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EXPLICIT PARAMETRIX AND LOCAL LIMIT
THEOREMS FOR SOME DEGENERATE DIFFUSION

PROCESSES

By Valentin Konakov∗, Stéphane Menozzi

and Stanislav Molchanov

CEMI RAS, Moscow, Université Paris VII and University of North
Carolina at Charlotte

Abstract
For a class of degenerate diffusion processes of rank 2, i.e. when

only Poisson brackets of order one are needed to span the whole
space, we obtain a parametrix representation of the density from
which we derive some explicit Gaussian controls that characterize
the additional singularity induced by the degeneracy.

We then give a local limit theorem with the usual convergence
rate for an associated Markov chain approximation. The key point
is that the ”weak” degeneracy allows to exploit the techniques first
introduced in Konakov and Molchanov [KM85] and then developed
in [KM00] that rely on Gaussian approximations.

1. Introduction.

1.1. Global overview. Let us consider in R
d, d ≥ 1 the Markov diffusion

process with generator

L =
1

2

∑

i,j∈[[1,d]]2

aij(x)∂
2
xixj

+
∑

i∈[[1,d]]

bi(x)∂xi .

If the coefficients of L are smooth enough, say C1(Rd), bounded, and the
diffusion matrix A(x) = (aij(x)) is uniformly elliptic (∀λ ∈ R

d, 〈Aλ, λ〉 ∈
[δ, δ−1] for an appropriate δ > 0) then the associated process (Xt)t≥0 has a
transition density p(t, x, y) which is the fundamental solution of the parabolic
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2 V. KONAKOV ET AL.

problem ∂tp(.) = Lxp(.), p(0, x, y) = δy(x). Of course, one also has ∂tp(.) =
L∗

yp(.), p(0, x, y) = δx(y).
Moreover, this density satisfies uniformly in t ∈]0, T ] the following Gaus-

sian bounds

M−1

td/2
exp

(
−M |x− y|2

t

)
≤ p(t, x, y) ≤ M

td/2
exp

(
−|x− y|2

Mt

)
,

where the constant M depends on T , d, the ellipticity constant and the
norms of the coefficients in C1(Rd), see e.g. Aronson [Aro67] or Stroock
[Str88].

The above estimations express the following physically obvious fact: if the
process starts from x0 ∈ R

d, then for small t > 0, in the neighborhood of
x0 it is ”almost Gaussian” with the ”frozen” diffusion tensor A(x0) and the
drift b(x0).

The justification of this fact requires the solution of the perturbative
integral equation for p(·) (so-called Parametrix equation), where the lead-
ing term of the perturbation theory for p(·) is exactly the Gaussian kernel
p0(·) corresponding to the ”frozen” coefficients at x0. For details concerning
Parametrix equations we refer the reader to Mc Kean and Singer [MS67],
Friedman [Fri64] or [KM85].

If the matrix A(x) degenerates, but the coefficients a, b are still smooth,
the diffusion process (Xt)t≥0 with generator L exists (one can use the Itô
calculus for the direct construction of the trajectories), but has generally
speaking no density.

Consider now generators of the form L =
k∑

i=1

X2
i + Y, k < d, where

(Xi)i∈[[1,k]], Y are first order operators (vector fields) on R
d (or more gener-

ally on smooth manifolds) with C∞ coefficients. Sufficient conditions for the
existence of the density can be formulated in terms of the structure of the Lie
algebra of the vector fields on R

d, with usual linear operations and the Pois-
son bracketing [., .]. Namely, if dim(Lie((Xi)i∈[[1,k]], Y )) = d then the density
exists. This result is due to Hörmander [Hör67], see also Norris [Nor86] for a
Malliavin calculus based probabilistic proof. Operators having the previous
property are said to be hypoelliptic. Also, in [Hör67], Hörmander stressed
that the seed of the idea of hypoellipticity goes back to Kolmogorov’s note
[Kol34].

A. Kolmogorov made the following important observation. Let d = 2.
For the generator L = 1

2∂
2
xx + ax∂y, a 6= 0, the solution of the associ-

ated SDE writes (Xt, Yt) = (x0 + Wt, y0 + a(x0t +
∫ t
0 Wsds)), where W is
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a standard one dimensional Brownian motion. Thus (Xt, Yt) has two di-
mensional Gaussian distribution with mean (x0, y0 + ax0t) and covariance

matrix C =

(
t at2

2
at2

2
a2t3

3

)
. Note that the transition density for small t

has higher singularity than the usual heat kernel. In Hörmander’s form
L = 1

2X
2
1+Y, X1 = ∂x, Y = ax∂y so that [X1, Y ] = a∂y and thus,X1, [X1, Y ]

have together rank 2.
The natural development of the Kolmogorov example consists in taking

operators of the form

L =
1

2
σ2(x)∂2

xx + b(x)∂x + F (x)∂y =
1

2
X2

1 + Y,

X1 = σ(x)∂x, Y = (b(x) − (σ∂xσ)(x)

2
)∂x + F (x)∂y,

for a uniformly elliptic σ. One has:

[X1, Y ] = σ(x)∂x(b(x) − (σ∂xσ)(x))∂x + σ(x)∂xF (x)∂y.

The first term is irrelevant since σ is uniformly elliptic. Now, the condition
0 < δ < ∂xF (x) ≤ δ−1 will guarantee the uniform hypoellipticity of L with
only the first order brackets.

For a fixed point x′ the natural parametrix for L is the operator

Lx′ =
1

2
σ2(x′)∂2

xx + b(x′)∂x + [F (x′) + ∂xF (x′)(x− x′)]∂y.

The corresponding transition density px′ has, up to trivial changes, the same
nature as in the Kolmogorov example. Anyhow, for the parametrix approach
to work, we need to introduce a ”compensated” operator L̃x,x′ = Lx −
F (x′)∂y. The term F (x′)∂y is removed in order to get rid of non-integrable
singularities, see Section 2 for details. The analysis of the Volterra type
integral equation for the fundamental solution of ∂tp = Lp, based on the
identity p(t, ., ∗) = p0(t, ., ∗) +

∫ t
0

∫
K(s, ., z)p(t − s, z, ∗)dzds for a suitable

kernel K is then, up to this compensation more or less standard.
In this paper, we present the corresponding analysis and some associated

local limit theorems in the following natural generality.

1.2. Statement of the problem. We consider R
d × R

k-valued diffusion
processes, k ≤ d, that follow the dynamics

(1.1)





Xt = x+

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs,

Yt =

∫ t

0
F (Xs)ds,
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where (Wt)t≥0 is a standard d-dimensional Brownian motion defined on some
filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual assumptions.
We assume that b, σ, F satisfy conditions that guarantee the existence and
uniqueness of a strong solution to (1.1).

Concerning the applications, this type of process appears for instance in
mathematical finance when dealing with Asian options. In this framework,
X represents the dynamics of the underlying asset and Y is involved in the
option payoff, see [BPV01] and [Tem01]. Also, if X describes the speed of a
particle, the couple, (X,Y ) is associated to a speed-position dynamics, see
Nelson [Nel67] or Bismut [Bis81].

As mentioned above, equation (1.1) also provides one of the simplest
forms of degenerated processes. In a hypoelliptic setting, some authors have
studied the behavior of the density, see e.g. Cattiaux [Cat90, Cat91], or
Ben Arous and Léandre [BL91] but much remains to be done. In particular
none of the above references deals with the simple case of (1.1). The main
results are proved under the ”strong” Hörmander condition that involves
the Poisson brackets of the diffusive part of the process. A characteristic
feature of (1.1) is that there is no Brownian term in Y . Therefore the strong
Hörmander assumption breaks down.

We will work under assumptions that guarantee that Hörmander’s the-
orem is satisfied taking only the first Poisson brackets between the vector
fields associated to the drift and the diffusive part in (1.1). Namely, we
generalize the sufficient condition δ−1 ≥ ∂xF (x) ≥ δ > 0 of the previous
paragraph to our current framework. Then, using a parametrix approach,
we give an explicit expression of the density. From the parametrix expan-
sion we finally derive some explicit Gaussian bounds that emphasize the
additional singularity due to the degeneracy. These bounds are the natural
extension to the multidimensional setting of Kolomogorov’s example intro-
duced in Section 1.1. In particular the processes X and Y have different
characteristic scales.

A natural question then concerns the Markov chain approximation of
(1.1). For non degenerated processes this aspect has been widely studied,
see e.g. [KM00] for local limit theorems. In [BT96], using Malliavin calculus
techniques, Bally and Talay obtain an expansion at order one w.r.t. the time
step for the difference of the densities of the diffusion and a perturbed Euler
scheme, i.e. the stochastic integrals are approximated by Gaussian variables
and an artificial viscosity is added to ensure the discrete scheme has a den-
sity. This rate corresponds to the usual ”weak error” bound. Since we follow
the local limit theorem approach we can handle a wider class of random
variables in the approximation but also obtain a rate of order 1/2 w.r.t the
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time step. Similarly to [BT96], we need to introduce an artificial viscosity
to ensure the existence of a density for the underlying degenerate Markov
chain. We then develop a parametrix approach to express the density of the
Markov chain in term of the density of an auxiliary frozen random walk.
The random walk is degenerated as well, but we obtain the existence of the
density, without any additional perturbation contrarily to the Markov chain,
after a sufficiently large number of time steps, see Appendix C for details.
Anyhow, this yields to consider two time scales: a ”micro” one needed to
obtain a density enjoying good properties and a ”macro” one, corresponding
to the iterations of the ”micro” one.

The paper is organized as follows. Our main working assumptions are
given in Section 1.3. We fix some notations in Section 1.4. Then, since the
form of the Markov chain approximation strongly relies on the proof of
our results for the diffusion we choose to divide this paper into two parts.
Sections 2 and 3 deal with the results for the diffusion and their proofs.
Sections 4 and 5 are dedicated to the Markov chain approximation of (1.1),
the associated convergence results and their proofs. The proofs of the most
technical parts are postponed to the Appendices.

1.3. Assumptions. In the following, for the vector valued function F =
(F1, ..., Fk)∗ appearing in (1.1) we denote

−→∇xF (x) = (∇xF1(x),∇xF2(x) · · · ∇xFk(x))
∗ ∈ R

k ⊗ R
d.

We also suppose that the coefficients of equation (1.1) satisfy the following
assumptions.

(UE) ∃(λmin, λmax) ∈ (0,∞)2, ∀z ∈ R
d, λmin|z|2 ≤ 〈σσ∗(x)z, z〉 ≤

λmax|z|2.
(B) The coefficients b, σ in (1.1) are uniformly Lipschitz continuous and

bounded.
(G) The function F is twice continuously differentiable in x and has

bounded derivatives, i.e. ∃M > 0, s.t. ∀x ∈ R
d, |−→∇xF (x)|+supl∈[[1,k]] |HFl

(x)| ≤
M , where |.| denotes the usual Euclidean norm and HFl

stands for the
R

d ⊗ R
d Hessian matrix of Fl.

Also, the Gram matrix G(x)

G(x) :=




〈∇xF1(x),∇xF1(x)〉 · · · 〈∇xF1(x),∇xFk(x)〉
... · · · ...

〈∇xFk(x),∇xF1(x)〉 · · · 〈∇xFk(x),∇xFk(x)〉




is uniformly non degenerated, i.e.

∃(αmin, αmax) ∈ (0,∞)2, ∀z ∈ R
k, αmin|z|2 ≤ 〈G(x)z, z〉 ≤ αmax|z|2.
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From now on, unless otherwise indicated we assume (UE), (B), (G) are
in force.

1.4. Notations. Throughout the paper we consider the running diffusion
(1.1) up to a fixed final time T > 0. We denote by C a generic positive
constant that may change from line to line and only depends on T , and
the parameters appearing in (UE), (B), (G). We reserve the notation c
for constants that only depend on parameters from (UE), (B), (G). Other
possible dependencies are explicitly indicated.

2. Explicit parametrix and associated controls for the density
of the diffusion. The assumptions of Section 1.3 guarantee that Hörman-
der’s Theorem, see e.g. Nualart [Nua98], holds true, and therefore that
∀t > 0, (Xt, Yt) has a density w.r.t. the Lebesgue measure. Introduce the
vector fields

A0(x) =




b1(x)
...

bd(x)
F1(x)

...
Fk(x)




, ∀j ∈ [[1, d]], Aj(x) =




σ1j(x)
...

σdj(x)
0
...
0




.(2.1)

We have the following result.

Proposition 2.1 For all x ∈ R
d, ∃i∗(x) = (i∗1(x), ..., i

∗
k(x)) ∈ R

k, 1 ≤
i∗1(x) < i∗2(x) < ... < i∗k(x) ≤ d s.t.

Span(A1(x), ..., Ad(x), [A0(x), Ai∗1(x)(x)], ..., [A0(x), Ai∗
k
(x)(x)]) = R

d+k,

where ∀(i, j) ∈ [[0, d]]2, [Ai, Aj ] = Ai∇Aj − Aj∇Ai denotes the Poisson
bracket.

Fix T > 0 and 0 ≤ s < t ≤ T , (x, y) ∈ R
d × R

k. Since, we now know
that (Xt, Yt) has a transition density, i.e. P[Xt ∈ dx′, Yt ∈ dy′|Xs = x, Ys =
y] = p(s, t, (x, y), (x′, y′))dx′dy′, our aim is to develop a parametrix for (1.1)
to obtain an explicit representation of this density. To this end, as usual
with the parametrix techniques we need to introduce a ”frozen” diffusion
process, (X̃t, Ỹt)t∈[s,T ] below. It will be derived from an additional auxiliary

process (Xt, Ŷt)t∈[s,T ] easily related to (Xt, Yt)t∈[s,T ]. Namely, for any s ∈
[0, T ], (x, y) ∈ R

d × R
k, x′ ∈ R

d,

(2.2)

{
dXt = σ(Xt)dWt + b(Xt)dt, Xs = x,

dŶt = [F (Xt) − F (x′)] dt, Ŷs = Ys = y.
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Thus, Ŷt = Yt−F (x′)(t−s), t ∈ [s, T ]. Clearly, for fixed (x′, y′) the transition
densities p(s, t, (x, y), (z, v)) and p̂(s, t, (x, y), (z, v)) of (Xt, Yt) and (Xt, Ŷt)
are simply related. Indeed,

p(s, t, (x, y), (z, v)) = p̂(s, t, (x, y), (z, v − F (x′)(t− s))).

In particular, for (z, v) = (x′, y′) we obtain

(2.3) p(s, t, (x, y), (x′, y′)) = p̂(s, t, (x, y), (x′, y′ − F (x′)(t− s))).

A first order Taylor approximation in (2.2) then yields the dynamics of the
”frozen” compensated process (X̃t, Ỹt)t∈[s,T ]:

(2.4)

{
dX̃t = σ(x′)dWt + b(x′)dt, X̃s = x,

dỸ i
t = 〈∇xFi(x

′), X̃t − x′〉dt, Ỹ i
s = yi, ∀i ∈ [[1, k]].

Define for all x ∈ R
d, a(x) := σσ∗(x). The processes (Xt, Ŷt) and (X̃t, Ỹt), t ∈

[s, T ], have the following generators: ∀(x, y) ∈ R
d × R

k, ψ ∈ C2(Rd × R
k),

L̂ψ(x, y) =

(
1

2

d∑

i,j=1

aij(x)∂
2
xixj

+
d∑

i=1

bi(x)∂xi

+
k∑

i=1

[Fi(x) − Fi(x
′)]∂yi

)
ψ(x, y),(2.5)

L̃ψ(x, y) =

(
1

2

d∑

i,j=1

aij(x
′)∂2

xixj
+

d∑

i=1

bi(x
′)∂xi

(2.6) +
k∑

i=1

〈∇xFi(x
′), x− x′

〉
∂yi

)
ψ(x, y).

From these operators we define for 0 ≤ s < t ≤ T, ((x, y), (x′, y′)) ∈ (Rd ×
R

k)2 the kernel H by

H(s, t, (x, y), (x′, y′)) = (L̂− L̃)p̃(s, t, (x, y), (x′, y′)).

The next proposition gives the expression of the density p̂ in terms of an
infinite sum involving iterated convolutions of the density p̃ with the kernel
H. Namely,
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Proposition 2.2 (Parametrix expansion for the compensated process)

For all 0 ≤ s < t ≤ T, ((x, y), (x′, y′)) ∈ (Rd × R
k)2,

(2.7) p̂(s, t, (x, y), (x′, y′)) =
+∞∑

r=0

p̃⊗H(r)(s, t, (x, y), (x′, y′)),

where f ⊗ g(s, t, (x, y), (x′ , y′))

=

∫ t

s
du

∫

Rd×Rk
f(s, u, (x, y), (z, v))g(u, t, (z, v), (x′ , y′))dzdv,

p̃ ⊗H(0) = p̃ and H(r) = H ⊗H(r−1), r > 0 denotes the r-fold convolution
of the kernel H.

The previous Proposition is a direct consequence of the usual parametrix
recurrence relations. For the sake of completeness we provide its proof in
Section 3, see also [KM00] for details.

Now, since (X̃t, Ỹt)t∈[s,T ] is a Gaussian process, p̃ and its derivatives are
well controlled. The previous expression is the starting point to derive the
following

Theorem 2.1 (Parametrix expansion and associated control)
For all 0 ≤ s < t ≤ T, ((x, y), (x′, y′)) ∈ (Rd × R

k)2, one has:

p(s, t, (x, y), (x′, y′)) = p̂(s, t, (x, y), (x′, y′ − F (x′)(t− s)))

=
∞∑

r=0

p̃⊗H(r)(s, t, (x, y), (x′, y′ − F (x′)(t− s))),

and

∃c, C > 0, p(s, t, (x, y), (x′, y′)) ≤ C(t− s)−(d+3k)/2

× exp

(
−c
[
|x′−x|2

t−s + |y′−y−F (x′)(t−s)|2
(t−s)3

])
.(2.8)

3. Proof of the main results: diffusion process.

3.1. Proof of Proposition 2.1. From (2.1) one has ∀x ∈ R
d, ∀j ∈ [[1, d]],

[A0(x), Aj(x)] =




〈b(x),∇xσ1j(x)〉 −
〈
σ(j)(x),∇xb1(x)

〉

...

〈b(x),∇xσdj(x)〉 −
〈
σ(j)(x),∇xbd(x)

〉

−
〈
∇xF1(x), σ

(j)(x)
〉

...

−
〈
∇xFk(x), σ

(j)(x)
〉



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where σ(j)(x) denotes the jth column of σ (x). Thus, according to (UE) and
the previous expression, to prove the proposition it is sufficient to show that
for any x ∈ R

d there exists i∗ := i∗(x) ∈ R
k, 1 ≤ i∗1 < i∗2 < ... < i∗k ≤ d such

that

(3.1) det




〈
∇xF1(x), σ

(i∗1)(x)
〉

· · ·
〈
∇xF1(x), σ

(i∗k)(x)
〉

... · · · ...〈
∇xFk(x), σ

(i∗1)(x)
〉

· · ·
〈
∇xFk(x), σ(i∗

k
)(x)

〉


 6= 0.

We prove (3.1) by induction on k. For k = 1, Assumptions (UE) and (G)
imply that for any x ∈ R

d there exists i∗ = i∗(x) such that
〈
∇xF1(x), σ

(i∗)(x)
〉
6= 0.

Suppose first that for k = n − 1 and any x ∈ R
d (3.1) holds true. Suppose

now that for k = n (3.1) does not hold, that is for some x0 ∈ R
d

(3.2) det




〈
∇xF1(x0), σ

(i1)(x0)
〉

· · ·
〈
∇xF1(x0), σ

(in)(x0)
〉

... · · · ...〈
∇xFn(x0), σ

(i1)(x0)
〉

· · ·
〈
∇xFn(x0), σ

(in)(x0)
〉


 = 0,

for any 1 ≤ i1 < i2 < ... < in ≤ d . In particular, we can take i1 =
i∗1(x0), i2 = i∗2(x0), ..., in−1 = i∗n−1(x0) where i∗(x0) ∈ R

n−1 is the index
s.t. (3.1) holds true for n − 1. Developing the determinant (3.2) in the last
column we get

∀in ∈ [[1, d]],

〈
σ(in)(x0),

n∑

j=1

Mj(x0)∇xFj(x0)

〉
= 0,

where for j ∈ [[1, n]] the Mj(x0) are the corresponding minors. The linear
independence of the vectors (σ(i)(x0))i∈[[1,d]] implies that

∑n
j=1Mj(x0)×

∇xFj(x0) = 0. The linear independence of the vectors (∇xFj(x0))j∈[[1,n]]

then yields Mj(x0) = 0, ∀j ∈ [[1, n]]. In particular Mn(x0) =

det




〈
∇xF1(x0), σ

(i∗1)(x0)
〉

· · ·
〈
∇xF1(x0), σ

(i∗n−1)(x0)
〉

... · · · ...〈
∇xFn−1(x0), σ

(i∗1)(x0)
〉

· · ·
〈
∇xFn−1(x0), σ

(i∗n−1)(x0)
〉




= 0

which contradicts that (3.1) holds true for k = n − 1. Thus, (3.1) holds for
any x ∈ R

d. �
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3.2. Proof of Proposition 2.2: parametrix expansion of the compensated
process. From the forward and backward Kolmogorov equations associated
to (X̂, Ŷ ), (X̃, Ỹ ) and denoting by L̂∗ the adjoint of L̂, we have

p̂(s, t, (x, y), (x′, y′)) − p̃(s, t, (x, y), (x′, y′))

=

∫ t

s
du

∂

∂u

∫

Rd×Rk
dwdzp̂(s, u, (x, y), (w, z))p̃(u, t, (w, z), (x′ , y′))

=

∫ t

s
du

∫

Rd×Rk
dwdz

[
∂p̂(s, u, (x, y), (w, z))

∂u
p̃(u, t, (w, z), (x′ , y′))

+p̂(s, u, (x, y), (w, z)) × ∂p̃(u, t, (w, z), (x′, y′))
∂u

]

=

∫ t

s
du

∫

Rd×Rk
dwdz

[
L̂∗p̂(s, u, (x, y), (w, z))p̃(u, t, (w, z), (x′ , y′))

−L̃p̃(u, t, (w, z), (x′ , y′))p̂(s, u, (x, y), (w, z))
]

=

∫ t

s
du

∫

Rd×Rk
dwdzp̂(s, u, (x, y), (w, z))(L̂ − L̃)p̃(u, t, (w, z), (x′ , y′))

= p̂⊗H(s, t, (x, y), (x′, y′)).

A simple iteration completes the proof. �

3.3. Proof of Theorem 2.1. We prove the result for p̂. The statement of
the theorem then follows from the explicit shift relation between p̂ and p.

The proof is divided into two parts. First an elementary control on the
density of (X̃, Ỹ ) is stated in Lemma 3.1. Then, this control is used to control
the kernel H and the convolution.

Step 1: Gaussian control for (X̃, Ỹ ).

Lemma 3.1 There exist constants c > 0, C > 0, s.t. for all multi-index
α, β, γ, |α| ≤ 3, |β| ≤ 2, |γ| ≤ 1, ∀0 ≤ u < t ≤ T , ∀(w, z), (x′, y′) ∈ R

d × R
k

|∂α
w∂

β
z ∂

γ
y′ p̃(u, t, (w, z), (x

′ , y′))| ≤ C exp

(
− c

t− u
|x′ − w|2

)

exp

(
− c

(t− u)3
|y′ − z|2

)
(t− u)−{(d+3k)/2+|α|/2+3(|β|+|γ|)/2}.
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The proof is postponed to the end of the section.
Step 2: Control of the kernel.
To estimate the kernel H(u, t, (w, z), (x′ , y′)) we have to estimate

(
aij(w) − aij(x

′)
)
∂2

wiwj
p̃(u, t, (w, z), (x′ , y′)), (i, j) ∈ [[1, d]]2

(
bi(w) − bi(x

′)
)
∂wi p̃(u, t, (w, z), (x

′ , y′)), i ∈ [[1, d]]

and

[
Fi(w) − Fi(x

′) − 〈∇xFi(x
′), w − x′

〉]
∂zi p̃(u, t, (w, z), (x

′ , y′)), i ∈ [[1, k]].

It is easy to get from Lemma 3.1 and (B), i.e. Lipschitz condition for b(x)
and a(x), that

∣∣(bi(w) − bi(x
′)
)
∂wi p̃(u, t, (w, z), (x

′ , y′))
∣∣

≤ C

(t− u)(d+3k)/2
exp

(
−c
[
|x′ − w|2
t− u

+
|y′ − z|2
(t− u)3

])
, i ∈ [[1, d]],

∣∣∣
(
aij(w) − aij(x

′)
)
∂2

wiwj
p̃(u, t, (w, z), (x′ , y′))

∣∣∣

≤ C

(t− u)1/2(t− u)(d+3k)/2
exp

(
−c
[
|x′ − w|2
t− u

+
|y′ − z|2
(t− u)3

])
, (i, j) ∈ [[1, d]]2,

∣∣[Fi(w) − Fi(x
′) − 〈∇xFi(x

′), w − x′
〉]
∂zi p̃(u, t, (w, z), (x

′ , y′))
∣∣

≤ C

(t− u)1/2(t− u)(d+3k)/2
exp

(
−c
[
|x′ − w|2
t− u

+
|y′ − z|2
(t− u)3

])
, i ∈ [[1, k]].

(3.3)

Concerning the convolution w.r.t the second variable below, we note that

for u ∈ [s, t], (t−s)3

8 < (u− s)3 + (t− u)3 < (t− s)3. We finally obtain

∣∣p̃⊗H(s, t, (x, y), (x′, y′))
∣∣

≤
∫ t

s
du

∫

Rd×Rk
p̃(s, u, (x, y), (w, z))

∣∣H(u, t, (w, z), (x′ , y′))
∣∣ dwdz,

≤
∫ t

s
du

∫

Rd×Rk

C2

(u− s)(d+3k)/2
exp

(
−c
[
|w − x|2
u− s

+
|z − y|2
(u− s)3

])

× 1√
t− u(t− u)

(d+3k)/2
exp

(
−c
[
|x′ − w|2
t− u

+
|y′ − z|2
(t− u)3

])
dwdz
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≤ C2ρB(1,
1

2
)(t− s)−(d+3k)/2 exp

(
−c
[
|x′ − x|2
t− s

+
|y′ − y|2
(t− s)3

])
,

up to a modification of C in the last inequality, where ρ = (t − s)1/2 and
B(m,n) =

∫ 1
0 duu

m−1(1 − u)n−1 denotes the β-function. By induction in r,

∣∣∣p̃⊗H(r)(s, t, (x, y), (x′, y′))
∣∣∣ ≤ Cr+1ρrB(1,

1

2
)B(

3

2
,
1

2
) × ...×B(

r + 1

2
,
1

2
)

(3.4) ×(t− s)−(d+3k)/2 exp

(
−c
[
|x′ − x|2
t− s

+
|y′ − y|2
(t− s)3

])
, r ∈ N

∗.

This implies that the series representing the density p̂(s, t, (x, y), (x′, y′))

p̂(s, t, (x, y), (x′, y′)) =
∞∑

r=0

p̃⊗H(r)(s, t, (x, y), (x′, y′))

is absolutely convergent and the following estimate holds

∣∣p̂(s, t, (x, y), (x′, y′))
∣∣ ≤ C(t− s)−(d+3k)/2

× exp

(
−c
[
|x′ − x|2
t− s

+
|y′ − y|2
(t− s)3

])
.

By the shift relation (2.3) the proof is complete. �

Proof of Lemma 3.1. We prove the lemma for |α| = |β| = |γ| = 0,
i.e. without derivation. The bounds for the derivatives can be deduced in
a similar way, recall that (X̃, Ỹ ) is Gaussian, see e.g. Friedman [Fri64]. We
get from (2.4) with x = w that for all s ≤ u ≤ t ≤ T ,

Ỹt =w +

∫ t

u

−→∇xF (x′)(w − x′ + b(x′)(v − u))dv

+

∫ t

u

−→∇xF (x′)σ(x′)(Wv −Wu)dv := m2,u,t +Au,t,

m2,u,t =
−→∇xF (x′)(w − x′)(t− u) +

(
−→∇xFb)(x

′)
2

(t− u)2.(3.5)

For all (p, q) ∈ [[1, d]] × [[1, k]] one has

Cov(X̃p
t , Ỹ

q
t ) =E




d∑

l=1

σpl(x
′)(W l

t −W l
u) ×

d∑

j=1

µqj

∫ t

u

(
W j

τ −W j
u

)
dτ


 ,
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where µi = µi(x
′) = σ∗(x′)(∇xFi(x

′))∗, µi = (µ1
i , ..., µ

d
i )

∗, |µi| > 0. Simple
calculations imply that

〈
µi,

∫ t

u
(Wτ −Wu)dτ

〉
∽ N (0,

(t− u)3

3
|µi|2).

Hence, denoting by σ(p) the p− th row of the matrix σ(x′), we have

Cov(X̃p
t , Ỹ

q
t ) =

(t− u)2

2

〈
µq, σ(p)

〉
.

In a similar way, we obtain for all (j, l) ∈ [[1, k]]2,

Cov(Ỹ j
t , Ỹ

l
t ) =

(t− u)3

3
〈µj , µl〉.

Finally we obtain that the covariance matrix Σd+k of the vector (X̃t, Ỹt)
is equal to

Σd+k =

(
a(x′)(t− u) (t−u)2

2 Θ(x′)
(t−u)2

2 Θ∗(x′) (t−u)3

3 µ(x′)

)

where a(x′) = σσ∗(x′), Θ(x′) = σ(x′)
(
µ1(x

′) · · · µk(x
′)
)
,∀(i, j) ∈ [[1, k]]2,

(µ(x′))i,j = 〈µi, µj〉(x′) or equivalently µ(x′) = (
−→∇xFa

−→∇xF
∗)(x′).

The mean vector of (X̃t, Ỹt) is equal to (m1,u,t,m2,u,t), with m1,u,t =
w + b(x′)(t− u) and m2,u,t as in (3.5). Note that

det Σd+k =
(t− u)d+3k

4k
det

(
a(x′) Θ(x′)

Θ∗(x′) 4
3µ(x′)

)
.

Considering the (d+ i)−th columns, i ∈ [[1, k]] as the linear combination of
the first d columns whose coefficients are components of the vector ∇xFi(x

′)
and the last (d+ i)−th rows, i ∈ [[1, k]] as the linear combination of the first
d rows with the same coefficients we obtain from the elementary properties
of the determinants

det Σd+k =
(t− u)d+3k

12k
det

(
a(x′) 0

Θ∗(x′) µ(x′)

)
.

Finally, we obtain from (UE) and (G) that
(3.6)

det Σd+k =
(t− u)d+3k

12k
×
{

d∏

i=1

λi(x
′)

}
× det(µ(x′)) ≥ (t− u)d+3k

12k
λd+k

minα
k
min.
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To calculate exp
(
−1

2

〈
Σ−1

d+kZ,Z
〉)
, whereZ = (x′ −m1,u,t, y

′ −m2,u,t)
∗ ∈

R
d × R

k, the main idea is to use a suitable change of variable in order to
de-correlate the components associated to X̃, Ỹ . This also permits us to
separate the two different scales for these processes.

Note that Σd+k = (t− u)TA(x′)T ∗, where

T ∗ =

(
Id

t−u
2

−→∇xF (x′)∗

0 t−u
2
√

3
Ik

)
,A(x′) =

(
a(x′) 0

0 µ(x′)

)

Hence,

Σ−1
d+k =

1

t− u
(T ∗)−1 A−1(x′)T−1 =

1

t− u

(
Id −

√
3
−→∇xF

∗(x′)

0 2
√

3
t−u Ik

)

A−1(x′)

(
Id 0

−
√

3
−→∇xF (x′) 2

√
3

t−u Ik

)
,

A−1(x′) =

(
a−1(x′) 0

0 µ−1(x′)

)
.

Now we have

E := −
〈
Σ−1

d+kZ,Z
〉

=
1

(t− u)

〈
A−1(x′)(T−1Z), T−1Z

〉
.

We have

Z = (Z1, Z2), Z1 = x′ − (w + b(x′)(t− u)),

Z2 = y′ − (z +
−→∇xF (x′)(w − x′)(t− u) +

(
−→∇xFb)(x

′)
2

(t− u)2).

Thus,

T−1Z =

(
x′ − w − b(x′)(t− u)

2
√

3
t−u

(
y′ − z + 1

2

−→∇xF (x′)(x′ − w)(t − u)
)
)
.(3.7)

Exploiting (UE) and (G), equation (3.7) then yields

E ≤ −λ
−1
max

t− u
|x′ − w − b(x′)(t− u)|2

−12(αmaxλmax)
−1

(t− u)3
|y′ − z +

1

2

−→∇xF (x′)(x′ − w)(t− u)|2.
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From (B) (boundedness of b) and using Young inequalities (i.e. |ab| ≤ a2

2ε +
εb2

2 , ∀ε > 0, (a, b) ∈ R
2), we derive that there exist c, C > 0 s.t.

E ≤ C − c

[
|x′ − w|2
t− u

+
|y′ − z|2
(t− u)3

]

which gives the statement for |α| = |β| = |γ| = 0. �

4. Markov Chain approximation and associated convergence re-
sults. Because of the degeneracy, one of the main problems in the Markov
chain approximation of system (2.2) is to have a density for the discrete
models. Following the approach of [KM00], we aim at giving a parametrix
expansion of the density of the Markov chain using iterated convolutions of
a discrete kernel and the density of a frozen Markov chain. We manage to
obtain a density, and the associated required controls for the error analysis,
for the natural frozen Markov chain deriving from (2.4) after a sufficient
number of time steps, see Proposition C.1. We therefore consider a ”macro
scale” model corresponding to this number of time steps. For the initial
Markov chain at ”macro scale”, we add an ”artificial” noise on the second
component to guarantee the existence of the density.

Now, fix T > 0, Ñ ∈ N
∗ and let h̃ = T/Ñ be the ”micro” time dis-

cretization step. Let n ∈ N
∗ be large enough so that the natural ”frozen”

chain associated to (2.4) has a density, see Proposition C.1, and define the
”macro” scale time step h = nh̃ and set N = Ñ/n ∈ N

∗ the total number
of ”macro” time steps over [0, T ].

For all j ∈ [[0, N ]] set tj := jh. For any (x, y), (x′, y′) ∈ Rd × Rk, (j, j′) ∈
[[0, N ]]2, j < j′, we define on the time grid

{
tj , ..., tj′

}
an R

d × R
k valued

Markov chain (Zh
ti)i∈[[j,j′]] = ((Xh

ti , Y
h
ti )

∗)i∈[[j,j′]] whose dynamics is given by

Zh
tj = (x, y)∗, and ∀i ∈ [[j, j′ − 1]],

Xh
ti+1

= Xh
ti + b(Xh

ti)h+ σ(Xh
ti)

√
hη1

i+1,

Y h
ti+1

= Y h
ti + F (Xh

ti +
γn

2
b(Xh

ti)h+ σ(Xh
ti)

√
hη2

i+1)h+ h3/2+εη3
i+1,

(4.1)

where γn := (1+ 1
n) and ε > 0 is an arbitrarily small parameter. The variables

(ϑi)i∈(j,j′]] := (η1
i , η

2
i , η

3
i )i∈(j,j′]] are i.i.d. centered 2d+ k-dimensional random

variables s.t. for all i ∈ (j, j′]], η3
i is independent of (η1

i , η
2
i ). The density

qn(η1, η2, η3) = fn(η1, η2)q(η3) of ϑj+1 satisfies

(A1) E[ϑj+1] = 0, and Cov(ϑj+1) =




Id×d
1
2γnId×d 0d×k

1
2γnId×d

1
3γn(1 + 1

2n)Id×d 0d×k

0k×d 0k×d Ik×k


.
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(A2) There exist a positive integer S′ and a function ψ : R
2d+k → R with

supu∈R2d+k ψ(u) < ∞ and
∫ ‖u‖2S−6 ψ(u)du < ∞ for S = 2(d + k)S′ + 4

such that
|Dν

uqn(u)| ≤ ψ(u)

for all |ν| ∈ [[0, 4]].
Also, additionally to (UE), (G), (A1) and (A2), we reinforce (B) and

now assume
(BS) The elements of b(x),

−→∇xF (x), σ(x) and their first derivatives are
continuous and bounded (uniformly in x). All these functions are Lipschitz
continuous w.r.t. x.

Remark 4.1 The random variable η3 appearing in the Y h component of
equation (4.1) is ”artificial”. Indeed, it is only needed to guarantee the ex-
istence of a density for the Markov chain at every time step. Observe that
at every time step it yields a negligible contribution in the covariance ma-
trix of (Xh

ti , Y
h
ti )i∈(j,j′]], see computations below. Similar ”artificial viscosity”

terms had previously been employed by Bally and Talay [BT96] for degener-
ated Euler schemes. This is somehow a standard approach in the analysis of
discretization schemes for which we do not have easily the existence of the
density.

Now, similarly to the diffusion case we first introduce a compensated
Markov chain. For (x, y) ∈ R

d × R
k, x′ ∈ R

d, (j, j′) ∈ [[0, N ]]2, j < j′ we
define (Ẑh

ti)i∈[[j,j′]] = ((Xh
ti , Ŷ

h
ti )

∗)i∈[[j,j′]] by

Ẑh
tj = (x, y)∗, and ∀i ∈ [[j, j′ − 1]],

Xh
ti+1

= Xh
ti + b(Xh

ti)h+ σ(Xh
ti)

√
hη̂1

i+1,

Ŷ h
ti+1

= Ŷ h
ti +

{
F (Xh

ti +
γn

2
b(Xh

ti)h+ σ(Xh
ti)

√
hη̂2

i+1) − F (x′)
}
h

+h3/2+εη̂3
i+1,(4.2)

where the i.i.d. variables (ϑ̂i)i∈(j,j′−1]] := (η̂1
i , η̂

2
i , η̂

3
i )i∈(j,j′−1]] have density

qn(.).
Note that, analogously to the continuous case, the following relation holds

in law between the initial Markov chain (Zh
ti)i∈[[j,j′]] in (4.1) and the com-

pensated one (Ẑh
ti)i∈[[j,j′]] in (4.2):

(4.3) ∀i ∈ [[j, j′]], Ẑh
ti

law
= Zh

ti −
(

0
(ti − tj)F (x′)

)
,
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and therefore, denoting by ph(tj, tj′ , (x, y), .) (resp. p̂h(tj , tj′ , (x, y), .)) the

density of Zh
tj′

(resp. Ẑh
tj′

) one has

(4.4) ph(tj , tj′ , (x, y), (x
′, y′)) = p̂h(tj , tj′ , (x, y), (x

′, y′ − ρ2F (x′))),

where ρ2 = tj′ − tj.
We finally need a ”frozen” Markov chain, or random walk. For (x, y) ∈

R
d × R

k, x′ ∈ R
d, (j, j′) ∈ [[0, N ]]2 we define Z̃h = (X̃h, Ỹ h) by

Z̃h
tj = (x, y)∗, and ∀i ∈ [[j, j′ − 1]],

X̃h
ti+1

= X̃h
ti + b(x′)h+ σ(x′)

√
hη̃1

i+1,

Ỹ h
ti+1

= Ỹ h
ti +

−→∇xF (x′)
{

(X̃h
ti − x′)h+

γn

2
b(x′)h2 + σ(x′)h3/2η̃2

i+1

}

+h3/2+εη̃3
i+1.(4.5)

The i.i.d. variables (η̃1
i , η̃

2
i , η̃

3
i )i∈(j,j′]] have density qn(.).

Remark 4.2 Note that the models introduced in (4.2) and (4.5) can seem
awkward at first sight. They actually derive from computations that yield the
existence of the density for the natural frozen Markov chain associated to
(2.4) after n ”micro” time steps h̃, i.e at the ”macro” level with time step h.
This is developed in Appendix C. The additional perturbation of scale h3/2+ε

in (4.5) is needed for the comparison step between the ”discrete” generators
introduced below.

From now on, p̂h(tj , tj′ , (x, y), (x
′, y′)) and p̃h(tj , tj′ , (x, y), (x

′, y′)) denote
the transition densities of the ”compensated” Markov chain (4.2) and ”frozen”
Markov chain (4.5) respectively. Introducing a discrete ”analogue” to the
generators we derive from the Markov property a relation similar to (2.7)
between p̂h and p̃h.

For a sufficiently smooth function f , define L̂h and L̃h by

L̂hf(tj, tj′ , (x, y), (x
′, y′)) =

h−1
[∫

p̂h,j((x, y), (u, v))f(tj+1, tj′ , (u, v), (x
′, y′))dudv

− f(tj+1, tj′ , (x, y), (x
′, y′))

]
,

L̃hf(tj, tj′ , (x, y), (x
′, y′)) =

h−1
[∫

p̃x′

h,j((x, y), (u, v))f(tj+1, tj′ , (u, v), (x
′, y′))dudv

− f(tj+1, tj′ , (x, y), (x
′, y′))

]
,
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where p̂h,j((x, y), (u, v)) = p̂h(tj , tj+1, (x, y), (u, v)) and p̃x′

h,j((x, y), ·) denotes

the conditional density of Z̃h
tj+1

given Z̃h
tj = (x, y)∗. Note that because of

technical reasons, there is a shift in time in the above definitions, i.e. the time
is tj+1, instead of the ”expected” tj , in the right hand side of the previous
equations.

A discrete analogue Hh of the kernel H is defined as

Hh(tj , tj′ , (x, y), (x
′, y′)) = (L̂h − L̃h)p̃h(tj, tj′ , (x, y), (x

′, y′)), j < j′.

From the previous definition

Hh(jh, j′h, (x, y), (x′, y′)) = h−1 ×∫ [
p̂h,j((x, y), (u, v)) − p̃x′

h,j((x, y), (u, v))
]
p̃h(tj+1, tj′ , (u, v), (x

′, y′))dudv.

Analogously to Lemma 3.6 in [KM00] we obtain the following result.

Proposition 4.1 (Parametrix for Markov chain) .
Assume (UE), (BS), (G), (A1-2) are in force. Then, for 0 ≤ tj < tj′ ≤ T ,

(4.6) p̂h(tj , tj′ , (x, y), (x
′, y′)) =

j′−j∑

r=0

(
p̃h ⊗h H

(r)
h

)
(tj , tj′ , (x, y), (x

′, y′)),

where the discrete time convolution type operator ⊗h is defined by

(g ⊗h f)(tj, tj′ , (x, y), (x
′, y′))

=
j′−1∑

i=j

h

∫
g(tj , ti, (x, y), (u, v))f(ti, tj′ , (u, v), (x

′, y′))dudv,

p̃h ⊗hH
(0)
h = p̃h and H

(r)
h = Hh ⊗hH

(r−1)
h denotes the r-fold discrete convo-

lution of the kernel Hh. W.r.t. to the above definition, we use the convention

that p̃h ⊗h H
(r)
h (tj , tj , x, y) = 0, r ≥ 1.

Now (4.6) and (2.7) have the same form. Comparing these two expressions
we obtain the following local limit Theorem.

Theorem 4.1 (Local limit Theorem for the densities) .
Assume (UE), (BS), (G), (A1-2) hold true. Then,

sup
(x,y),(x′,y′)∈Rd×Rk

χ√
T (x′ − x, y′ − y − TF (x′))−1 × |(ph − p)(0, T, (x, y), (x′, y′))|

= O(h1/2),
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where ph denotes the density of the Markov chain (4.1) and ∀(ρ, u, v) ∈
R

+ × R
d × R

k,

χρ(u, v) = ρ−(d+3k)χ(u/ρ, v/ρ3), χ(u, v) =
(
1 + (|u|2 + |v|2)S′−1

)−1
.

Note from the above result that the bigger is S′, the better is the control on
the tails.

5. Proof of the local limit Theorem for the Markov Chain. This
section is devoted to the proof of Theorem 4.1. Our aim is now to compare
(2.7) and (4.6). Thanks to (2.3) and (4.4), it is sufficient to prove the theorem
for the compensated diffusion and Markov chain.

Step 1. The first step consists in comparing the discrete and continuous
frozen densities p̃h(tj , tj′ , (x, y), (x

′, y′)) and p̃(tj , tj′ , (x, y), (x
′, y′)).

Lemma 5.1 There exists C > 0, s.t. for all (j, j′) ∈ [[0, N ]]2, j < j′, ρ2 :=
tj′ − tj,

∣∣(p̃h − p̃)(tj , tj′ , (x, y), (x
′, y′))

∣∣ ≤ Ch1/2ρ−1ζρ(x
′ − x, y′ − y),

(5.1)

where ζρ(u, v) = ρ−(d+3k)ζ(u/ρ, v/ρ3), ζ(u, v) = 1

1+[|u|2+|v|2](S−4)/2 , S being

introduced in (A2).

Proof. Iterating (4.5) from tj till tj′ we get

X̃h
tj′

= x+ b(x′)ρ2 + σ(x′)ρ{ 1

(j′ − j)1/2

j′−j−1∑

k=0

η̃1
j+k+1}

Ỹ h
tj′

= y +
−→∇xF (x′)(x− x′)ρ2 +

ρ4

2

−→∇xF (x′)b(x′)(1 +
1

n(j′ − j)
)

+
−→∇xF (x′)σ(x′)ρ3





1

(j′ − j)1/2

j′−j−1∑

k=0

η̃2
j+k+1

1

j′ − j

+
1

(j′ − j)1/2

j′−j−1∑

k=0

η̃1
j+k+1(1 − k + 1

j′ − j
)




+
ρ3hε

(j′ − j)3/2

j′−j−1∑

k=0

η̃3
j+k+1.(5.2)

Introduce

mj,j′ =

(
x+ b(x′)ρ2

y +
−→∇xF (x′)(x− x′)ρ2 + ρ4

2

−→∇xF (x′)b(x′)γn,j,j′

)

:=

(
m1

j,j′

m2
j,j′

)
, γn,j,j′ := 1 +

1

n(j′ − j)
,
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and

Θj,j′ :=




σ(x′){ 1
(j′−j)1/2

j′−j−1∑

k=0

η̃1
j+k+1}

−→∇xF (x′)σ(x′)





1
(j′−j)1/2

j′−j−1∑

k=0

η̃2
j+k+1

1

j′ − j

+ 1
(j′−j)1/2

j′−j−1∑

k=0

η̃1
j+k+1(1 − k + 1

j′ − j
)



+ hε

(j′−j)3/2

j′−j−1∑

k=0

η̃3
j+k+1




.

The dynamics of (4.5) thus writes

(
X̃h

tj′

Ỹ h
tj′

)
= mj,j′ +

(
ρId×d 0d×k

0k×d ρ3Ik×k

)
Θj,j′.

Note now that

Vj,j′ := Cov(Θj,j′) =(5.3)



a(x′)
γn,j,j′a(x′)

−→∇xF (x′)∗

2
γn,j,j′

−→∇xF (x′)a(x′)

2 µ(x′)(1
3 + 1

2(j′−j)n(1 + 1
3(j′−j)n)) + h2ε

(j′−j)2 Ik×k




where µ(x′) =
−→∇xF (x′)a(x′)

−→∇xF (x′)∗. Thus, for h small enough, the covari-
ance matrix Vj,j′ is uniformly invertible w.r.t. the parameters n, j, j′ ∈ N∗.
Indeed,

Vj,j′ = T̃n

(
a(x′) 0d×k

0k×d µ(x′) + 12h2ε

(j′−j)2(1+α)2 Ik×k

)
T̃ ∗

n ,

T̃n =




Id×d 0d×k−→∇xF (x′)γn,j,j′

2
1+α
2
√

3
Ik×k



 ,

where 1 + α =
(
1 − 1

n2(j′−j)2

)1/2
. Hence, setting

V
−1/2
j,j′ =

(
(σ)−1(x′) 0d×k

0k×d (µε)
−1/2(x′)

)
T̃−1

n ,

T̃−1
n =




Id×d 0d×k

−
√

3
−→∇xF (x′)γn,j,j′

(1+α)
2
√

3
(1+α)Ik×k



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where µ
1/2
ε (µ

1/2
ε )∗(x′) = µ(x′) + h2ε

(j′−j)2(1+α)2
Ik×k, and denoting by gn the

density of the normalized sum V
−1/2
j,j′ Θj,j′ we derive

p̃h(tj , tj′ , (x, y), (x
′, y′)) =

1

ρd+3kdet(V
1/2
j,j′ )

gn


V −1/2

j,j′




x′−m1
j,j′

ρ
y′−m2

j,j′

ρ3





 .

Applying the Edgeworth expansion for gn (see Lemma 3.8 in [KM00] for the
details, the key tool is the normal approximation of Bhattacharya and Rao,
Theorem 19.3 in [BR76]) we obtain

∣∣∣∣∣∣∣
p̃h(tj , tj′ , (x, y), (x

′, y′)) − 1

ρd+3kdet(V
1/2
j,j′ )

gG


V −1/2

j,j′




x′−m1
j,j′

ρ
y′−m2

j,j′

ρ3







∣∣∣∣∣∣∣

≤ Ch1/2ρ−1ζρ(x
′ − x, y′ − y),(5.4)

where gG stands for the standard d + k dimensional Gaussian density. To
conclude the proof, recall from the proof of Lemma 3.1 that

p̃(tj , tj′ , (x, y), (x
′, y′)) =

1

ρd+3kdet(C
1/2
j,j′ )

gG


C−1/2

j,j′




x′−m1
C,j,j′

ρ
y′−m2

C,j,j′

ρ3







(5.5)

where

mC,j,j′ =

(
x+ b(x′)ρ2

y +
−→∇xF (x′)(x− x′)ρ2 + ρ4

2

−→∇xF (x′)b(x′)

)

:=

(
m1

C,j,j′

m2
C,j,j′

)
,

and

C
−1/2
j,j =

(
(σ)−1(x′) 0d×k

0k×d (µ)−1/2(x′)

)
T̃−1,

T̃−1 =

(
Id×d 0d×k

−
√

3
−→∇xF (x′) 2

√
3Ik×k

)
.

The result eventually follows from (5.4), (5.5) and standard computations,
involving the explicit expression of 1+α, γn,j,j′ and the mean value theorem.
�
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Step 2. Difference of the kernels
From now on, we use the following notations for multi-indices and powers.

For ν = (ν1, ..., νd+k) ∈ N
d+k, (x, y) = (x1, ..., xd, y1, ..., yk)∗ set

|ν| = ν1 + ...+ νd+k, ν! = ν1!...νd+k!,

(x, y)ν = xν1
1 ... x

νd
d y

νd+1

1 ... y
νd+k

k ,Dν = Dν1
x1
...Dνd

xd
D

νd+1
y1 ...D

νd+k
yk .

We first give some controls for the kernelHh(tj, tj′ , (x, y), (x
′, y′)). Namely,

the following Lemma states that the difference between Hh, (L̃− L̂)p̃h and
an additional remainder term Mh is small, i.e. has the order announced in
Theorem 4.1.

Lemma 5.2 (Control of the discrete kernel)

∣∣(Hh −Kh −Mh)(tj , tj′ , (x, y), (x
′, y′))

∣∣ ≤ Ch1/2ρ−1ζρ(x
′ − x, y′ − y)

(5.6)

where ζρ is as in Lemma 5.1 and for j < j′ − 1,

Kh(tj , tj′ , (x, y), (x
′, y′)) = (L̂− L̃)p̃h(tj, tj′ , (x, y), (x

′, y′)),

i.e. Kh is the difference of the generators associated to the compensated and
frozen diffusion processes between tj and tj′,

(5.7) Mh(tj , tj′ , (x, y), (x
′, y′)) =

4∑

k=1

Mk
h (tj , tj′ , (x, y), (x

′, y′)),

where the (Mk
h )k∈[[1,4]] are defined in the appendix.

For j = j′ − 1 we set Kh(tj , tj+1, (x, y), (x
′, y′)) = 0,

Mh(tj, tj+1, (x, y), (x
′, y′)) = Hh(tj , tj+1, (x, y), (x

′, y′)).

The proof is postponed to the appendix. From this proof one also derives
that the terms appearing in Lemma 5.2 are controlled with the following:

Lemma 5.3 There exists a constant C s.t. for all j < j′, for all (x, y) and
(x′, y′) in R

d × R
k

(|Kh| + |Mh| +
4∑

i=1

|M i
h| + |Hh|)(tj , tj′ , (x, y), (x′, y′)

≤ C(ρ−1
Itj′>tj+h + ρ−(1+2ε)

Itj′=tj+h)ζρ
(
x′ − x, y′ − y

)
,

with ζρ as in Lemma 5.1. Here again ρ =
√
tj′ − tj.
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The key fact is that the previous bound provides an integrable singularity
in ρ.

Step 3. Comparison of the parametrix expansions for the com-
pensated diffusion and Markov chain. We first state an auxiliary result
concerning the behavior of the iterated discrete kernel applied to the density
of the frozen Markov chain.

Lemma 5.4 There exists a constant C (that does not depend on (x, y) and
(x′, y′)) such that, for all j < j′, r ∈ [[0, j′ − j]],

∣∣∣
(
p̃h ⊗h H

(r)
h

)
(tj, tj′ , (x, y), (x

′, y′))
∣∣∣ ≤ Cr+1 ρr(1−2ε)

Γ
(
1 + r

2 − rε
)χρ

(
x′ − x, y′ − y

)

for 0 ≤ j < j′ ≤ N , where Nh = T , χρ and S′ are as in Theorem 4.1.

To prove the lemma it is sufficient to repeat the proof of Lemma 3.11 in
[KM00] with obvious modifications concerning the additional arguments y′−
y and taking into account the control of Lemma 5.3 for Hh that yields a
different statement compared to the quoted Lemma.

Lemma 5.5 For 0 ≤ j < j′ ≤ N the following formula holds:

p̂h(tj , tj′ , (x, y), (x
′, y′)) =

j′−j∑

r=0

(
p̃⊗h (Mh +Kh)(r)

)
(tj , tj′ , (x, y), (x

′, y′))+R,

where |R| ≤ Ch1/2ρ−1χρ(x
′ − x, y′ − y) for some constant C. The function

χρ is as in Theorem 4.1.

The proof follows from Lemmas 5.1 and 5.3 and is analogous to the proof
of Lemma 3.13. in [KM00]. �

Let us now compare the parametrix expansions of the compensated dif-
fusion and Markov chain for tj = 0, tj′ = T . From Proposition 2.2, (3.4) and
Stirling’s asymptotic formula for the Γ function we have

(5.8) p̂(0, T, (x, y), (x′ , y′)) =
N∑

r=0

(
p̃⊗H(r)

)
(0, T, (x, y), (x′, y′)) +R1,

where |R1| ≤ Ch1/2Λ√
T (x′ − x, y′ − y), ∀(u, v) ∈ R

d × R
k, Λ√

T (u, v) =

T−(d+3k)/2 exp

(
−C[

∣∣∣ u
T 1/2

∣∣∣
2
+
∣∣∣ v
T 3/2

∣∣∣
2
]

)
, and by Lemma 5.5

(5.9)

p̂h(0, T, (x, y), (x′, y′)) =
N∑

r=0

(
p̃⊗h (Mh +Kh)(r)

)
(0, T, (x, y), (x′, y′)) +R2
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where
|R2| ≤ Ch1/2T−1/2χ√

T (x′ − x, y′ − y).

Because of (5.8) and (5.9), to prove the theorem it remains to show that

|∆N | :=

∣∣∣∣∣

(
N∑

r=0

(
p̃⊗H(r)

)
−

N∑

r=0

(
p̃⊗h (Mh +Kh)(r)

))
(0, T, (x, y), (x′, y′))

∣∣∣∣∣

(5.10) ≤ Ch1/2χ√
T (x′ − x, y′ − y).

Note that |∆N | ≤ S1 + S2 + S3, where

S1 =

∣∣∣∣∣

(
N∑

r=0

(
p̃⊗H(r)

)
−

N∑

r=0

(
p̃⊗h H

(r)
))

(0, T, (x, y), (x′, y′))

∣∣∣∣∣ ,

S2 =

∣∣∣∣∣

(
N∑

r=0

(
p̃⊗h H

(r)
)
−

N∑

r=0

(
p̃⊗h (Mh +H)(r)

))
(0, T, (x, y), (x′, y′))

∣∣∣∣∣ ,

S3 =

∣∣∣∣∣

(
N∑

r=0

(p̃⊗h (Mh +H)(r) −
N∑

r=0

(
p̃⊗h (Mh +Kh)(r)

))
(0, T, (x, y), (x′, y′))

∣∣∣∣∣ .

We shall show

(5.11) Si ≤ Ch1/2χ√
T (x′ − x, y′ − y), i = 1, 2, 3.

This is done in Appendix B.

Conclusion. So far, we have considered the case when only Poisson
brackets of order one were involved to ensure the hypoellipticity. In our
model, this implied that the frozen diffusion process was Gaussian, and so
was the related limit Theorem. The bound in Theorem 2.1 remains homoge-
neous to a Gaussian probability density. The existence of an accurate similar
lower bound is still an open question. Indeed, the lower bound holds in small
time and a global bound can be obtained using convolutions and convexity
inequalities, but in that case the constants degenerate. Also, when brackets
of higher order are needed to have hypoellipticity, i.e. when formally Wiener
chaos of order strictly greater than 1 appear in the frozen process, the up-
per bound of the density in terms of another probability density as well as
the associated limit theorem are still to be investigated. This will concern
further research.
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APPENDIX A: PROOF OF LEMMAS 5.2 AND 5.3

Proof of Lemma 5.2.
For j = j′ − 1 we have ρ =

√
(j′ − j)h =

√
h. By definition of Hh

Hh(tj , tj+1, (x, y), (x
′, y′)) = ρ−2

[
p̂h,j((x, y), (x

′, y′)) − p̃x′

h,j((x, y), (x
′, y′))

]
.

Thus, from (A2), (BS), (B.12), (B.13) and standard computations

|Hh(tj , tj+1, (x, y), (x
′, y′))| = |Mh(tj, tj+1, (x, y), (x

′, y′))|
≤ Cρ−(1+2ε)ζρ(x− x′, y − y′).(A.1)

For j < j′ − 1, we proceed like in the proof of Lemma 3.9 in [KM00]. We
get that

Hh(tj, tj′ , (x, y), (x
′, y′)) = (Ĥh − H̃h)(tj , tj′ , (x, y), (x

′, y′))

where

Ĥh(tj , tj′ , (x, y), (x
′, y′)) = h−1

∫
fn (θ1, θ2) q(θ3) ×

[
λ(x+ γ̂1(θ1), y + γ̂2 (θ2, θ3)) − λ(x, y)

]
dθ1dθ2dθ3,(A.2)

H̃h(tj , tj′ , (x, y), (x
′, y′)) = h−1

∫
fn (θ1, θ2) ×

[
λ(x+ γ̃1(θ1), y + γ̃2 (θ2, θ3)) − λ(x, y)

]
dθ1dθ2,(A.3)

with λ(u, v) = p̃h(tj+1, tj′ , (u, v), (x
′, y′)),

γ̂1(θ1) = hb(x) +
√
hσ(x)θ1,

γ̂2(θ2, θ3) =

{
F (x+

b(x)γnh

2
+

√
hσ(x)θ2) − F (x′)

}
h+ h3/2+εθ3,

and

γ̃1(θ1) = hb(x′) +
√
hσ(x′)θ1,

γ̃2(θ2, θ3) =
−→∇xF (x′)(x− x′)h+

−→∇xF (x′)b(x′)γnh
2

2

+h3/2−→∇xF (x′)σ(x′)θ2 + h3/2+εθ3.
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Using a Taylor expansion at order three for λ in (A.2) and (A.3) we obtain

Hh(tj, tj′ , (x, y), (x
′, y′)) =

{
1

2

d∑

l,m=1

(alm(x) − alm(x′))∂xlxmλ(x, y)

+
d∑

l=1

(bl(x) − bl(x
′))∂xl

λ(x, y) +
k∑

l=1

(
Fl(x) − Fl(x

′) − 〈∇xFl(x
′), x− x′

〉

+(∇xFl(x)b(x) −∇xF (x′)b(x′)))
γnh

2

+

∫ 1

0
dα〈HFl

(x+ α(
hγnb(x)

2
+

√
hσ(x)θ2))

hγnb(x)

2
+

√
hσ(x)θ2,

hγnb(x)

2
+

√
hσ(x)θ2〉

)
∂yl
λ(x, y)

}

+

{
h

2

(〈Hxλ(x, y)b(x), b(x)〉 − 〈Hxλ(x, y)b(x′), b(x′)〉)

+
h2

2

(
tr(Hyλ(x, y)

−→∇xF (x′)(a(x) − a(x′))
−→∇xF (x′)∗)

)

+
h2

2
γn〈Hyλ(x, y)

−→∇xF (x′)(x− x′),
−→∇xF (x′)(b(x) − b(x′))〉

+
γ2

nh
3

8

(
〈Hyλ(x, y)

−→∇xF (x′)b(x),
−→∇xF (x′)b(x)〉−

〈Hyλ(x, y)
−→∇xF (x′)b(x′),

−→∇xF (x′)b(x′)〉
)}

+

(M1
h +R1

h)(tj , tj′ , (x, y), (x
′, y′)) + {h−1

∫
dθ1dθ2dθ3fn(θ1, θ2)q(θ3)

(
〈Hy,xλ(x, y)γ̂1(θ1), γ̂

2(θ2, θ3)〉 − 〈Hy,xλ(x, y)γ̃1(θ1), γ̃
2(θ2, θ3)〉

)
}

+3h−1
∑

|ν|=3

∫
dθ1dθ2dθ3

∫ 1

0
dδ(1 − δ)2fn(θ1, θ2)q(θ3)

(γ̂1(θ1), γ̂
2(θ2, θ3))

ν

ν!

Dνλ(x+ δγ̂1(θ1), y + δγ̂2(θ2, θ3))

− 3h−1
∑

|ν|=3

∫
dθ1dθ2dθ3

∫ 1

0
dδ(1 − δ)2fn(θ1, θ2)q(θ3)

(γ̃1(θ1), γ̃
2(θ2, θ3))

ν

ν!

×Dνλ(x+ δγ̃1(θ1), y + δγ̃2(θ2, θ3))

:= I + II + (M1
h +R1

h)(tj , tj′ , (x, y), (x
′, y′)) + III + IV − V,(A.4)

where we denote Hxλ(x, y) (resp. Hyλ(x, y), Hy,xλ(x, y)) the R
d⊗R

d (resp.
R

k⊗R
k,Rk⊗R

d) matrix (∂xi,xjλ(x, y))(i,j)∈[[1,d]]2 (resp. (∂yi,yjλ(x, y))(i,j)∈[[1,k]]2,
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(∂yi,xjλ(x, y))(i,j)∈[[1,k]]×[[1,d]]2). Also, setting m̂2(x, x
′) = x−x′+ b(x)γnh

2 , ∀l ∈
[[1, k]], R2,l

F =

∫
dθ1dθ2fn(θ1, θ2)

∫ 1

0
dα(1−α)〈HFl

(x′+α(m̂2(x, x
′)+

√
hσ(x)θ2))

(
m̂2(x, x

′) +
√
hσ(x)θ2

)
,
(
m̂2(x, x

′) +
√
hσ(x)θ2

)
〉 one has:

R1
h(tj , tj′ , (x, y), (x

′, y′)) =
1

2
h〈Hyλ(x, y)R2

F , R
2
F 〉,

M1
h(tj , tj′ , (x, y), (x

′, y′)) = h〈Hyλ(x, y)[
−→∇xF (x′)(m̂2(x, x

′)

+σ(x)
√
hθ2], R

2
F 〉.(A.5)

Note that Mh
1 and Rh

1 correspond to a remainder associated to the second
order term in the Taylor development of F around x′ that is used when
considering the second order derivatives in y for the kernel Ĥh.

In the sequel, a useful result is the following. There exists C > 0 s.t. for
multi-indices α, β, |α| ≤ 3, |β| ≤ 3,

(A.6) |∂α
x ∂

β
y λ(x, y)| ≤ Cρ−(|α|+3|β|)ζρ

(
x′ − x, y′ − y

)
.

This assertion can be proved similarly to Lemma 3.7 in [KM00].
From (A.6) and (A.5) we directly derive

|R1
h(tj , tj′ , (x, y), (x

′, y′))| ≤ C
√
hρ−1ζρ(x− x′, y − y′),

|M1
h(tj , tj′ , (x, y), (x

′, y′))| ≤ Cρ−1ζρ(x− x′, y − y′).(A.7)

Note now that

I = (L̂− L̃)p̃h(tj , tj′ , (x, y), (x
′, y′)) +

{
hγn

2

k∑

l=1

(∇Fl(x)b(x)

−∇Fl(x
′)b(x′))∂yl

λ(x, y)

}

+

{
(L̂− L̃)

(
λ(x, y) − p̃h(tj , tj′ , (x, y), (x

′, y′))
)
+

k∑

l=1

∫ 1

0
dα〈HFl

(x+ α(
hγnb(x)

2
+

√
hσ(x)θ2))

(
hγnb(x)

2
+

√
hσ(x)θ2

)
,

hγnb(x)

2
+

√
hσ(x)θ2〉

)
∂yl
λ(x, y)

}

:= (Kh +R2
h +M2

h)(tj , tj′ , (x, y), (x
′, y′)).
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From the above equation and (A.6) we get

|R2
h(tj , tj′ , (x, y), (x

′, y′))| ≤ C
√
hρ−1ζρ(x− x′, y − y′),

|M2
h(tj , tj′ , (x, y), (x

′, y′))| ≤ Cρ−1ζρ(x− x′, y − y′).

(A.8)

Using similarly (A.6) and tedious but elementary calculations, one can
split in II, III the terms that give the expected order, i.e. bounded by
C
√
hρ−1ζρ(x−x′, y−y′) and denoted below by R3

h(tj, tj′ , (x, y), (x
′, y′)), and

those that give an integrable singularity in time, i.e. bounded by Cρ−1ζρ(x−
x′, y − y′) and denoted below by M3

h(tj , tj′ , (x, y), (x
′, y′)).

It remains to estimate IV − V in (A.4). To this end write,

IV − V = 3h−1
∑

|ν|=3

1

ν!

∫
dθ1dθ2dθ3

∫ 1

0
dδ(1 − δ)2fn(θ1, θ2)q(θ3)

{

((γ̃1(θ1), γ̃
2(θ2, θ3))

ν − (γ̂1(θ1), γ̂
2(θ2, θ3))

ν)Dνλ(x+ δγ̃1(θ1), y + δγ̃2(θ2, θ3))

+(γ̂1(θ1), γ̂
2(θ2, θ3))

ν
∑

|µ|=1

∫ 1

0
dαDν,µλ(x+ δγ̂1(θ1) + αδ(γ̃1 − γ̂1)(θ1),

y + δγ̂2(θ2, θ3) + αδ(γ̃2(θ2, θ3) − γ̂2(θ2, θ3)))
(
δ(γ̃1 − γ̂1)(θ1), δ(γ̃

2(θ2, θ3) − γ̂2(θ2, θ3))
)µ
}

:= M4
h(tj, tj′ , (x, y), (x

′, y′)).

Computations involving (A.6) yield

|M4
h(tj , tj′ , (x, y), (x

′, y′))| ≤ Cρ−1ζρ(x
′ − x, y′ − y).(A.9)

We refer to the proof of (3.80) p. 584 in [KM00] and Appendix B.2 for
additional details. This completes the proof. �

The proof of Lemma 5.3 then follows from the previous proof, (A.6), (A.7),
(A.8), (A.9) and (A.4) for j′ > j + 1 and (A.1) for j′ = j + 1.

APPENDIX B: CONTROL OF THE (SI)I∈[[1,3]]

B.1. Control of S1. Set

p̂d(0, T, (x, y), (x
′, y′)) =

∞∑

r=0

p̃⊗h H
(r)(0, T, (x, y), (x′, y′)).

From Proposition 2.2 one has

(p̂− p̂d)(0, T, (x, y), (x
′ , y′)) = (p̂⊗H − p̂⊗h H)(0, T, (x, y), (x′, y′))

+(p̂− p̂d) ⊗h H(0, T, (x, y), (x′, y′)).
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Iterating the previous identity we get

(p̂ − p̂d)(0, T, (x, y), (x
′, y′)) = (p̂⊗H − p̂⊗h H) ⊗h ϕ(0, T, (x, y), (x′ , y′)),

(B.10)

where ∀j ∈ [[0, N − 1]], ∀(u, v) ∈ R
d × R

k,

ϕ(tj , T, (u, v), (x
′, y′)) =

∞∑

r=0

H
(r)
h (tj , T, (u, v), (x

′, y′)).

Let us first give a bound for Pj(u, v) := (p̂⊗H−p̂⊗hH)(0, tj , (x, y), (u, v)), j ∈
[[0, N ]], (u, v) ∈ R

d×R
k. First, from the previous definitions of the continuous

and discrete convolution operators, P0(u, v) = 0, in the sense of generalized
functions. For j ≥ 1 write

Pj(u, v) =
j−1∑

i=0

∫ ti+1

ti

dt

∫

Rd×Rk
dwdzλ(u,v)(t, (w, z)) − λ(u,v)(ti, (w, z)),

λ(u,v)(t, (w, z)) := p̂(0, t, (x, y), (w, z))H(t, tj , (w, z), (u, v)).

A first order Taylor expansion and Fubini’s theorem give

Pj(u, v) =
j−1∑

i=1

∫ ti+1

ti

dt(t− ti)

∫ 1

0
dδQδ

i (u, v, s) + T 0
j ,

Qδ
i (u, v, s) :=

∫

Rd×Rk
dwdz∂sλ(u,v)(s, (w, z))s=ti+δ(t−ti), i ∈ [[1, j − 1]].

T 0
j :=

∫ h

0
dt

∫

Rd×Rk
dwdzp̂(0, t, (x, y), (w, z))

×(H(t, tj, (w, z), (u, v)) −H(0, tj , (x, y), (u, v))).(B.11)

From Lemma 3.1, Theorem 2.1 and standard computations for Gaussian
convolutions we obtain

T 0
j ≤ C

√
ht

−(d+3k)/2
j exp(−c

[
|u− x|2
tj

+
|v − y|2
t3j

]
).

Now, Kolmogorov’s equations derived from the definitions (2.5) and (2.6)
yield

Qδ
i (u, v, s) =

∫

Rd×Rk
dwdzp̂(0, s, (x, y), (w, z))(L̂2 − 2L̂L̃+ L̃2)

p̃(s, tj, (w, z), (u, v)).
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From Lemma 3.1, the most singular term in the above equation is the one
involving two derivatives w.r.t z. Namely, we have to control

Qδ,S
i (u, v, s) :=

k∑

l,m=1

∫

Rd×Rk
dwdzp̂(0, s, (x, y), (w, z))

(
[Fl(w)

−Fl(u)] [Fm(w) − Fm(u) − 2〈∇uFm(u), w − u〉]

+〈∇uFl(u), w − u〉 × 〈∇uFm(u), w − u〉
)
∂zlzm p̃(s, tj , (w, z), (u, v)).

As for T 0
j , Lemma 3.1, Theorem 2.1, a second order Taylor expansion for

Fl,Fm and standard computations for Gaussian convolutions yield

|Qδ,S
i (u, v, s)| ≤ C(tj − s)−3/2t

− d+3k
2

j × exp

(
−c
{
|x− u|2
tj

+
|y − v|2
t3j

})

≤ C(tj − s)−3/2Λ√tj
(x− u, y − v).

The same bound holds for Qδ
i (u, v, s), up to a multiplicative finite constant.

Plug now the above control in (B.11), we get

Pj(u, v) ≤ CΛ√tj
(x− u, y − v)(h1/2 + h2

j−2∑

i=1

t
−3/2
i )

≤ Ch1/2Λ√tj
(x− u, y − v).

Hence, from (B.10) and a suitable version of (3.4) for the discrete convolution
operator we derive

|(p̂ − p̂d)(0, T, (x, y), (x
′, y′))| ≤ Ch1/2Λ√

T (x′ − x, y′ − y).

The bound for S1 can be derived using once again (3.4) for both the contin-
uous and discrete convolution operators and the asymptotics of the Gamma
function.

B.2. Control of S2. For r = 1 we have to control

p̃⊗h Mh(0, T, (x, y), (x′, y′)) =
4∑

i=1

h
N−1∑

j=0

∫
dudvp̃(0, tj , (x, y), (u, v))M

i
h(tj, T, (u, v), (x

′, y′))

:= h
4∑

i=1

N−2∑

j=0

Ii,j + hIN−1.
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The term hIN−1 needs to be handled by a different technique than the
other ones. Write

hIN−1 =

∫
dudvp̃(0, T − h, (x, y), (u, v)) (p̃h − p̂h) (T − h, T, (u, v), (x′, y′)).

From the definitions of the models (4.2) and (4.5) for all (u, v) ∈ R
d × R

k:

p̂h(T − h, T, (u, v), (x′, y′)) = h−(d+k(3+2ε))/2det(a(u))−1/2

×
∫
dθ2fn

(
σ−1(u)(x′ − u− b(u)h)

h1/2
, θ2

)

×q
(
y′ − v − (F (u+ γnb(u)h

2 + σ(u)
√
hθ2) − F (x′))h

h3/2+ε

)
,(B.12)

p̃h(T − h, T, (u, v), (x′, y′)) = h−(d+k(3+2ε))/2det(a(x′))−1/2

×
∫
dθ2fn

(
σ−1(x′)(x′ − u− b(x′)h)

h1/2
, θ2

)

×q

y

′ − v − (
−→∇xF (x′){u− x′ + γnb(x′)h

2 + σ(x′)
√
hθ2})h

h3/2+ε


 .(B.13)

Setting

−u′ :=
σ−1(x′) [x′ − u− b(x′)h]

h1/2
,

−v′ :=
(y′ − v − (

−→∇xF (x′){u− x′ + γnb(x′)h
2 + σ(x′)

√
hθ2})h)

h3/2+ε

g(x′, u′) := x′ + σ(x′)u′h1/2 − b(x′)h,

−→∇xF (x′, u′, θ2) :=
−→∇xF (x′)

{
σ(x′)h3/2(u′ + θ2) −

b(x′)h2

2

(
1 − 1

n

)}
,

one gets

hIN−1 =

∫
du′dv′dθ2p̃(0, T − h, (x, y), g(x′ , u′), y′ + h3/2+εv′ −−→∇xF (x′, u′, θ2))

×fn(−u′, θ2)q(−v′) −
det(a(x′))1/2

det(a(g(x′, u′)))1/2
×

p̃(0, T − h, (x, y), g(x′, u′), y′ + h3/2+εv′ − (
−→∇xF (x′, u′, θ2) +R1))

×fn(−u′ +R2, θ2)q(−v′),
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where using Young’s inequality |R1| ≤ C([|u′|2 + |θ2|2]h2 + h3), |R2| ≤
C(|u′|2h1/2+h3/2). Note also from (UE) and (G) that |1− det(a(x′))1/2

det(a(g(x′,u′)))1/2 | ≤
Ch1/2(|u′| + h1/2). Standard computations, the above controls, Lemma 3.1
and (A2) yield

|hIN−1| ≤ Ch1/2
∫
du′dv′dθ2 exp

(
−c
{
|x− g(x′, u′)|2

T − h

})

exp

(
−c
{
|y′ + h3/2+εv′ − (

−→∇xF (x′, u′, θ2) + λR1)|2
(T − h)3

})
(1 + |u′|2 + |θ2|2)

×ψ(−u′, θ2,−v′),

≤ Ch1/2
∫
du′dv′dθ2

(
1 +

{
|x− g(x′, u′)|2

T − h
+

|y′ − y + h3/2+εv′ − (
−→∇xF (x′, u′, θ2) + λR1)|2

(T − h)3

}Z/2



−1

(1 + |u′|2 + |θ2|2)

×ψ(−u′, θ2,−v′)

where λ := λ(u′, v′, θ2) ∈ [0, 1], Z ∈ N
∗. For V ∈ R

d+k, |V | ≤ η, apply now

the inequality 1
1+|U+V |Z ≤ max(2Z ,(2η)Z+1)

1+|U |Z , with U =
(

x−x′

(T−h)1/2 ,
y′−y

(T−h)3/2

)
,

V =

(
σ(x′)h1/2u′ − b(x′)h

(T − h)1/2
,
v′h3/2+ε − (

−→∇xF (x′, u′, θ2) + λR1)

(T − h)3/2

)
,

and η = Ch1/2(1 + |u′|2 + |θ2|2 + |v′|2h1+ε), for C large enough, one gets

|hIN−1| ≤ Ch1/2

1 + |U |Z
∫
du′dv′dθ2(1 + |(u′, v′, θ2)|2Z+2)ψ(−u′, θ2,−v′)

≤ Ch1/2ζ√T−h(x′ − x, y′ − y) ≤ Ch1/2ζ√T (x′ − x, y′ − y),

taking Z = S − 4 for the last inequality. Hence the exponent in (A2).
Also, from the definitions of the (M i

h)i∈[[1,4]] in the previous section and
using freely its notations, we derive for all j ∈ [[0, N − 2]]:

|M1
h(tj, T, (u, v), (x

′, y′))| ≤ h2(T − tj)
−5/2ζρ(x

′ − u, y′ − v),

|M2
h(tj, T, (u, v), (x

′, y′))| ≤ h(T − tj)
−3/2ζρ(x

′ − u, y′ − v),

from which one gets h
2∑

i=1

N−2∑

j=0

|Ii,j| ≤ Ch1/2ζ√T (x′ − x, y′ − y). The terms in

M3
h coming from II in (A.4) can be handled as (M i

h)i∈[[1,2]]. For those coming
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from III, i.e. crossed derivatives, the contribution associated to j = 0 is
easily analyzed and for j > 1 an integration by part w.r.t. u leads to the
same control. The trickiest term to analyze is M4

h . Exploiting thoroughly
(A.6) and Lemma 3.1, the proof is similar to the one in [KM00], see p.578
control of (3.45), that relies on suitable integration by parts. We omit the
details here. Actually, for r ≥ 1 it can be shown by induction that

∣∣∣
(
p̃⊗h H

(r) − p̃⊗h (H +M)(r)
)

(0, T, (x, y), (x′, y′))
∣∣∣

≤ h1/2Cr+1

Γ([r + 2]/2)
χ√

T (x′ − x, y′ − y),

which gives the control.

B.3. Control of S3. One can show that Lemma 5.1 is still valid for
the derivatives of the frozen densities. Using this result and Lemma 5.3, the
proof is then similar to the one of [KM00].

APPENDIX C: EXISTENCE OF THE DENSITY FOR THE
AGGREGATED FROZEN PROCESS

Let h0 > 0 be a given fixed time step. For i ∈ N set ti := ih0. We consider
the frozen model defined by X̃h0

0 = x, Ỹ h0
0 = y and for all i ∈ N,

X̃h0
ti+1

= X̃h0
ti + b(x′)h0 + σ(x′)

√
h0ξ̃i+1,

Ỹ h0
ti+1

= Ỹ h0
ti +

−→∇xF (x′)(X̃h0
ti+1

− x′)h0

= Ỹ h0
ti + h0

−→∇xF (x′)(X̃h0
ti − x′) + h2

0

−→∇xF (x′)b(x′)

+h
3/2
0

−→∇xF (x′)σ(x′)ξ̃i+1,(C.14)

where (ξ̃i)i∈N∗ are i.i.d. with smooth densities, satisfying the growth and
smoothness properties introduced in (A2). The aim of this section is to
show that for i large enough (X̃h0

ti , Ỹ
h0
ti ) admits a density. We refer the

reader to the work of Yurinski [Yur72] or Molchanov and Varchenko [MV77]
for related topics.

Conditionally to

(
X̃h0

ti = x∗

Ỹ h0
ti = y∗

)
and iterating the frozen model we get

X̃h0
ti+n

= x∗ + (nh0)b(x
′) + σ(x′)

√
nh0ξ̃

(1)
i,n ,

Ỹ h0
ti+n

= y∗ + (nh0)
−→∇xF (x′)(x∗ − x′) +

γn

2
(nh0)

2−→∇xF (x′)b(x′)

+(nh0)
3/2−→∇xF (x′)σ(x′)ξ̃(2)i,n ,(C.15)
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where we recall γn = (1 + 1
n) and

ξ̃
(1)
i,n =

1√
n

(
ξ̃i+1 + ξ̃i+2 + ...+ ξ̃i+n

)
,

ξ̃
(2)
i,n =

1√
n

(
ξ̃i+1 + (1 − 1

n
)ξ̃i+2 + ...+ (1 − n− 1

n
)ξ̃i+n

)
.

We have

V ar(ξ̃
(2)
i,n ) =

(1 − n−1
n )2 + ...+ 12

n
=

2n2 + 3n+ 1

6n2
=

1

3
γn(1 +

1

2n
),

Cov(ξ̃
(1)
i,n , ξ̃

(2)
i,n ) =

(1 − n−1
n ) + ...+ 1

n
=

n+ 1

2n
=
γn

2
.

Hence, the covariance matrix of the 2d dimensional vector
(
ξ̃
(1)
i,n , ξ̃

(2)
i,n

)∗
is

non-degenerate for n ≥ 2.

Estimating the characteristic function ϕn(τ1, τ2) of the vector
(
ξ̃
(1)
i,n , ξ̃

(2)
i,n

)∗
∈

R
2d we derive the following

Proposition C.1 Let φ(τ) := E

[
exp

(
i〈ξ̃1, τ〉

)]
, τ ∈ R

d denote the char-

acteristic function of the (ξ̃i)i∈N∗ . If for all multi index β, |β| = 2S − 6 +
(2d+1), |Dβφ(τ)| ≤ C(1+ |τ |4+2d+1)−1, then for n large enough and for all
multi index α, |α| ≤ 4, one has

∫

Rd×Rd
|(τ1, τ2)||α||D2S−6+(2d+1)ϕn(τ1, τ2)|dτ1dτ2 <∞.

In particular, by Fourier inversion the density

fn(θ1, θ2) =
1

(2π)2d

∫
exp(−i〈(θ1, θ2)∗, (τ1, τ2)∗〉)ϕn(τ1, τ2)dτ1dτ2(C.16)

exists and there exists C s.t. for all multi index ν, |ν| ≤ 4,

|Dνfn(θ1, θ2)| ≤
C

1 + |(θ1, θ2)|2S−6+2d+1
:= ψn(θ1, θ2).

Proof. Write

ϕn(τ1, τ2) = E

[
exp

{
i
〈
τ1, ξ̃

(1)
i,n

〉
+ i

〈
τ2, ξ̃

(2)
i,n

〉}]
=

n−1∏

j=0

φ

(
τ1 + (1 − j

n)τ2√
n

)
.

(C.17)
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We partition the space R
2d into the following disjoint sets

A0 :=

{
(τ1, τ2) ∈ R

2d : |τ1| ≥ (1 − 1

n
) |τ2|

}
,

Ai :=

{
(τ1, τ2) ∈ R

2d : (1 − i+ 1

n
) |τ2| ≤ |τ1| < (1 − i

n
) |τ2|

}
, i ∈ [[1, n − 2]],

An−1 :=

{
(τ1, τ2) ∈ R

2d : |τ1| <
1

n
|τ2|
}
.

If (τ1, τ2) ∈ A0 then for i ∈ [[2, n − 2]]

∣∣∣∣∣
τ1 + (1 − i

n)τ2√
n

∣∣∣∣∣ ≥ 1√
n

(
|τ1| − (1 − i

n
) |τ2|

)

≥ 1√
n

(
(1 − 1

n
) |τ2| − (1 − i

n
) |τ2|

)
=
i− 1

n
√
n
|τ2|

and similarly

∣∣∣∣
τ1+(1− i

n
)τ2√

n

∣∣∣∣ ≥ i−1
n
√

n
|τ1|. Hence,

∣∣∣∣∣
τ1 + (1 − i

n)τ2√
n

∣∣∣∣∣

2d+1

≥ (i− 1)2d+1

2n3d+3/2
|(τ1, τ2)|2d+1.(C.18)

If (τ1, τ2) ∈ Ai∗ for some i∗, i∗ ∈ [[1, n − 2]] and l ∈ [[2, n − 1 − i∗]] then
elementary computations yield similarly

∣∣∣∣∣
τ1 + (1 − i∗+l

n )τ2√
n

∣∣∣∣∣

2d+1

≥ (l − 1)2d+1

2n3d+3/2
|(τ1, τ2)|2d+1 ,(C.19)

and for l ∈ [[1, i∗ − 1]]

∣∣∣∣∣
τ1 + (1 − i∗−l

n )τ2√
n

∣∣∣∣∣

2d+1

≥ l2d+1

2n3d+3/2
|(τ1, τ2)|2d+1 .(C.20)

If (τ1, τ2) ∈ An−1 then for i ∈ [[1, n − 1]]

∣∣∣∣∣
τ1 + (1 − i

n)τ2√
n

∣∣∣∣∣

2d+1

≥ 1

2nd+1/2

(
1 − i+ 1

n

)2d+1

|(τ1, τ2)|2d+1 .(C.21)

Use now the growth assumption on φ and the inequality 1 +
∑N

j=1 pj ≤
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∏N
j=1(1 + pj) where pj ≥ 0, to derive from (C.17)

|ϕn(τ1, τ2)| =

∣∣∣∣∣∣

n−1∏

j=0

φ

(
τ1 + (1 − j

n)τ2√
n

)∣∣∣∣∣∣
≤ Cn

∏n−1
j=0

(
1 +

∣∣∣∣
τ1+(1− j

n
)τ2√

n

∣∣∣∣
2d+1

)

≤ Cn

1 +
∑n−1

j=0

∣∣∣∣
τ1+(1− j

n
)τ2√

n

∣∣∣∣
2d+1

.

Now equations (C.18), (C.19), (C.20), (C.21) yield that there exists n large
enough s.t.

|ϕn(τ1, τ2)| ≤
C(n)

1 + |(τ1, τ2)|2d+1
,

where C(n) →
n

+∞. Anyhow, for such a fixed n, one has ϕn ∈ L1(R2d) which

implies the existence of the density fn of the vectors
(
ξ̃
(1)
i,n , ξ̃

(2)
i,n

)∗
∈ R

2d. The

properties concerning the growth and derivatives of fn are derived from
(C.16) and the growth and smoothness properties of φ. �

Hence we can set (η1
i , η

2
i ) := (ξ̃

(1)
i,n , ξ̃

(2)
i,n ) where (ξ̃

(1)
i,n , ξ̃

(2)
i,n ) are as in the

above proposition. Introducing a ”macro” scale time step h = nh0, the
discrete model (4.5) corresponds to the ”aggregated” dynamics of (C.15)
up to the additional ”artificial viscosity term” needed for the comparison,
see Appendix A. Now, from (4.1), (η3

i )i∈(j,j′]] are ”artificial” additional i.i.d.
variables. We can thus arbitrarily choose their density q. s.t. ∃C, ∀ν, |ν| ≤
4, |Dνq(θ3)| ≤ C(1+|θ3|k+1)−1 := ψq(θ3). Set for all (θ1, θ2, θ3) ∈ R

2d+k, ψ(θ1, θ2, θ3) :=
ψn(θ1, θ2)ψq(θ3). With the notations of Section 4 one derives that qn(θ1, θ2, θ3)
= fn(θ1, θ2)q(θ3) satisfies (A2) with the above ψ.
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