b(x0; y0)ty0 � z � 12(x0 + w)t !. We therefore deriveE � � 2t jx0 � w � b(x0; y0)tj2 � 6t3 jy0 � z � 12(x0 + w)tj2:From (B) (boundedness of b), we derive that there exist ; C > 0 s.t.E � C �  " jx0 � wj24t + 3 jy0 � z � 12(w + x0)t)j2t3 # :Eventuallyep(t; (w; z); (x0 ; y0)) � Cd3d=2(2�t2)d exp � " jx0 � wj24t + 3 jy0 � z � 12(w + x0)t)j2t3 #!:= C bp(t; (w; z); (x0; y0)):Note from [Kol34℄ that bp enjoys the semigroup property. This gives thestatement for j�j = 0. The lower bound is derived similarly from the ontrol8Z 2 R2d ; h�tZ;Zi � �12 hCtZ;Zi ahieved for  small enough. �4. Markov Chain approximation and assoiated onvergene re-sults.4.1. Global strategy. Let us reall the strategy to derive a loal limit the-orem for the Markov hain approximation assoiated to a di�usion proess.Suppose the underlying di�usion has a density with parametrix representa-tion as in Proposition 2.2. If the "natural" Markov hain assoiated to thedi�usion has a density, the main idea is to introdue a Markov hain withfrozen oe�ients that also has a density so that the density of the Markovhain an be written in parametrix form as well with a suitable disretekernel.The next step onsists in omparing these two parametrix representations.To this end, two key steps are needed:



PARAMETRIX FOR SOME DEGENERATE PROCESSES 131. The omparison of the densities of the frozen Markov hain and frozendi�usion proess.2. The omparison of the kernels.The �rst step relies on Edgeworth like expansions, see e.g. Bhattaharya andRao [BR76℄, the seond one on areful Taylor like expansions.The loal limit Theorem is then derived by ontrolling the iterated on-volutions of di�erenes of the kernels. This proedure has been applied su-essfully in [KM00℄ to derive a loal limit theorem for the Markov hainapproximation of uniformly ellipti di�usions with bounded oe�ients.In our urrent framework new di�ulties arise. First of all it is not obviousto derive that a "natural" Markov hain assoiated to (1.1) has a density.To guarantee suh an existene a ommon trik in the literature onsistsin adding an arti�ial visosity term in the disretization sheme, see e.g.[BT96℄. Our strategy is here di�erent. Namely, we manage to obtain a den-sity for the natural frozen Markov hain deriving from (2.3) after a su�ientnumber of time steps. We therefore onsider a "maro sale" frozen modelorresponding to this number of time steps. We then obtain a good om-parison between the densities of the "aggregated" hain at maro sale andthe frozen di�usion proess. This �rst step gives the struture of the randomvariables involved in the approximation in order to have the omparison ofthe densities. These variables have a density. From these variables, we thenderive the Markov hain dynamis by letting the oe�ients vary at marosale.A seond di�ulty is that the seond omponent in (1.1) is unbounded.This yields to handle a supplementary term w.r.t. the analysis arried outin [KM00℄ and to a slightly di�erent version of the loal limit theorem. Inthe sequel we �rst give the dynamis of the Markov hains at maro saleand state the loal limit Theorem (Subsetion 4.2). We give the Lemma forthe omparison of the densities (Subsetion 4.3) and prove the existene ofthe density for the aggregated "frozen" Markov hain (Subsetion 4.4). Thewhole proof of the loal limit Theorem is arried out in the appendix.4.2. Models and results. Now, �x T > 0; eN 2 N� and let ~h = T= eN bethe "miro" time disretization step. Let n 2 N� be large enough so that thenatural "frozen" hain assoiated to (2.3) has a density, see Proposition 4.2,and de�ne the "maro" sale time step h = n~h and set N = eN=n 2 N� thetotal number of "maro" time steps over [0; T ℄.For all i 2 [[0; N ℄℄ set ti := ih. For any (x; y) 2 R2d , we de�ne on the timegrid f0; :::; tNg an R2d valued Markov hain (Zhti)i2[[0;N ℄℄ = ((Xhti ; Y hti )�)i2[[0;N ℄℄



14 V. KONAKOV ET AL.whose dynamis is given byZh0 = (x; y)�; and 8i 2 [[0; N � 1℄℄;Xhti+1 = Xhti + b(Zhti)h+ �(Zhti)ph�1i+1;Y hti+1 = Y hti + (Xhti + n2 b(Zhti)h+ �(Zhti)ph�2i+1)h;(4.1)where n := (1+ 1n). The variables (#i)i2(0;N ℄℄ := (�1i ; �2i )i2(0;N ℄℄ are i.i.d. en-tered 2d-dimensional random variables. The density qn(�1; �2) of #i satis�es(A1) E [#i ℄ = 0, and Cov(#i) =  Id�d 12nId�d12nId�d 13n(1 + 12n)Id�d !.(A2) There exist a positive integer S0 and a funtion  : R2d ! R withsupu2R2d  (u) <1 and R kukS  (u)du <1 for S = 4dS0 + 4 suh thatjD�uqn(u)j �  (u)for all j�j 2 [[0; 4℄℄. The main result of the setion, i.e. Theorem 4.1, is statedin terms of S0.We �nally need a "frozen" time inhomogeneous Markov hain. For (x; y); (x0; y0) 2R2d , j 2 (0; N ℄℄2 we de�ne ( eZhti)i2[[0;j℄℄ = (( eXhti ; eY hti )�)i2[[0;j℄℄ byeZh0 = (x; y)�; and 8i 2 [[0; j � 1℄℄;eXhti+1 = eXhti + b(x0; y0)h+ �(x0; y0 � x0(tj � ti))phe�1i+1;eY hti+1 = eY hti + � eXhti + n2 b(x0; y0)h+ �(x0; y0 � x0(tj � ti))phe�2i+1�h:(4.2)The i.i.d. variables (~�1i ; ~�2i )i2(0;j℄℄ have density qn(:).Remark 4.1 Note that the models introdued in (4.1) and (4.2) an seemawkward at �rst sight. They atually derive from omputations that yield theexistene of the density for the natural frozen Markov hain assoiated to(2.3) after n "miro" time steps ~h, i.e at the "maro" level with time step h.This is developed in Subsetion 4.4.From now on, ph(tj0 ; (x; y); (�; �)) and eptj ;x0;y0h (tj0 ; (x; y); (�; �)) := eph(tj0 ; (x; y),(�; �)) denote the transition densities between times 0 and tj0 � tj of theMarkov hain (4.1) and "frozen" Markov hain (4.2) respetively. Introduinga disrete "analogue" to the generators we derive from the Markov propertya relation similar to (2.5) between ph and eph.



PARAMETRIX FOR SOME DEGENERATE PROCESSES 15For a su�iently smooth funtion f , de�ne Lh and eLh byLhf(tj; (x; y); (x0; y0)) =h�1 �Z ph(h; (x; y); (u; v))f(tj � h; (u; v); (x0; y0))dudv� f(tj � h; (x; y); (x0; y0))� ;eLhf(tj; (x; y); (x0; y0)) =h�1 �Z eptj ;x0;y0h (h; (x; y); (u; v))f(tj � h; (u; v); (x0; y0))dudv� f(tj � h; (x; y); (x0; y0))� :Note that beause of tehnial reasons, there is a shift in time in the abovede�nitions, i.e. the time is tj � h, instead of the "expeted" tj, in the righthand side of the previous equations.A disrete analogue Hh of the kernel H is de�ned asHh(tj ; (x; y); (x0; y0)) = (Lh � eLh)eph(tj ; (x; y); (x0; y0)); 0 < j � N:From the previous de�nition Hh(tj ; (x; y); (x0; y0)) = h�1 �Z hph � eptj ;x0;y0h i (h; (x; y); (u; v))eptj ;x0;y0h (tj � h; (u; v); (x0; y0))dudv:Analogously to Lemma 3.6 in [KM00℄ we obtain the following result.Proposition 4.1 (Parametrix for Markov hain) .Assume (UE), (B) are in fore. Then, for 0 < tj � T ,(4.3) ph(tj; (x; y); (x0; y0)) = jXr=0�eph 
h H(r)h � (tj; (x; y); (x0; y0));where the disrete time onvolution type operator 
h is de�ned by(g 
h f)(tj; (x; y); (x0; y0))= j�1Xi=0 h Z g(ti; (x; y); (u; v))f(tj � ti; (u; v); (x0; y0))dudv;eph 
h H(0)h = ~ph and H(r)h = Hh 
h H(r�1)h denotes the r-fold disrete on-volution of the kernel Hh. W.r.t. the above de�nition, we use the onventionthat eph 
h H(r)h (0; (x; y); (x0; y0)) = 0; r � 1.



16 V. KONAKOV ET AL.Now (4.3) and (2.5) have the same form. Comparing these two expressionswe obtain the following loal limit Theorem.Theorem 4.1 (Loal limit Theorem for the densities) .Assume (UE), (B), (A-1), (A-2) hold true. Then, 9 > 0,sup(x;y);(x0;y0)2R2d "(1 + jx0j+ jxj) supÆ2[0;1℄ bp(T (1 + Æ); (x; y); (x0; y0))+�pT �x0 � x; y0 � y � T �x0 + x2 ����1�jph(T; (x; y); (x0; y0))� p(T; (x; y); (x0; y0))j = O(h1=2);where bp is as in Theorem 2.1, ph denotes the density of the Markov hain(4.1) and 8(�; u; v) 2 R+ � R2d ,��(u; v) = ��4d�(u=�; v=�3); �(u; v) = �1 + (juj2 + jvj2)S0�1��1 :Note from the above result that the bigger is S0, the better is the ontrol onthe tails.4.3. Comparison of the disrete and ontinuous frozen densities. The�rst step for the error analysis is ahieved with the followingLemma 4.1 There exists C > 0, s.t. for all j 2 (0; N ℄℄; �2 := tj,��(eph � ep)(tj ; (x; y); (x0; y0))�� � Ch1=2��1��(x0 � x; y0 � y � x+ x02 �2);(4.4)where ��(u; v) = ��4d�(u=�; v=�3); �(u; v) = 11+[juj2+jvj2℄(S�4)=2 , S being in-trodued in (A2).Proof. Iterating (4.2) from 0 till tj we geteXhtj = x+ b(x0; y0)�2 + �f 1j1=2 j�1Xk=0�(x0; y0 � x0(�2 � tk))e�1k+1geY htj = y + x�2 + �42 b(x0; y0)(1 + 1nj )+�38<: 1j1=2 j�1Xk=0�(x0; y0 � x0(�2 � tk))e�2k+1 1j+ 1j1=2 j�1Xk=0�(x0; y0 � x0(�2 � tk))e�1k+1 �1� k + 1j �9=;(4.5)



PARAMETRIX FOR SOME DEGENERATE PROCESSES 17Introduemj =  x+ b(x0; y0)�2y + x�2 + �42 b(x0; y0)n;j ! :=  m1jm2j ! ; n;j := 1 + 1nj ;and
�j := 0BBBBBBBBBBB�

f 1j1=2 j�1Xk=0�(x0; y0 � x0(�2 � tk))e�1k+1g8<: 1j1=2 j�1Xk=0�(x0; y0 � x0(�2 � tk))e�2k+1 1j+ 1j1=2 j�1Xk=0�(x0; y0 � x0(�2 � tk))e�1k+1 �1� k + 1j �9=;
1CCCCCCCCCCCA :The dynamis of (4.2) thus writes eXhtjeY htj ! = mj + �Id�d 0d�d0d�d �3Id�d !�j:Setting 8s 2 [0; �2℄; �(s) := inffti := ih : ti � s < ti+1g; eas := �2(x0; y0 �x0(�2 � s)) we get Vj := Cov(�j) =0� 1tj R tj0 dsea�(s) 1t2j R tj0 dsea�(s)F j;h1 (�(s))1t2j R tj0 dsea�(s)F j;h1 (�(s)) 1t3j R tj0 dsea�(s)F j;h2 (�(s)) 1Awhere F j;h1 (�(s)) := [nh2 + (tj � (�(s) + h))℄; F j;h2 (�(s)) := [nh23 (1 + 12n) +nh(tj � (�(s) + h)) + (tj � (�(s) + h))2℄.Thus, for h small enough, the ovariane matrix Vj is uniformly invertiblew.r.t. the parameters n; j;2 N� . Denoting by gn the density of the normalizedsum V �1=2j �j we deriveeph(tj ; (x; y); (x0; y0)) = 1�4ddet(V 1=2j )gn0�V �1=2j 0� x0�m1j�y0�m2j�3 1A1A :Applying the Edgeworth expansion for gn (the key tool is the normal approx-imation of Bhattaharya and Rao, Theorem 19.3 in [BR76℄) and exploitingarguments similar to those of the proof of Lemma 3.1, we obtain������eph(tj; (x; y); (x0; y0))� 1�4ddet(V 1=2j )gG0�V �1=2j 0� x0�m1j�y0�m2j�3 1A1A������� Ch1=2��1��(x0 � x; y0 � y � x+ x02 �2);(4.6)



18 V. KONAKOV ET AL.where gG stands for the standard 2d dimensional Gaussian density. To on-lude the proof, reall from the proof of Lemma 3.1 thatep(tj ; (x; y); (x0; y0)) = 1�4ddet(C1=2j )gG0�C�1=2j 0� x0�m1C;j�y0�m2C;j�3 1A1A(4.7)where mC;j =  x+ b(x0; y0)�2y + x�2 + �42 b(x0; y0) ! :=  m1C;jm2C;j !, and Cj =0� 1tj R tj0 dseas 1t2j R tj0 dseas(tj � s)1t2j R tj0 dseas(tj � s) 1t3j R tj0 dseas(tj � s)2 1A :The result eventually follows from (4.6), (4.7) and standard omputationsinvolving the mean value theorem. �4.4. Existene of the density for the aggregated frozen proess. Let h0 > 0be a given �xed time step. For i 2 N set ti := ih0. Fix (x0; y0) 2 R2d ; t > 0.We onsider the frozen model de�ned by eXh00 = x; eY h00 = y and for all i 2 N,eXh0ti+1 = eXh0ti + b(x0; y0)h0 + �(x0; y0 � tx0)ph0 e�i+1;eY h0ti+1 = eY h0ti + eXh0ti+1h0= eY h0ti + h0 eXh0ti + h20b(x0; y0) + h3=20 �(x0; y0 � tx0)e�i+1;(4.8)where (e�i)i2N� are i.i.d., entered with identity ovariane. The aim of thissetion is to show that for i large enough ( eXh0ti ; eY h0ti ) admits a density. Werefer the reader to the work of Yurinski [Yur72℄ or Molhanov and Varhenko[MV77℄ for related topis.Conditionally to  eXh0ti = x�eY h0ti = y� ! and iterating the frozen model we geteXh0ti+n = x� + (nh0)b(x0; y0) + �(x0; y0 � x0t)pnh0e�(1)i;n ;eY h0ti+n = y� + (nh0)x� + n2 (nh0)2b(x0; y0) + (nh0)3=2�(x0; y0 � x0t)e�(2)i;n ;(4.9)where we reall n = (1 + 1n) ande�(1)i;n = 1pn �e�i+1 + e�i+2 + :::+ e�i+n� ;e�(2)i;n = 1pn �e�i+1 + (1� 1n)e�i+2 + :::+ (1� n� 1n )e�i+n� :



PARAMETRIX FOR SOME DEGENERATE PROCESSES 19We haveV ar(e�(2)i;n ) = (1� n�1n )2 + :::+ 12n = 2n2 + 3n+ 16n2 = 13n(1 + 12n);Cov(e�(1)i;n ; e�(2)i;n ) = (1� n�1n ) + :::+ 1n = n+ 12n = n2 :Hene, the ovariane matrix of the 2d dimensional vetor �e�(1)i;n ; e�(2)i;n�� isnon-degenerate for n � 2.Estimating the harateristi funtion 'n(�1; �2) of the vetor �e�(1)i;n ; e�(2)i;n�� 2R2d we derive the followingProposition 4.2 Let �(�) := E hexp �ihe�1; �i�i ; � 2 Rd denote the har-ateristi funtion of the (e�i)i2N� . If for all multi index �; j�j = S + 2d+ 1,jD��(�)j � C(1 + j� j4+2d+1)�1, then for n large enough and for all multiindex �, j�j � 4, one hasZRd�Rd j(�1; �2)jj�jjDS+2d+1'n(�1; �2)jd�1d�2 <1:In partiular, by Fourier inversion the densityfn(�1; �2) = 1(2�)2d Z exp(�ih(�1; �2)�; (�1; �2)�i)'n(�1; �2)d�1d�2(4.10)exists and there exists C s.t. for all multi index �; j�j � 4,jD�fn(�1; �2)j � C1 + j(�1; �2)jS+2d+1 :=  n(�1; �2):Proof. Write'n(�1; �2) = E hexpniD�1; e�(1)i;nE+ iD�2; e�(2)i;nEoi = n�1Yj=0 � �1 + (1� jn)�2pn ! :(4.11)We partition the spae R2d into the following disjoint setsA0 := �(�1; �2) 2 R2d : j�1j � (1� 1n) j�2j� ;Ai := �(�1; �2) 2 R2d : (1� i+ 1n ) j�2j � j�1j < (1� in) j�2j� ; i 2 [[1; n� 2℄℄;An�1 := �(�1; �2) 2 R2d : j�1j < 1n j�2j� :



20 V. KONAKOV ET AL.If (�1; �2) 2 A0 then for i 2 [[2; n� 2℄℄������1 + (1� in)�2pn ����� � 1pn �j�1j � (1� in) j�2j�� 1pn �(1� 1n) j�2j � (1� in) j�2j� = i� 1npn j�2jand similarly �����1+(1� in )�2pn ���� � i�1npn j�1j. Hene,������1 + (1� in)�2pn �����2d+1 � (i� 1)2d+12n3d+3=2 j(�1; �2)j2d+1:(4.12)If (�1; �2) 2 Ai� for some i�; i� 2 [[1; n � 2℄℄ and l 2 [[2; n � 1 � i�℄℄ thenelementary omputations yield similarly������1 + (1� i�+ln )�2pn �����2d+1 � (l � 1)2d+12n3d+3=2 j(�1; �2)j2d+1 ;(4.13)and for l 2 [[1; i� � 1℄℄������1 + (1� i��ln )�2pn �����2d+1 � l2d+12n3d+3=2 j(�1; �2)j2d+1 :(4.14)If (�1; �2) 2 An�1 then for i 2 [[1; n� 1℄℄������1 + (1� in)�2pn �����2d+1 � 12nd+1=2 �1� i+ 1n �2d+1 j(�1; �2)j2d+1 :(4.15)Use now the growth assumption on � and the inequality 1 +PNj=1 pj �QNj=1(1 + pj) where pj � 0; to derive from (4.11)j'n(�1; �2)j = ������n�1Yj=0 � �1 + (1� jn)�2pn !������ � CnQn�1j=0  1 + �����1+(1� jn )�2pn ����2d+1!� Cn1 +Pn�1j=0 ���� �1+(1� jn )�2pn ����2d+1 :Now equations (4.12), (4.13), (4.14), (4.15) yield that there exists n largeenough s.t. j'n(�1; �2)j � C(n)1 + j(�1; �2)j2d+1 ;



PARAMETRIX FOR SOME DEGENERATE PROCESSES 21where C(n)!n +1. Anyhow, for suh a �xed n, one has 'n 2 L1(R2d) whihimplies the existene of the density fn of the vetors �e�(1)i;n ; e�(2)i;n�� 2 R2d . Theproperties onerning the growth and derivatives of fn are derived from (4.10)and the growth and smoothness properties of �. �Hene we an set (�1i ; �2i ) := (e�(1)i;n ; e�(2)i;n ) where (e�(1)i;n ; e�(2)i;n ) are as in the aboveproposition. Introduing a "maro" sale time step h = nh0, the disretemodel (4.2) orresponds to the "aggregated" dynamis of (4.9). Set for all(�1; �2) 2 R2d ;  (�1; �2) :=  n(�1; �2). With the notations of Setion 4.2 onederives that qn(�1; �2) = fn(�1; �2) satis�es (A2) with the above  .APPENDIX A: PROOF OF THE LOCAL LIMIT THEOREM 4.1From now on, we use the following notations for multi-indies and powers.For � = (�1; :::; �2d) 2 N2d ; (x; y) = (x1; :::; xd; y1; :::; yd)� setj�j = �1 + :::+ �2d; �! = �1!:::�2d!;(x; y)� = x�11 ::: x�dd y�d+11 ::: y�2dd ;D� = D�1x1 :::D�dxdD�d+1y1 :::D�2dyd :A.1. Preliminary ontrols on the disrete kernel. We �rst givesome ontrols for the kernel Hh(tj ; (x; y); (x0; y0)). Namely, the followingLemma states that the di�erene between Hh, Kh := (L � eL)eph and anadditional remainder term Mh is small, i.e. has the order announed in The-orem 4.1.Lemma A.1 (Control of the disrete kernel) For all j 2 [[1; N ℄℄, set�2 = tj. One has ��(Hh �Kh �Mh)(tj ; (x; y); (x0; y0))��� Ch1=2��1��(x0 � x; y0 � y � x+ x02 �2):(A.16)where �� is as in Lemma 4.1 and for j 2 (1; N ℄℄,Kh(tj ; (x; y); (x0; y0)) = (L� eL)eph(tj ; (x; y + xh); (x0; y0));i.e. Kh is the di�erene of the generators assoiated to the initial and frozendi�usion proesses between 0 and tj applied to the density of the Markovhain with a slight hange for the initial point in the y omponent,(A.17) Mh(tj ; (x; y); (x0; y0)) = 3Xk=1Mkh (tj ; (x; y); (x0; y0));where the (Mkh )k2[[1;3℄℄ are de�ned in Appendix B.



22 V. KONAKOV ET AL.For j = 1 we set Kh(tj ; (x; y); (x0; y0)) = 0,Mh(tj; (x; y); (x0; y0)) = Hh(tj ; (x; y); (x0; y0)):The proof is postponed to Appendix B. From this proof one also derives thatthe terms appearing in Lemma A.1 are ontrolled with the following:Lemma A.2 There exists a onstant C s.t. for all 0 < j � N , for all (x; y)and (x0; y0) in R2d(jKhj+ jMhj+ 3Xi=1jM ihj+ jHhj)(tj ; (x; y); (x0; y0)� C��1�� �x0 � x; y0 � y � x+ x02 �2� ;with �� as in Lemma 4.1. Here again � = ptj:The key fat is that the previous bound provides an integrable singularity in�. A.2. Comparison of the parametrix expansions for the ompen-sated di�usion and Markov hain. We �rst state an auxiliary resultonerning the behavior of the iterated disrete kernel applied to the densityof the frozen Markov hain.Lemma A.3 There exists a onstant C (that does not depend on (x; y) and(x0; y0)) suh that, for all 0 < j � N; r 2 [[0; j℄℄,����eph 
h H(r)h � (tj ; (x; y); (x0; y0))��� � Cr+1 �r� �1 + r2���� �x0 � x; y0 � y � x+ x02 �2� ;where �� and S0 are as in Theorem 4.1.To prove the lemma it is su�ient to repeat the proof of Lemma 3.11 in[KM00℄ with obvious modi�ations onerning the additional arguments iny; y0.Lemma A.4 For 0 < j � N the following formula holds:ph(tj; (x; y); (x0; y0)) = jXr=0 �ep
h (Mh +Kh)(r)� (tj ; (x; y); (x0; y0)) +R;where jRj � Ch1=2��1��(x0 � x; y0 � y � x+x02 �2) for some onstant C. Thefuntion �� is as in Theorem 4.1.



PARAMETRIX FOR SOME DEGENERATE PROCESSES 23The proof follows from Lemmas 4.1 and A.2 and is analogous to the proofof Lemma 3.13. in [KM00℄. �Let us now ompare the parametrix expansions of the ompensated di�u-sion and Markov hain at time T . From Proposition 2.2, (3.2) and Stirling'sasymptoti formula for the � funtion we have(A.18) p(T; (x; y); (x0; y0)) = NXr=0 �ep
H(r)� (T; (x; y); (x0; y0)) +R1;where jR1j � Ch1=2bp(T; x0 � x; y0 � y � x+x02 T ), with bp as in Theorem 2.1.By Lemma A.4(A.19)ph(T; (x; y); (x0; y0)) = NXr=0 �ep
h (Mh +Kh)(r)� (T; (x; y); (x0; y0)) +R2where jR2j � Ch1=2T�1=2�pT (x0 � x; y0 � y � x+ x02 T ):Beause of (A.18) and (A.19), to prove the theorem it remains to show thatj�N j := �����( NXr=0 �ep
H(r)�� NXr=0 �ep
h (Mh +Kh)(r)�) (T; (x; y); (x0; y0))������ C(1 + jx0j)h1=2�pT (x0 � x; y0 � y � x+ x02 T ):(A.20)Note that j�N j � S1 + S2 + S3 + S4, whereS1 = ����� NXr=0 �ep
H(r)�� NXr=0�ep
h H(r)�! (T; (x; y); (x0; y0))����� ;S2 = ����� NXr=0 �ep
h H(r)�� NXr=0 �ep
h eH(r)�! (T; (x; y); (x0; y0))����� ;S3 = ����� NXr=0 �ep
h eH(r)�� NXr=0�ep
h (Mh + eH)(r)�! (T; (x; y); (x0; y0))����� ;S4 = ����� NXr=0 �ep
h (Mh + eH�(r) � NXr=0 �ep
h (Mh +Kh)(r)�! (T; (x; y); (x0; y0))����� ;



24 V. KONAKOV ET AL.where ~H(t; (x; y); (x0; y0)) = H(t; (x; y + xh); (x0; y0)) is a shifted operatorintrodued for the omparison with Kh, see the proof of Lemma A.1 in theAppendix B for details.We shall showSi � Ch1=2�pT (x0 � x; y0 � y � x+ x02 T ); i 2 f1; 3; 4g;S2 � C(1 + jx0j)h1=2 bp(T; (x; y); (x0; y0)):This is done in Appendix C.APPENDIX B: PROOF OF LEMMAS A.1 AND A.2B.1. Proof of Lemma A.1. For j = 1 we have � = ph: By de�nitionof Hh Hh(h; (x; y); (x0; y0)) = ��2 h(ph � eph;x0;y0h )(h; (x; y); (x0 ; y0))i :Thus, realling qn stands for the density of the random variables appearingin shemes (4.1), (4.2)��Hh(h; (x; y); (x0; y0))�� = h�(1+2d) ����� 1pdeta(x; y)qn (u+ Æ1; v + Æ2)� 1pdeta(x0; y0 � x0h)qn (u; v)����� ;whereu = ��1(x0; y0 � x0h)(x0 � x� b(x0; y0)h)ph ; u+Æ1 = ��1(x; y)(x0 � x� b(x; y)h)ph ;v = ��1(x0; y0 � x0h)y0 � y � (x+ 12nhb(x0; y0))hh3=2 ;v + Æ2 = ��1(x; y)y0 � y � (x+ 12nhb(x; y))hh3=2 :Note that(B.21)����� 1pdeta(x0; y0 � x0h) � 1pdeta(x; y) ����� � C hh1=2 �juj+ h1=2�+ h3=2 �jvj+ h1=2�i ;(B.22)jqn (u+ Æ1; v + Æ2)� qn (u; v)j � C �[u; u+ Æ1℄ ; [v; v + Æ2℄� (jÆ1j+ jÆ2j) ;



PARAMETRIX FOR SOME DEGENERATE PROCESSES 25where [X;Y ℄ := (1�)X+Y;  2 [0; 1℄; for X;Y matries or vetors. Onehas[u; u+ Æ1℄ = [��1(x0; y0 � x0h); ��1(x; y)℄(x0 � x� b(x0; y0)h)ph+��1(x; y)(b(x0; y0)� b(x; y))ph:= [��1(x0; y0 � x0h); ��1(x; y)℄�(x0; y0 � x0h)u+ R1;[v; v + Æ2℄ = [��1(x0; y0 � x0h); ��1(x; y)℄(y0 � y � (x+ nb(x0;y0)h2 )h)h3=2+��1(x; y)(b(x0; y0)� b(x; y))n2 ph:= [��1(x0; y0 � x0h); ��1(x; y)℄�(x0; y0 � x0h)v + R2:Assumptions (B), (UE) also yieldjR1j+ jR2j � Ch1=2;9C1; C2 > 0; 8� 2 Rd ; 0 �  � 1;C1j�j � j[��1(x0; y0 � x0h); ��1(x; y)℄�(x0; y0 � x0h)�j � C2j�j:We also have jÆ1j+ jÆ2j � Ch 12 �1 + juj2 + jvj2� :Reall that from (A2) and our hoie for  ,  (u; v) � C1+j(u;v)jS+2d+1 . From(B.21), (B.22) and the above omputations we getjHh(h; (x; y); (x0; y0))j � Ch�1=2h�2d 1 + juj2 + jvj2(1 + j(u; v)jS+2d+1)� C��1��(x0 � x; y0 � y � x+ x02 �2):(B.23)For 1 < j � N , we proeed like in the proof of Lemma 3.9 in [KM00℄. Weget that Hh(tj; (x; y); (x0; y0)) = ( bHh � eHh)(tj ; (x; y); (x0; y0))where bHh(tj; (x; y); (x0; y0)) = h�1 Z qn (�1; �2)�h�(x+ b1(�1); y + xh+ b2 (�2))� �(x; y + xh)i d�1d�2;(B.24)



26 V. KONAKOV ET AL.eHh(tj; (x; y); (x0; y0)) = h�1 Z qn (�1; �2)�h�(x+ e1(�1); y + xh+ e2 (�2))� �(x; y + xh)i d�1d�2;(B.25)with �(u; v) = eph(tj � h; (u; v); (x0 ; y0)),b1(�1) = hb(x; y) +ph�(x; y)�1; b2(�2) = �b(x; y)nh2 +ph�(x; y)�2�h;and e1(�1) = hb(x0; y0) +ph�(x0; y0 � x0�2)�1;e2(�2) = �b(x0; y0)nh2 +ph�(x0; y0 � x0�2)�2�h:Using a Taylor expansion at order three for � in (B.24) and (B.25) weobtainHh(tj; (x; y); (x0; y0)) = �12Tr(a(x; y)� a(x0; y0 � x0�2))D2x�(x; y + xh)+hb(x; y)� b(x0; y0);rx�(x; y + xh) + nh2 ry�(x; y + xh)i�+�h2 �hD2x�(x; y + xh)b(x; y); b(x; y)i � hD2x�(x; y + xh)b(x0; y0); b(x0; y0)i�+h22 �tr(D2y�(x; y + xh)(a(x; y) � a(x0; y0 � �2x0)))� 13n �1 + 12n�+2nh38 �hD2y�(x; y + xh)b(x; y); b(x; y)i� hD2y�(x; y + xh)b(x0; y0); b(x0; y0)i��+fh�1Z d�1d�2dqn(�1; �2)�hD2y;x�(x; y + xh)b1(�1); b2(�2)i � hD2y;x�(x; y + xh)e1(�1); e2(�2)i�g+3h�1 Xj�j=3 Z d�1d�2 Z 10 dÆ(1 � Æ)2qn(�1; �2)(b1(�1); b2(�2)��!D��(x+ Æb1(�1); y + xh+ Æb2(�2))�3h�1 Xj�j=3 Z d�1d�2 Z 10 dÆ(1 � Æ)2qn(�1; �2)(e1(�1); e2(�2))��!�D��(x+ Æe1(�1); y + xh+ Æe2(�2)):= I + II + III + IV � V;(B.26)



PARAMETRIX FOR SOME DEGENERATE PROCESSES 27where we denote D2x�(x; y + xh) (resp. D2y�(x; y + xh); D2y;x�(x; y + xh))the Rd 
 Rd matries (�xi;xj�(x; y + xh))(i;j)2[[1;d℄℄2 (resp. (�yi;yj�(x; y +xh))(i;j)2[[1;d℄℄2 , (�yi;xj�(x; y + xh))(i;j)2[[1;d℄℄2).In the sequel, a useful result is the following. There exists C > 0 s.t. formulti-indies �; �; j�j � 3; j�j � 3,j��x ��y �(x; y + xh)j � C��(j�j+3j�j)�� �x0 � x; y0 � y � xh�x+ x02 (�2 � h)�� C��(j�j+3j�j)�� �x0 � x; y0 � y � x+ x02 �2� :(B.27)This assertion an be proved similarly to Lemma 3.7 in [KM00℄.Note now thatI = (L� eL)eph(tj ; (x; y + xh); (x0; y0))+�hn2 hb(x; y) � b(x0; y0);ry�(x; y + xh)i+(L� eL)��(x; y + xh)� eph(tj ; (x; y + xh); (x0; y0))��:= (Kh +M1h)(tj ; (x; y); (x0; y0)):From the above equation and (B.27) we getjM1h(tj; (x; y); (x0; y0))j � C��1��(x0 � x; y0 � y � x+ x02 �2):(B.28)Using similarly (B.27) and tedious but elementary alulations, one ansplit in II; III the terms that give the expeted order, i.e. bounded byCph��1��(x0�x; y0�y� x+x02 �2) and denoted below by R2h(tj; (x; y); (x0; y0)),and those that give an integrable singularity in time, i.e. bounded by C��1��(x0�x; y0 � y � x+x02 �2) and denoted below by M2h(tj ; (x; y); (x0; y0)).



28 V. KONAKOV ET AL.It remains to estimate IV � V in (B.26). To this end write,IV � V = 3h�1 Xj�j=3 1�! Z d�1d�2 Z 10 dÆ(1 � Æ)2qn(�1; �2)�((e1(�1); e2(�2))� � (b1(�1); b2(�2))�)D��(x+ Æe1(�1); y + xh+ Æe2(�2))+(b1(�1); b2(�2; ))� Xj�j=1Z 10 d�D�;��(x+ Æb1(�1) + �Æ(e1 � b1)(�1);y + xh+ Æb2(�2) + �Æ(e2(�2)� b2(�2)))�Æ(e1 � b1)(�1); Æ(e2(�2)� b2(�2))�� �:=M3h(tj; (x; y); (x0; y0)):Computations involving (B.27) yieldjM3h(tj ; (x; y); (x0; y0))j � C��1��(x0 � x; y0 � y � x+ x02 �2):(B.29)We refer to the proof of (3.80) p. 584 in [KM00℄ and Appendix C.3 foradditional details. This ompletes the proof. �The proof of Lemma A.2 then follows from the previous proof, (B.27),(B.28), (B.29) and (B.26) for j 2 (1; N ℄℄ and (B.23) for j = 1.APPENDIX C: CONTROL OF THE (SI)I2[[1;4℄℄C.1. Control of S1. Setpd(T; (x; y); (x0; y0)) = 1Xr=0 ~p
h H(r)(T; (x; y); (x0; y0)):From Proposition 2.2 one has(p� pd)(T; (x; y); (x0; y0)) = (p
H � p
h H)(T; (x; y); (x0; y0))+(p� pd)
h H(T; (x; y); (x0; y0)):Iterating the previous identity we get(p� pd)(T; (x; y); (x0; y0)) = (p
H � p
h H)
h '(T; (x; y); (x0; y0));(C.30)where 8j 2 [[0; N � 1℄℄; 8(u; v) 2 R2d ,'(T � tj; (u; v); (x0; y0)) = 1Xr=0H(r)h (T � tj; (u; v); (x0; y0)):



PARAMETRIX FOR SOME DEGENERATE PROCESSES 29Let us �rst give a bound for Pj(u; v) := (p
H�p
hH)(tj ; (x; y); (u; v)); j 2[[0; N ℄℄; (u; v) 2 R2d . First, from the previous de�nitions of the ontinuousand disrete onvolution operators, P0(u; v) = 0, in the sense of generalizedfuntions. For j � 1 writePj(u; v) = j�1Xi=0Z ti+1ti dtZR2ddwdz�(u;v)(t; (w; z)) � �(u;v)(ti; (w; z));�(u;v)(t; (w; z)) := p(t; (x; y); (w; z))H(tj � t; (w; z); (u; v)):A �rst order Taylor expansion and Fubini's theorem givePj(u; v) = j�1Xi=1Z ti+1ti dt(t� ti)Z 10 dÆQÆi (u; v; s) + T 0j ;QÆi (u; v; s) := ZR2ddwdz�s�(u;v)(s; (w; z))s=ti+Æ(t�ti); i 2 [[1; j � 1℄℄:T 0j := Z h0 dtZR2ddwdzp(t; (x; y); (w; z))�(H(tj � t; (w; z); (u; v)) �H(tj ; (x; y); (u; v))):(C.31)From Lemma 3.1, Theorem 2.1, we obtainT 0j � Cphbp(tj ; (x; y); (u; v));j�s�(u;v)(s; w; z)j � C(s�1(tj � s)�1=2 + (tj � s)�3=2)�bp(s; (x; y); (w; z))bp(tj � s; (w; z); (u; v)):Plug now the above ontrol in (C.31), we getPj(u; v) � C bp(tj ; (x; y); (u; v))(h1=2 + h20�t�1=2j b(j�1)=2Xi=1 t�1i+t�1j j�2Xi=b(j�1)=2+1(tj � ti+1)�1=2 + j�2Xi=1t�3=2i 1A)� Ch1=2bp(tj ; (x; y); (u; v)):Hene, from (C.30) and a suitable version of (3.2) for the disrete onvolutionoperator we derivej(p� pd)(T; (x; y); (x0; y0))j � Ch1=2bp(T; (x; y); (x0; y0)):The bound for S1 an be derived using one again (3.2) for both the ontin-uous and disrete onvolution operators and the asymptotis of the Gammafuntion.



30 V. KONAKOV ET AL.C.2. Control of S2. De�ne for r 2 [[0; N ℄℄; Tr := (ep 
 H(r) � ep 
eH(r))(T; (x; y); (x0; y0)). For r = 1, with the notations of Lemma 3.1 one getsjT1j � Ch2N�1Xj=1 Z 10 dÆZ t�3=2j (T � tj)�1=2jujbp(tj ; (x; y); (u; v))�bp(T � tj; (u; v + Æuh); (x0; y0))dudv:Also, for a di�erent onstant 0 than the one appearing in bp, 8j 2 [[1; N�1℄℄,bp(T � tj; (u; v + Æuh); (x0; y0)) � C(T � tj)�(3k+d)=2� exp �0( jx0 � uj24(T � tj) + 3 jy0 � v � u+x02 (T + Æh� tj)j2(T � tj)3 )!� C bp0(T + Æh� tj; (u; v); (x0; y0)):(C.32)Hene, up to another suitable modi�ation of the onstant in order to havethe semigroup propertyjT1j � Ch2N�1Xj=1 t�3=2j (1 + (T � tj)�1=2jx0j)Z 10 dÆbp(T + Æh; (x; y); (x0; y0))� Ch1=2(1 + T�1=2jx0j)Z 10 dÆbp(T + Æh; (x; y); (x0 ; y0)):Write now, for all r � 2,Tr = ep
h H(r�1) 
h (H � eH)(T; (x; y); (x0; y0))+(ep
h H(r�1) � ep
h eH(r�1))
h eH(T; (x; y); (x0; y0)) := Tr1 + Tr2:The term Tr1 an be handled as T1 exploiting the ontrolj�z ep
h H(r)(t; (x; y); (w; z))j � Cr+1t(r�3)=2bp(t; (x; y); (w; z))� rYi=0B((1 + i)=2; 1=2):For Tr2 one uses the ontrol of step (r � 1). Completing the indution onederives jS2j � Ch1=2(1 + jx0j) supÆ2[0;1℄ bp(T (1 + Æ); (x; y); (x0 ; y0)):Note that this term is the only one for whih we have a linear ontribution ofthe terminal variable. This is, beause of the shift, in some sense unavoidable.Also, the previous trik in (C.32) adds the onstraint to take a supremumw.r.t. to a twie larger time interval as the initial one.



PARAMETRIX FOR SOME DEGENERATE PROCESSES 31C.3. Control of S3. For r = 1 we have to ontrolep
hMh(T; (x; y); (x0; y0)) =3Xi=1hN�1Xj=0 Z dudvep(tj ; (x; y); (u; v))M ih(T � tj; (u; v); (x0; y0)):= h 3Xi=1N�2Xj=0 Ii;j + hIN�1:The term hIN�1 needs to be handled by a di�erent tehnique than theother ones. WritehIN�1 = Z dudvep(T � h; (x; y); (u; v))� (ph � eph) (h; (u; v); (x0 ; y0)):Set V = ( u�x(T�h)1=2 ; v�y�x+u2 (T�h)(T�h)3=2 ). Write now ju� xj = jx0 � x+ u� x0j,����v � y � x+ u2 (T � h)���� = ����y0 � y � x+ x02 T + x� x02 h+ v � y0 + uh+x0 � u2 (T + h)����Set U = � x0�x(T�h)1=2 ; y0�y�x+x02 T+x�x02 h(T�h)3=2 � ; V := U+R. Reall also from Lemma3.1 that ep � C bp. Hene, for all Z 2 N� ; 9C := C(Z); ep(T�h; (x; y); (u; v)) �(T � h)�2d C1+jV jZ . From the basi identity 11+jU+RjZ � max(2Z ;1+(2jRj)Z)1+jU jZ andthe de�nitions of the models (4.1) and (4.2), using the same tehniques asin the proof of Lemma A.1 for the ase j = 1 one gets:jhIN�1j � Ch1=21 + jU jZ Z du0dv0(1 + j(u0; v0)jZ) (�u0;�v0)� Ch1=2�pT (x0 � x; y0 � y � x+ x02 T );taking Z = S � 4 for the last inequality.Also, from the de�nitions of the (M ih)i2[[1;3℄℄ in the previous setion andusing freely its notations, we derive for all j 2 [[0; N � 2℄℄:jM1h(T � tj ; (u; v); (x0; y0))j � h(T � tj)�3=2��(x0 � u; y0 � v � (u+ x0)2 (T � tj));



32 V. KONAKOV ET AL.from whih one gets hN�2Xj=0 jI1;j j � Ch1=2�pT (x0 � x; y0 � y � x+ x02 T ). Theterms in M2h oming from II in (B.26) an be handled as M1h . For thoseoming from III, i.e. rossed derivatives, the ontribution assoiated to j = 0is easily analyzed and for j > 1 an integration by part w.r.t. u leads to thesame ontrol. The trikiest term to analyze is M3h . Exploiting thoroughly(B.27) and Lemma 3.1, the proof is similar to the one in [KM00℄, see p.578ontrol of (3.45), that relies on suitable integration by parts. We omit thedetails here. Atually, for r � 1 it an be shown by indution that����ep
h eH(r) � ep
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