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A KINETIC APPROACH

TO THE STUDY OF OPINION FORMATION

LAURENT BOUDIN AND FRANCESCO SALVARANI

Abstract. In this work, we use the methods of nonequilibrium sta-
tistical mechanics in order to derive an equation which models some
mechanisms of opinion formation. After proving the main mathemati-
cal properties of the model, we provide some numerical results.

1. Introduction

The methods of nonequilibrium statistical mechanics, classically used in
the framework of the kinetic theory of gases, can also be fruitfully applied to
all the contexts that study the collective behaviour of a large enough num-
ber of individuals, where none of which has a preponderant role with respect
to the others. For example, kinetic-type equations have been introduced in
order to describe a simple market economy with a constant growth mecha-
nism [16, 6, 5], showing the formation of steady states with (overpopulated)
Pareto tails.

Such an approach also seems to be fitted to sociophysics. The main goal
of this discipline consists in giving a statistical physics modelling of large
scale social phenomena, like opinion formation, cultural dissemination or
crowd behaviour [12].

In this paper, we focus on a study of the opinion dynamics in a closed
community. The modelling of this phenomenon has already been the subject
of numerous works, mainly for its application in politics, to predict the be-
haviour of voters during an election process or the public opinion tendencies
[14, 8, 10, 11].

Several approaches to the problem are possible. For example, kinetic-
based models have been proposed in [19] (see also [1]). Moreover, there is
a wide literature based on Ising models, introduced in social and political
sciences by Galam et al. [13, 12]. Such a point of view has then been adopted
in several papers, for example, [18, 17].

In the present work, we aim to describe the time evolution of the opinion
set of an isolated population about a particular statement by means of a
model only depending on two independent variables: time and opinion.

We shall only consider opinions regarding binary questions. Even if there
are many cases where the opinion cannot be easily expressed in terms of
“yes” or “no”, several important situations (e.g. a referendum) require that,
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at the end of a process of opinion formation, the individuals should accept
or reject, without reserve, a very precise statement.

The opinion of individuals is represented by a one-dimensional real vari-
able between (−1) and (+1). The choice of the closed interval [−1, 1] instead
of R means that extreme opinions can actually be reached, and not only
asymptotically (we suggest references [7, 15] to readers interested in earlier
works on bounded confidence continuous opinion dynamics).

The dynamics of our model is given by the competition of two opposite mi-
croscopic effects. The first one is the process of self-thinking, which implies
a modification of the agents’ opinions. The second one is the interaction be-
tween two individuals of the population, who exchange their viewpoints and
are then influenced by each other, and is treated as a binary collision. We
point out that both elementary sociological phenomena taken into account
are well accepted in the literature. The idea to introduce a self confident
term in opinion dynamics was first introduced in discrete spin models by
Galam and Moscovici [13] and then by Galam [9]. In the present paper, the
modifications of the agent opinion due to the self-thinking are modelled as
a weighted linear diffusion which vanishes on the boundary of the opinion
space.

The binary interactions between individuals are defined as an exchange
of opinions with respect to their average value before the collision. This
is a difference with respect to [19] or [7], where the collision mechanism is
defined starting from the pre-collisional opinion of each agent.

As we shall explain in Section 2, both self-thinking and interaction be-
tween individuals are governed, in our model, by operators which are defined
up to an opinion-dependent term: the Fourier and the attraction functions,
respectively. With such a hypothesis, we assume that the changes of opinions
are linked to the opinion itself.

The Fourier and the attraction functions really influence the time evolu-
tion of the system, as we shall see in the last section of the paper, devoted
to the numerical tests. Of course, their functional form cannot be deduced
only by purely mathematical principles, but it should rather be identified
by means of some “sociological experiment” such as, for example, polls or
sociological studies. Indeed, we do not believe that the dynamics of a closed
community is independent on the community itself: for example, different
educational systems and different social rules can lead to a completely dif-
ferent kind of interaction between individuals.

For this reason, the mathematical constraints that we impose to these two
opinion-dependent terms are quite weak, in order to cover many possible
sociological styles. This adaptability to different kinds of community is, in
our opinion, one of the main advantages of the model.

Nevertheless, the model is not universal but, as any model, is based on
some hypotheses which fix its limits of validity. In particular, a description
based on statistical mechanics tools is only fruitful when the size of the
population is large enough. Moreover, we suppose in our model that the
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probability of a binary interaction is constant. In a structured society, this is
not true, since people are normally involved in a social network. This means
that some meetings are very probable and other ones almost impossible.
However, the influence of the network cannot be explained as a function
of opinion and time. Since we limit ourselves to consider only these two
independent variables, it seems logical to treat, in a first approximation, the
probability of a binary interaction as a constant.

All the previous hypotheses have a double effect. On the one hand, they
reduce the applicability of the model, on the other hand, by simplifying
the phenomena taken into account, they allow to build a model which is
tractable from a mathematical point of view.

Of course, a next step in the modelling would be the coupling of our model
with other equations which would take into account the existence of social
networks and allow more independent variables.

Finally, it is important to point out the motivation of this work, which
mixes modelling, analysis, numerical simulations and sociological considera-
tions. Our aim is to provide a tool which shows what kinetic theory can say
in a world seemingly as distant from mathematics as sociological dynamics.
In this spirit, we have introduced a model which explains – at a qualitative
level – several possible behaviours of opinion dynamics in the case of a binary
question.

We do not claim that this model gives the exact reproduction of the
reality, since the sociological behaviour of a community is not a physical
system. However, it allows to treat, from a mathematical point of view,
some important phenomena which come from collective dynamics.

This paper is organized as follows. We first describe our model, including
the processes of binary opinion exchanges and self-thinking. Then we prove
an existence result for the considered problem. Eventually, we present some
numerical tests.

2. The model

In the following, Ω denotes the open interval (−1, 1). We label with
x = −1 and x = 1 the two extreme answers to the statement, i.e. “yes” or
“no” without reserve, and describe the opinion by the continuous variable
x ∈ Ω̄. Note that any intermediate value between the two extremes (zero
excluded) means that the corresponding individual partially agrees with the
opinion labelled with the same sign, with a degree of conviction which is
proportional to |x|. If x = 0, the corresponding individual has no preference
with respect to the question.

The unknown of our model is the density (or distribution function) f =
f(t, x), defined on R+ × Ω̄, whose time evolution is described, as shown
later, by an integro-differential equation. The precise meaning of f is the
following. Once individuated the population to study, if the opinions are
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defined on a sub-domain D ⊆ Ω̄, the integral
∫

D
f(t, x) dx

represents the number of individuals with opinion included in D at time
t ≥ 0. Note that, in order to give a sense to the previous considerations, it
would be adequate if f satisfies f(t, ·) ∈ L1(Ω) for all t ∈ R+.

As sketched in the introduction, we shall take into account only two pro-
cesses of opinion formation. The first one is given by the binary interaction
between agents, which exchange their points of view and adjust their opin-
ions on the ground of each other’s belief, whereas the second behaviour we
take into account is the self-thinking process.

2.1. Exchange of opinions inside the population. We model this pro-
cess by borrowing the collisional mechanism of a typical interaction in the
kinetic theory of gases: whereas in rarefied gas dynamics the particles ex-
change momentum and energy in such a way that the principles of classical
mechanics are satisfied, here the “collision” between individuals allows the
exchange of opinions.

Let x, x∗ ∈ Ω̄ the opinions of two agents before an interaction. We suppose
that the opinions after the interaction change according to the following
rule. Once found the average opinion before the interaction, each of the two
individuals will approach it in a way which guarantees that stronger opinions
are less attracted towards the average than weaker opinions through the
following formula:

(1)















x′ =
x+ x∗

2
+ η(x)

x− x∗
2

,

x′∗ =
x+ x∗

2
+ η(x∗)

x∗ − x

2
.

The term η : Ω̄ → R, which we henceforth name the attraction function,
is a smooth function which describes the degree of attraction of the average
opinion with respect to the starting opinion of the agent. In order to make
the model unaffected by the change of label of the two extreme opinions,
we shall always suppose that η is even. In the sequel, we need some more
assumptions on the attraction function η.

Definition 2.1. Let η : Ω̄ → R be an even function of class C1(Ω̄). The
attraction function is admissible if 0 ≤ η < 1, η′(x) > 0 for all x > 0, and
the Jacobian of the collision mechanism (1)

J(x, x∗) =
1

2
[η(x) + η(x∗)] +

1

4
[η′(x) − η′(x∗)](x− x∗)

+
1

4
[η′(x)η(x∗) − η(x)η′(x∗)](x− x∗) −

1

4
η′(x)η′(x∗)(x− x∗)

2

is uniformly lower bounded by a nonnegative constant, i.e. there exists ξ > 0
such that J(x, x∗) ≥ ξ, for any x, x∗ ∈ Ω̄.
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The first property of η avoids that the interaction destroys the bounds
of the interval Ω. The second one translates the assumption that stronger
opinions are less attracted towards the average than weaker ones, and is well
accepted in the literature [19] (see also [9, 7]). The third one ensures that
the inverse of the collision rule (1) is well defined.

Note that the collision mechanism (1) is different from the mechanism
proposed by Toscani in [19], since here the post-collisional opinions are de-
fined from the mean value of the two pre-collisional opinions. Moreover,
it differs from the standard collisional rules of dissipative kinetic models,
which are usually linear.

Remark 2.2. By using the properties listed in Definition 2.1, it is not dif-
ficult to also prove that, for any x, x∗ ∈ Ω̄,

x′ − x′∗ =
1

2
(η(x) + η(x∗))(x− x∗),

and, since 0 ≤ η < 1,
|x′ − x′∗| < |x− x∗|.

It is then clear that the lateral bounds are not violated, i.e.

max{|x′| , |x′∗|} < max{|x| , |x∗|}.
We note that the set of admissible attraction functions is not empty. A

possible choice of η is the following:

(2) η(x) = λ(1 + x2), 0 < λ < 1/2.

It is easy to see, when η has the form (2), that the properties listed in Defi-
nition 2.1 are satisfied. The first and the second requirements in Definition
2.1 are obviously fulfilled. Easy but tedious computations finally show that
the Jacobian J of the collision rule (1), with η defined by (2), is given by

J(x, x∗) =
λ

2
(2 + x2 + x∗

2) +
λ

2
(x− x∗)

2

+
λ2

2
[x(1 + x∗

2) − (1 + x2)x∗](x− x∗) − λ2xx∗(x− x∗)
2,

and satisfies
J ≥ λ.

Remark 2.3. The transformation of type (1) can be locally dissipative. As

a matter of fact, if η is, for example, defined by (2), with λ ∈ (0, (
√

2−1)/2],
we have

x′2 + x′2∗ = x2 + x∗
2

+
(x− x∗)

2

4

[

λ2(1 + x2)2 + λ2(1 + x∗
2)2 + 2λ(x+ x∗)

2 − 2
]

≤ x2 + x∗
2 +

1

2
(4λ2 + 4λ− 1)(x− x∗)

2

≤ x2 + x∗
2.
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Once defined the collision rule (1), the interaction between individuals and
the corresponding exchange of opinions is described by a collisional integral
of Boltzmann type.

The collisional integral, which will be henceforth denoted as Q, has the
classical structure of the dissipative Boltzmann kernels. It can be viewed as
composed of two parts: a gain term Q+, which quantifies the exchanges of
opinion between individuals which give, after the interaction with another
individual, the opinion x, and a loss term Q−, which quantifies the exchanges
of opinion where an individual with pre-collisional opinion x experiences an
interaction with another member of the population.

It is apparent that, in general, the existence of a pre-collisional pair which
returns the post-collisional pair (x, x∗) through a collision of type (1) is not
guaranteed, unless we suppose that the collisional rule is a diffeomorphism
of Ω̄2 onto itself. Unfortunately, the collisional mechanism (1) does not
verify this property. For instance, there is no (x, x∗) ∈ Ω̄2 which gives, after
collision, the couple of extreme opinions (−1, 1).

In order to overcome this difficulty, the natural framework for such a
collision rule is given by the weak form. Two choices are possible. We may
either build a model in a weak form with respect to x only, or to work in
a weak setting with respect to the whole set of independent variables. We
choose the first option, which seems to be the correct framework for such
kind of models.

Let φ = φ(x) be a suitably regular test function. We define the weak form
of the collision kernel as

(3) 〈Q(f, f), φ〉 = β

∫∫

Ω2

f(t, x)f(t, x∗)
[

φ(x′) − φ(x)
]

dx∗dx.

Note that the particular form of the collision rule (1) only enters through the
test function φ(x′). The cross section β > 0 is a parameter which governs
the probability that an exchange of opinions can occur. In our model, we
suppose that β is purely constant. This is the simplest possible assumption,
which means that the probability of interaction of two individuals does not
depend on their respective opinions. Of course, other choices, based on
sociological considerations, are possible.

It is also clear that the operator Q only acts on the variable of opinion,
and not on time.

The explicit form of the change of variables (1) also allows to give the
following alternative formulations of the collision kernel:

〈Q(f, f), φ〉 = β

∫∫

Ω2

f(t, x)f(t, x∗)
[

φ(x′∗) − φ(x∗)
]

dx∗dx

=
β

2

∫∫

Ω2

f(t, x)f(t, x∗)
[

φ(x′) + φ(x′∗) − φ(x) − φ(x∗)
]

dx∗dx.

Remark 2.4. At least formally, we have 〈Q(f, f), 1〉 = 0.
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The form of the collisional integral given by (3) is nevertheless not com-
pletely satisfactory for the gain term because of the intricate dependence of
the argument of the test function with respect to the variables x, x∗. We
therefore consider the weak form of the gain term

(4) 〈Q+(f, f), φ〉 = β

∫∫

Ω2

f(t, x)f(t, x∗)φ(x′) dx∗dx.

Let us denote

Dη =

{

(x, x′) ∈ R × Ω̄

∣

∣

∣

∣

x′ − 1

2
+ η(x′)

x′ + 1

2
≤ x ≤ x′ + 1

2
+ η(x′)

x′ − 1

2

}

and

Kη(x, x
′) =

2β

1 − η(x′)
χDη

(x, x′), ∀x, x′ ∈ Ω̄,

where χDη
is the characteristic function of the set Dη. Since η is an admis-

sible attraction function, it is clear that Dη ⊆ Ω̄2.
We then perform the change of variable x∗ 7→ x′ in (4), for a fixed x. It

is easy to see that

dx∗ =
2

1 − η(x)
dx′ and x∗ =

2x′ − x− η(x)x

1 − η(x)
.

Then, after permuting x and x′, we obtain the following weak form of the
gain term:

〈Q+(f, f), φ〉 =

∫∫

Ω2

Kη(x, x
′)f

(

t,
2x− x′ − η(x′)x′

1 − η(x′)

)

f(t, x′)φ(x) dx′dx.

A new weak form of the collision operator immediately comes:

(5) 〈Q(f, f), φ〉 = 〈Q+(f, f), φ〉 − β

∫∫

Ω2

f(t, x)f(t, x′)φ(x) dx′dx,

which will be henceforth our definition of the collisional kernel for our model.
It is then straightforward to prove the following lemma.

Lemma 2.5. Let f(t, ·) ∈ L1(Ω). Then both Q+(f, f)(t, ·) and Q(f, f)(t, ·)
are of class L1(Ω), and we have, for a.e. t,

‖Q+(f, f)(t, ·)‖L1(Ω) ≤ 2β

1 − max η
‖f(t, ·)‖2

L1(Ω),(6)

‖Q(f, f)(t, ·)‖L1(Ω) ≤
(

2

1 − max η
+ 1

)

β ‖f(t, ·)‖2
L1(Ω).(7)

2.2. Self-thinking. As already mentioned in Section 1, the self-thinking
phenomenon is described, in our model, by a diffusion operator obeying to
a non-uniform Fourier law, with Fourier term α = α(x). This means that
we introduce a term which has the structure (α fx)x, which will compete
with the collision operator describing the interactions between the agents.

It is well known, indeed, that diffusion is an essential element of opinion
dynamics, since it quantifies the possibility that people may change their
opinion either on their own or due to interaction with media [2].
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In our case, the diffusion term is weighted by a non homogeneous quantity
which satisfies the assumptions listed in the following definition:

Definition 2.6. Let α : Ω̄ → R be a nonnegative function of class C1(Ω̄).
We say that α is admissible if α(x) = α(−x) for all x ∈ Ω̄ and α(−1) =
α(1) = 0.

The first property (symmetry) allows to treat in an equivalent way pos-
itive and negative opinions. The second one forces the diffusive process to
respect the bounds of the opinion space Ω̄.

Remark 2.7. Note that (αfx)x has a meaning in the distributional sense if
f(t, ·) ∈ L1(Ω). Indeed, since α ∈ W 1,∞(Ω) (in fact C1(Ω̄)), we can write,
in the distributional sense:

(αfx)x = (αf)xx − (fαx)x.

A possible choice of α is, for example, α(x) = κ(1−x2), with κ > 0. This
profile translates the idea that individuals with a stronger opinion are more
stable in their convictions. As in the case of the attraction function, other
choices, based on psychological studies, are obviously possible.

2.3. Combining the two phenomena. We are then able to write down
the whole model, by considering both the interaction effect and the self-
thinking. The evolution law of the unknown f = f(t, x) results in a partial
integro-differential equation of second order with respect to the opinion vari-
able:

(8)

∫

Ω
ft(t, x)ϕ(x) dx =

∫

Ω
[α(x)ϕx(x)]x f(t, x) dx+ 〈Q(f, f), ϕ〉

posed in (t, x) ∈ [0, T ] × Ω, T > 0, for all ϕ ∈ C2(Ω̄), with initial condition

(9) f(0, x) = f in(x) for all x ∈ Ω̄.

3. Main mathematical properties

This section is devoted to state and study some mathematical properties
of Equations (8)–(9). We first obtain some a priori estimates and then
deduce a theorem which proves the existence of weak solutions to (8)–(9).

Our model guarantees the conservation of the total number of individuals
of the population. By borrowing the kinetic theory language, the following
result is also named the conservation of the total mass.

Proposition 3.1. Let f = f(t, x) be a nonnegative weak solution of (8)–(9),
with a nonnegative initial condition f in ∈ L1(Ω). Then we have

‖f(t, ·)‖L1(Ω) = ‖f in‖L1(Ω) for a.e. t ≥ 0.

Proof. We simply consider Equation (8) with test function ϕ ≡ 1; the thesis
immediately follows. �
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Mass conservation is not realistic if we consider long-time forecasts. In-
deed, in such situations, we should also consider processes of birth and death,
which would lead to oscillations in the total number of individuals.

But usually, as in the case of elections or referendums, the interest of such
models is to deduce short-term forecast by using, as an initial datum, the
result of some opinion poll. We also have to point out that the poll is in
fact the comparison at a given time t between the two integrals

∫

Ω−

f(t, x)dx and

∫

Ω+

f(t, x)dx,

where Ω− = (−1, 0) and Ω+ = (0, 1). That is why we are also interested in
computing both integrals in the numerical experiments described in Section
4.

Moreover, since |x| ≤ 1, from the conservation of mass, we immediately
deduce that all the moments of f are bounded.

Corollary 3.2. Let f = f(t, x) be a nonnegative weak solution of problem
(8)–(9), with nonnegative initial condition f in ∈ L1(Ω). Then

∫

Ω
xnf(t, x) dx ≤ ‖f in‖L1(Ω), a.e. t ≥ 0.

In order to prove the existence of weak solutions of our model, we need
the following result.

Proposition 3.3. Consider the initial-boundary value problem for the un-
known v = v(t, x), x ∈ Ω and t ∈ [0, T ],

(10) vt − [α(x)vx]x + µv = g, µ ≥ 0,

with initial condition

(11) v(0, ·) = vin

and boundary conditions

(12) lim
x→±1

α(x)vx(t, x) = 0 a.e. t,

where vin ∈ L1(Ω), g ∈ C([0, T ];L1(Ω)) are nonnegative functions. Then
(10)–(12) admits a unique solution v ∈ C0([0, T ];L1(Ω)), and v is nonneg-
ative.

Proof. Let u = u(t, x) the solution of the initial-boundary value problem

ut − [α(x)ux]x = 0,

u(0, x) = vin(x), lim
x→±1

α(x)ux(t, x) = 0.

The existence and uniqueness theorem for this problem is the main result
of [4]. Moreover, in the same paper it is proved that u is nonnegative and
belongs to C0([0, T ];L1(Ω)).
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We now consider the function y(t, x) = u(t, x) exp(−µt). It is easy to see
that y solves Equation (10) with initial and boundary data (11)–(12) when
g ≡ 0.

We now claim that Proposition 3.3 easily follows by using the Duhamel
principle. By denoting w = w(t, x; s), x ∈ Ω, t ∈ [0, T ], s ≤ t, the solution
of

wt(t, x; s) − [α(x)wx(t, x; s)]x + µw(t, x; s) = 0, µ ≥ 0,

with initial datum (at t = s)

w(s, x; s) = g(s, x)

and boundary conditions

lim
x→±1

α(x)wx(t, x; s) = 0,

then

z(t, x) =

∫ t

0
w(t, x; s) ds

solves Equation (10), with vanishing initial condition and boundary data
given by (12).

By linearity, it is now easy to deduce that v(t, x) = y(t, x) + z(t, x) solves
Equation (10) with initial and boundary data (11)–(12).

The regularity properties for v and the uniqueness of the solution imme-
diately follow. �

As pointed out in [4], the singular Neumann boundary conditions (12) are
the only ones which allow a unified treatment of the initial-boundary value
problem for the evolution equation (10) independently on the degeneracy of
α. In particular, they are automatically satisfied if α is highly degenerate
and reduce to the classical Wentcel conditions of boundary regularity of the
solutions for low order zeros.

Thanks to the previous result, we are able to prove the following existence
theorem.

Theorem 3.4. Let f in a nonnegative function of class L1(Ω). Then there
exists a nonnegative weak solution f ∈ L∞(0, T ;L1(Ω)) of problem (8)–(9),
that is of

∫

Ω
ft(t, x)ϕ(x) dx =

∫

Ω
[α(x)ϕx(x)]x f(t, x) dx+ 〈Q(f, f), ϕ〉,

for all ϕ ∈ C2(Ω̄), where the equation takes sense in D′(−T, T ) with initial
condition f(0, x) = f in(x) for all x ∈ Ω.

Proof. Let us set

ρ =

∫

Ω
f in(x∗) dx∗,
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and consider the sequence (fn)n∈N defined by finite induction as f0 ≡ 0 and
as solutions of

(13)

∫

Ω
fn+1

t ϕdx−
∫

Ω
(αϕx)xf

n+1 dx+βρ

∫

Ω
fn+1ϕdx = 〈Q+(fn, fn), ϕ〉,

for all ϕ ∈ C2(Ω̄), together with the initial conditions

fn(0, ·) = f in, n ≥ 1,

and the boundary conditions

lim
x→±1

α(x)fn
x (t, x) = 0 a.e. t, n ≥ 1.

Thanks to Lemma 2.5, we can apply Proposition 3.3 and deduce, by induc-
tion, that fn exists, belongs to C0([0, T ];L1(Ω)) and is nonnegative.

If we pick ϕ ≡ 1 in (13), it comes

d

dt

∫

Ω
fn+1 dx+ βρ

∫

Ω
fn+1 dx = β

(
∫

Ω
fn dx

)2

.

Therefore, by finite induction, we immediately get
∫

Ω
fn dx ≤ ρ, n ≥ 1.

Moreover, (fn) is a non-decreasing sequence. Indeed, for n ≥ 1, if we
subtract Equation (13) for fn from Equation (13) for fn+1, the quantity
(fn+1 − fn) satisfies the following equation, which is of type (10):

∫

Ω
(fn+1 − fn)tϕdx−

∫

Ω
(αϕx)x(fn+1 − fn) dx

= 〈Q+(fn, fn), ϕ〉 − 〈Q+(fn−1, fn−1), ϕ〉 − βρ

∫

Ω
(fn+1 − fn)ϕdx,

with initial datum equal to 0 and singular Neumann boundary conditions
(12). We know that f0 ≡ 0, and that f1 ≥ 0 by Proposition 3.3. If we
suppose, by induction, that fn ≥ fn−1, then the second member of the
previous equation is nonnegative, and hence Proposition 3.3 implies that
(fn+1 − fn) ≥ 0, i.e. fn+1 ≥ fn.

Therefore, by monotone convergence, there exists f ∈ L∞(0, T ;L1(Ω))
such that (fn) converges to f almost everywhere and in L∞(0, T ;L1(Ω)).

Equality (9) is clear. Let us prove now that f solves (8) in D′
t. First of

all, for all ϕ ∈ C2(Ω̄) and ψ ∈ D(−T, T ), the quantities
∫ T

0

∫

Ω
fn+1(t, x)ϕ(x)ψ(t) dxdt +

∫

Ω
fn+1(0, x)ϕ(x)ψ(0) dx

and
∫ T

0

∫

Ω
[α(x)ϕx(x)]x f

n+1(t, x)ψ(t) dxdt
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are clearly convergent when n goes to +∞, respectively towards
∫ T

0

∫

Ω
f(t, x)ϕ(x)ψ(t) dxdt +

∫

Ω
f in(x)ϕ(x)ψ(0) dx

and
∫ T

0

∫

Ω
[α(x)ϕx(x)]x f(t, x)ψ(t) dxdt

for all ϕ ∈ C2(Ω̄) and ψ ∈ D(−T, T ).
For the collision term, the loss part easily is treated because of mass

conservation given by Lemma 3.1

βρ

∫ T

0

∫

Ω
fn+1(x)ϕ(x)ψ(t) dxdt → β

∫ T

0

∫∫

Ω2

f(x∗)f(x)ϕ(x)ψ(t) dxdx∗dt

when n goes to +∞, for all ϕ ∈ C2(Ω̄) and ψ ∈ D(−T, T ).
Finally, we are concerned with the nonlinear limit, when n goes to +∞,

of

β

∫ T

0

∫∫

Ω2

fn(x)fn(x∗)ϕ(x′)ψ(t) dxdx∗dt,

with ϕ ∈ C2(Ω) and ψ ∈ D(−T, T ). For the sake of simplicity, we assume
that ‖ϕ‖L∞(Ω) = 1. We successively have

∫∫

Ω2

|fn(x)fn(x∗) − f(x)f(x∗)| |ϕ(x′)| dxdx∗

≤
∫∫

Ω2

|fn(x) − f(x)|fn(x∗) dxdx∗ +

∫∫

Ω2

|fn(x∗) − f(x∗)|f(x) dxdx∗

≤ 2ρ ‖fn(t, ·) − f(t, ·)‖L1(Ω)

which obviously goes to 0 when n goes to +∞.
By collecting the previous results, we hence deduce that f satisfies (8).

The proof is therefore complete. �

Remark 3.5. The previous theorem gives an existence proof of the problem
(8)–(9), without uniqueness, and does not provide either a characterization
of the solutions in term of boundary data, even if they have been built as
limit of solutions of problem (10)–(12), which satisfy boundary conditions of
type (12). This happens because we have limited ourselves to build a theory
in L1(Ω), and therefore the meaning of the trace of the solution on the space
boundary is not guaranteed.

Of course, if one supposes that f(t, ·) belongs to C2(Ω̄), we would auto-
matically have that limα(x)fn

x (t, x) = 0 when x→ ±1. In the next section,
we shall treat the solution as a smooth function of class C1([0, T ];C2(Ω̄)),
and therefore the selected numerical solution satisfies in a natural way the
singular Neumann conditions (12).
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Figure 1. Mesh accuracy

4. Numerical tests

In this section, we present some numerical results. The computations
were performed using a numerical code written in C. We consider a regular
subdivision (x0, . . . , xN ) of Ω, with N ≥ 1. The function f is computed at
the center xi+1/2 of each interval [xi, xi+1], 0 ≤ i ≤ N − 1.

The scheme itself conserves the total agents number, i.e. ‖f(t)‖L1
x
, and is

time-splitted into a diffusion part and a collision one. The diffusion part is
here a standard explicit scheme and the collision one uses a slightly modified
Bird method [3]. Since the diffusive scheme is explicit, the diffusion time
step can be small with respect to the collision time step, so that we need
several diffusion steps for one collision step.

Note that our scheme does not allow the opinions to go out [−1, 1]. As
a matter of fact, opinions x such that |x| > 1 are not possible because the
collision mechanism prevents them, and because the numerical values of the
diffusion coefficient α exactly satisfy α(±1) = 0.

In the following computations, the Fourier term is set under the form
α(x) = κ(1−x2)1/3, which is admissible in the sense of Def. 2.6. The collision
frequency is fixed β = 50, and the attraction function is given by η(x) =
0.25(1 + x2), which is admissible in the sense of Def. 2.1.

As already explained in Section 3, we are also interested in the compu-
tations of the integrals of f over (−1, 0) and (0, 1). They are respectively
denoted by I−(t) (number of agents who favour negative opinions) and I+(t)
(number of agents who favour positive opinions).

4.1. Sensitivity with respect to the mesh accuracy. For this compu-
tation, we choose κ = 0.001 and a constant initial datum equal to 1/2, and
show the result for final time T = 3. Figure 1 shows a qualitative difference
of computation between N = 100 meshes and N = 1000 meshes, whereas
the solutions computed for N = 1000 and N = 10.000 are rather close. Note
that the previous statement of course holds for times T ≥ 3.
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From now on, the computations we present are made for N = 1000.

4.2. Sensitivity with respect to randomness. The numerical collision
process needs one call to the srand function of C. We here choose κ = 0.01
and a uniform initial datum equal to 1/2, and show the result for final time
T = 10. We tried 20 different computations, the corresponding graphs are
very close to one of the three graphs presented in Figure 2.

4.3. Initial uniformly distributed opinions. We choose a constant ini-
tial datum equal to 1/2 again. If there is no diffusion (κ = 0), the result we
obtain (fig. 3) is really close to figure 1 in [7]. The distribution function f
seems to converge very fast (with respect to time) to a centred Dirac mass
in 0. This behaviour fits the model forecast (the collisions have this effect
of concentration) and many numerical experiments in the sociophysics liter-
ature. In [7], one can also see in some situations the asymptotic formation
of two (or more) Dirac masses (“peaks”). Such situations are forbidden by
our collision mechanism (1).
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Figure 5. Evolution of I+ with respect to time (constant
initial datum)

With the same initial datum, let us set κ = 0.05. The distribution func-
tion cannot converge to a Dirac mass anymore but seems to reach quite
fast an asymptotic equilibrium (see fig. 4). We can also note the profile of
f is almost centred, but not completely. That also explains why there are
oscillations of both I− and I+: one can check the profile of I+ on fig. 5. In
terms of poll, starting from a uniformly distributed opinion, we can only
ensure that number of agents who favour positive (or negative) opinions will
approximately vary between 47% and 53%.

4.4. Initial monomodal profile. From now on, we take κ = 0. Here we
choose a monomodal initial datum. More precisely, from −1 to −1/2, f in

equals 2, and anywhere else equals 0. The solution f quickly reaches an
equilibrium (see fig. 6). We also note that the support of f is larger than
the one of its initial condition and is not centred at −0.75. Seemingly, the
diffusive process moved the center of the profile of f . Anyway, at time t = 4,
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100% of the individuals still have positive opinions. The profile of f remains
very similar for times t ≥ 4.

4.5. Two balanced opposite biases case. Here we deal with a centred
bimodal initial datum. More precisely, from −1 to −1/2, and from 1/2 to
1, f in is set to 1, and elsewhere equals 0. Once again, the solution quickly
reaches an equilibrium (see fig. 7). The support of f is then widely modified,
since it is a segment almost centred on the middle of the two components of
the support of f in, i.e. 0. The result of the poll is however not very different
from the initial datum (see fig. 8), but variations around 50% are allowed.
We find again the conclusion obtained in [9] for a similar initial situation:
within a balanced representation group, exchange favours compromise.

4.6. Two uncentred Dirac masses. We propose two Dirac masses in −0.5
and 0.25 as the initial datum for f , such that the total mass of f remains
equal to 1. The support of the solution significantly changes. Figure 9 shows
the situation of f at time t = 5. Note that the initial datum and the current
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solution obviously do not share the same scale of density. Indeed, one can
only see a small part of the initial datum in figure 9.

The number of agents who respectively favour positive and negative opin-
ion are initially equal, but the positive opinion is less asserted than the neg-
ative one. Figure 10 shows that very fast, the negative opinion becomes
hugely majority, but not 100%.

4.7. Two unbalanced opposite biases case. We finally consider another
case very similar to one studied in [9]. The initial datum f in equals 1 between
−1 and −0.5, a Dirac mass in 1, and 0 elsewhere, such that ‖f in‖L1 = 1.
Figure 11 shows three profiles of f with respect to time. It seems to reach
an asymptotic equilibrium quite fast.

The profile we obtain for I+ (see fig. 12) is very close to the one in fig. 10.
The conclusion we can here draw is again the same as in [9]: within an
unbalanced representation group, exchange favours the initially strongest
representation. Indeed, the positive opinion is hugely majority.



18 L. BOUDIN AND F. SALVARANI

0 1 2 3 4 5
Time

0,6

0,8

1

O
pi

ni
on

Figure 10. Evolution of I− with respect to time (Dirac
masses initial datum)

-1 -0,5 0 0,5 1
Opinion

0

2

4

6

PD
F

t = 0.1
t = 0.2
t = 5.

Figure 11. Unbalanced opposite biases case
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