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A KINETIC APPROACH

TO THE STUDY OF OPINION FORMATION

LAURENT BOUDIN AND FRANCESCO SALVARANI

Abstract. In this work, we use the methods of nonequilibrium sta-
tistical mechanics in order to derive an equation which models some
mechanisms of opinion formation. After proving the main mathemati-
cal properties of the model, we provide some numerical results.

1. Introduction

The methods of nonequilibrium statistical mechanics, classically used in
the framework of the kinetic theory of gases, can also be fruitfully applied to
all the contexts that study the collective behaviour of a large enough num-
ber of individuals, where none of which has a preponderant role with respect
to the others. For example, kinetic-type equations have been introduced in
order to describe a simple market economy with a constant growth mecha-
nism [11, 5, 4], showing the formation of steady states with (overpopulated)
Pareto tails.

Such an approach seems also to be fitted to sociophysics or physics of
politics. For instance, we can refer to [14] (see also [1]), which studies the
opinion dynamics in a closed community. The modeling of opinion dynamics
has already been the subject of numerous works, mainly for its application
in politics, to predict the behaviour of voters during an election process or
the public opinion tendencies [9, 6, 7, 8].

Nevertheless, this approach is not the only possible one: a wide literature
is based, for example, on Ising models [13, 12]. The main difference between
such a description and kinetic-based models lies in the possibility, for the
latter, to also treat opinions with different degrees of strength.

In the present work, based on a kinetic description, we propose and study
a model for the process of opinion formation. The dynamics of the model
is given by the competition of two opposite effects. The first one is the
exchanges of ideas between individuals, treated as binary collisions, which
implies a modification of the agents opinions. The second one is the process
of self-thinking and is modelled by a diffusion term.

The sociological dynamics taken into account are the same as in [14], but
they are here treated in a different way. The modifications of the agent
opinion due to the self-thinking are modelled as a weighted linear diffusion
which vanishes on the boundary of the opinion space, whereas the binary
interactions between individuals are defined as an exchange of opinions with
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respect to their average value before the collision. The opinion of individuals
is represented by a one-dimensional real variable between (−1) and (+1).
The choice of the closed interval [−1, 1] instead of R means that extreme
opinions can actually be reached, and not only asymptotically.

This paper is organized as follows. We first describe our model, including
the processes of binary opinion exchanges and self-thinking. Then we prove
an existence result for the considered problem. Finally, we present some
numerical tests.

2. The model

We aim to describe the time evolution of the opinion set of an isolated
population about a particular statement. The process of opinion formation
is partially governed by the interactions between the individuals of the pop-
ulation, who exchange their viewpoints and who are then influenced by the
others.

We shall only consider opinions as regards binary questions. Even if there
are many situations where the opinion cannot be easily expressed in terms of
“yes” or “no”, many important situations (e.g. a referendum) require that,
at the end of a process of opinion formation, the individuals should accept
or reject, without reserve, a very precise statement.

In the following, Ω denotes the open interval (−1, 1). We label with
x = −1 and x = 1 the two extreme answers to the statement, i.e. “yes” or
“no” without reserve, and describe the opinion by the continuous variable
x ∈ Ω̄. Note that any intermediate value between the two extremes (zero
excluded) means that the corresponding individual partially agrees with the
opinion labelled with the same sign, with a degree of conviction which is
proportional to |x|. If x = 0, the corresponding individual has no preference
with respect to the question.

The unknown of our model is the density (or distribution function) f =
f(t, x), defined on R+ × Ω̄, whose time evolution is described, as shown
later, by an integro-differential equation. The precise meaning of f is the
following. Once individuated the population to study, if the opinions are
defined on a sub-domain D ⊆ Ω̄, the integral

∫

D
f(t, x) dx

represents the number of individuals with opinion included in D at time
t ≥ 0. Note that, in order to give a sense to the previous considerations, it
would be adequate if f satisfies f(t, ·) ∈ L1(Ω) for all t ∈ R+.

As sketched in the introduction, we shall take into account only two pro-
cesses of opinion formation. The first one is given by the binary interaction
between individuals, which exchange their points of view and adjust their
opinions on the ground of each other’s belief, whereas the second behaviour
we take into account is the self-thinking process.
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2.1. Exchange of opinions inside the population. We model this pro-
cess by borrowing the collisional mechanism of a typical interaction in the
kinetic theory of gases: whereas in rarefied gas dynamics the particles ex-
change momentum and energy in such a way that the principles of classical
mechanics are satisfied, here the “collision” between individuals allows the
exchange of opinions.

Let x, x∗ ∈ Ω̄ the opinions of two individuals before an interaction. We
suppose that the opinions after the interaction change according to the fol-
lowing rule. Once found the average opinion before the interaction, each of
the two individuals will approach it in a way which guarantees that stronger
opinions are less attracted towards the average than weaker opinions through
the following formula:

(1)















x′ =
x+ x∗

2
+ η(x)

x− x∗
2

,

x′∗ =
x+ x∗

2
+ η(x∗)

x∗ − x

2
.

The function η : Ω̄ → R, which we henceforth name the attraction coeffi-

cient, is a smooth function which describes the degree of attraction of the
average opinion with respect to the starting opinion of the agent. In order
to make the model unaffected by the change of label of the two extreme
opinions, we shall always suppose that η is an even function. In the sequel,
we need some more assumptions on the attraction coefficient η.

Definition 2.1. Let η : Ω̄ → R be an even function of class C1(Ω̄). The
attraction coefficient is admissible if 0 ≤ η < 1, η′(x) > 0 for all x > 0, and
if the Jacobian of the collision mechanism (1)

J(x, x∗) =
1

2
[η(x) + η(x∗)] +

1

4
[η′(x) − η′(x∗)](x− x∗)

+
1

4
[η′(x)η(x∗) − η(x)η′(x∗)](x− x∗) −

1

4
η′(x)η′(x∗)(x− x∗)

2

is uniformly lower bounded by a nonnegative constant, i.e. there exists ξ > 0
such that J(x, x∗) ≥ ξ, for any x, x∗ ∈ Ω̄.

The first property avoids that the interaction destroys the bounds of the
interval Ω. The second one translates the assumption that stronger opinions
are less attracted towards the average than weaker ones. The third one
ensures that the inverse of the collision rule (1) is well defined.

Note that the collision mechanism (1) is different from the mechanism
proposed by Toscani in [14], since here the post-collisional opinions are de-
fined from the mean value of the two pre-collisional opinions. Moreover,
it differs from the standard collisional rules of dissipative kinetic models,
which are usually linear.
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Remark 2.2. By using the properties listed in Definition 2.1, it is not dif-
ficult to also prove that, for any x, x∗ ∈ Ω̄,

x′ − x′∗ =
1

2
(η(x) + η(x∗))(x− x∗),

and, since 0 ≤ η < 1,

|x′ − x′∗| < |x− x∗|.
It is then clear that the lateral bounds are not violated, i.e.

max{|x′| , |x′∗|} < max{|x| , |x∗|}.
We note that the set of admissible attraction coefficients is not empty. A

possible choice of η is the following:

(2) η(x) = λ(1 + x2), 0 < λ < 1/2.

It is easy to see, when η has the form (2), that the properties listed in Defi-
nition 2.1 are satisfied. The first and the second requirements in Definition
2.1 are obviously fulfilled. Easy but tedious computations finally show that
the Jacobian J of the collision rule (1), with η defined by (2), is given by

J(x, x∗) =
λ

2
(2 + x2 + x∗

2) +
λ

2
(x− x∗)

2

+
λ2

2
[x(1 + x∗

2) − (1 + x2)x∗](x− x∗) − λ2xx∗(x− x∗)
2,

and satisfies

J ≥ λ.

Remark 2.3. The transformation of type (1) can be locally dissipative. As

a matter of fact, if η is, for example, defined by (2), with λ ∈ (0, (
√

2−1)/2],
we have

x′2 + x′2∗ = x2 + x∗
2

+
(x− x∗)

2

4

[

λ2(1 + x2)2 + λ2(1 + x∗
2)2 + 2λ(x+ x∗)

2 − 2
]

≤ x2 + x∗
2 +

1

2
(4λ2 + 4λ− 1)(x− x∗)

2

≤ x2 + x∗
2.

Once defined the collision rule (1), the interaction between individuals and
the corresponding exchange of opinions is described by a collisional integral
of Boltzmann type.

The collisional integral, which will be henceforth denoted as Q, has the
classical structure of the dissipative Boltzmann kernels. It can be viewed as
composed of two parts: a gain term Q+, which quantifies the exchanges of
opinion between individuals which give, after the interaction with another
individual, the opinion x, and a loss term Q−, which quantifies the exchanges
of opinion where an individual with pre-collisional opinion x experiences an
interaction with another member of the population.
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It is apparent that, in general, the existence of a pre-collisional pair which
restitutes the post-collisional pair (x, x∗) through a collision of type (1) is not
guaranteed, unless we suppose that the collisional rule is a diffeomorphism
of Ω̄2 onto itself. Unfortunately, the collisional mechanism (1) does not
verify this property. For instance, there is no (x, x∗) ∈ Ω̄2 which gives, after
collision, the couple of extreme opinions (−1, 1).

In order to overcome this difficulty, the natural framework for such a
collision rule is given by the weak form. Two choices are possible. We may
either build a model in a weak form with respect to x only, or to work in
a weak setting with respect to the whole set of independent variables. We
choose the first option, which seems to be the correct framework for such
kind of models.

Let φ = φ(x) be a suitably regular test function. We define the weak form
of the collision kernel as

(3) 〈Q(f, f), φ〉 = β

∫∫

Ω2

f(t, x)f(t, x∗)
[

φ(x′) − φ(x)
]

dx∗dx.

Note that the particular form of the collision rule (1) only enters through the
test function φ(x′). The cross section β > 0 is a parameter which governs
the probability that an exchange of opinions can occur. In our model, we
suppose that β is purely constant. This is the simplest possible assumption,
which means that the probability of interaction of two individuals does not
depend on their respective opinions. Of course, other choices, based on
sociological considerations, are possible.

It is also clear that the operator Q only acts on the variable of opinion,
and not on time.

The explicit form of the change of variables (1) allows also to give the
following alternative formulations of the collision kernel:

〈Q(f, f), φ〉 = β

∫∫

Ω2

f(t, x)f(t, x∗)
[

φ(x′∗) − φ(x∗)
]

dx∗dx

=
β

2

∫∫

Ω2

f(t, x)f(t, x∗)
[

φ(x′) + φ(x′∗) − φ(x) − φ(x∗)
]

dx∗dx.

Remark 2.4. At least formally, we have 〈Q(f, f), 1〉 = 0.

The form of the collisional integral given by (3) is nevertheless not com-
pletely satisfactory for the gain term because of the intricate dependence of
the argument of the test function with respect to the variables x, x∗. We
therefore consider the weak form of the gain term

(4) 〈Q+(f, f), φ〉 = β

∫∫

Ω2

f(t, x)f(t, x∗)φ(x′) dx∗dx.

Let us denote

Dη =

{

(x, x′) ∈ R × Ω̄

∣

∣

∣

∣

x′ − 1

2
+ η(x′)

x′ + 1

2
≤ x ≤ x′ + 1

2
+ η(x′)

x′ − 1

2

}
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and

Kη(x, x
′) =

2β

1 − η(x′)
χDη

(x, x′), ∀x, x′ ∈ Ω̄,

where χDη
is the characteristic function of the set Dη. Since η is an admis-

sible attraction coefficient, it is clear that Dη ⊆ Ω̄2.
We then perform the change of variable x∗ 7→ x′ in (4), for a fixed x. It

is easy to see that

dx∗ =
2

1 − η(x)
dx′ and x∗ =

2x′ − x− η(x)x

1 − η(x)
.

Then, after permuting x and x′, we obtain the following weak form of the
gain term:

〈Q+(f, f), φ〉 =

∫∫

Ω2

Kη(x, x
′)f

(

t,
2x− x′ − η(x′)x′

1 − η(x′)

)

f(t, x′)φ(x) dx′dx.

A new weak form of the collision operator immediately comes:

(5) 〈Q(f, f), φ〉 = 〈Q+(f, f), φ〉 − β

∫∫

Ω2

f(t, x)f(t, x′)φ(x) dx′dx,

which will be henceforth our definition of the collisional kernel for our model.
It is then straightforward to prove the following lemma.

Lemma 2.5. Let f(t, ·) ∈ L1(Ω). Then both Q+(f, f)(t, ·) and Q(f, f)(t, ·)
are of class L1(Ω), and we have, for a.e. t,

‖Q+(f, f)(t, ·)‖L1(Ω) ≤ 2β

1 − max η
‖f(t, ·)‖2

L1(Ω),(6)

‖Q(f, f)(t, ·)‖L1(Ω) ≤
(

2

1 − max η
+ 1

)

β ‖f(t, ·)‖2
L1(Ω).(7)

2.2. Self-thinking. As explained in Section 1, the self-thinking phenome-
non is described, in our model, by a diffusive term obeying to a non-uniform
Fourier law, with Fourier term α = α(x). This means that we introduce a
term which has the structure (α fx)x, which will compete with the kinetic
term describing the interactions between the agents.

We suppose that the non homogeneous Fourier coefficent α satisfies the
assumptions listed in the following definition.

Definition 2.6. Let α : Ω̄ → R be a nonnegative function of class C1(Ω̄).
We say that α is admissible if α(x) = α(−x) for all x ∈ Ω̄ and α(−1) =
α(1) = 0.

The symmetry property allows to treat in an equivalent way positive and
negative opinions. The second one forces the diffusive process to respect the
bounds of the opinion space Ω̄.
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Remark 2.7. Note that (αfx)x has a meaning in the distributional sense if
f(t, ·) ∈ L1(Ω). Indeed, since α ∈ W 1,∞(Ω) (in fact C1(Ω̄)), we can write,
in the distributional sense:

(αfx)x = (αf)xx − (fαx)x.

A possible choice of α is, for example, α(x) = κ(1−x2), with κ > 0. This
profile translates the idea that individuals with a stronger opinion are more
stable in their convictions. As in the case of the attraction coefficient, other
choices, based on psychological studies, are obviously possible.

2.3. Combining the two phenomena. We are then able to write down
the whole model, by considering both the interaction effect and the self-
thinking. The evolution law of the unknown f = f(t, x) results in a partial
integro-differential equation of second order with respect to the opinion vari-
able:

(8)

∫

Ω
ft(t, x)ϕ(x) dx =

∫

Ω
[α(x)ϕx(x)]x f(t, x) dx+ 〈Q(f, f), ϕ〉

posed in (t, x) ∈ [0, T ] × Ω, T > 0, for all ϕ ∈ C2(Ω̄), with initial condition

(9) f(0, x) = f in(x) for all x ∈ Ω̄.

3. Main mathematical properties

This section is devoted to state and study some mathematical properties
of Equations (8)–(9). We first obtain some a priori estimates and then
deduce a theorem which proves the existence of weak solutions to (8)–(9).

Our model guarantees the conservation of the total number of individuals
of the population. By borrowing the kinetic theory language, the following
result is also named the conservation of the total mass.

Proposition 3.1. Let f = f(t, x) be a nonnegative weak solution of (8)–(9),
with a nonnegative initial condition f in ∈ L1(Ω). Then we have

‖f(t, ·)‖L1(Ω) = ‖f in‖L1(Ω) for a.e. t ≥ 0.

Proof. We simply consider Equation (8) with test function ϕ ≡ 1; the thesis
immediately follows. �

Mass conservation is not realistic if we consider long-time forecasts. In-
deed, in such situations, we should also consider processes of birth and death,
which would lead to oscillations in the total number of individuals.

But usually, as in the case of elections or referendums, the interest of such
models is to deduce short-term forecast by using, as an initial datum, the
result of some opinion poll. We also have to point out that the poll is in
fact the comparison at a given time t between the two integrals

∫

Ω−

f(t, x)dx and

∫

Ω+

f(t, x)dx,
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where Ω− = (−1, 0) and Ω+ = (0, 1). That is why we are also interested in
computing both integrals in the numerical experiments described in Section
4.

Moreover, since |x| ≤ 1, from the conservation of mass, we immediately
deduce that all the moments of f are bounded.

Corollary 3.2. Let f = f(t, x) be a nonnegative weak solution of problem
(8)–(9), with nonnegative initial condition f in ∈ L1(Ω). Then

∫

Ω
xnf(t, x) dx ≤ ‖f in‖L1(Ω), a.e. t ≥ 0.

In order to prove the existence of weak solutions of our model, we need
the following result.

Proposition 3.3. Consider the initial-boundary problem for the unknown
v = v(t, x), x ∈ Ω and t ∈ [0, T ],

(10) vt − [α(x)vx]x + µv = g, µ ≥ 0,

with initial condition

(11) v(0, ·) = vin

and boundary conditions

(12) lim
x→±1

α(x)vx(t, x) = 0 a.e. t,

where vin ∈ L1(Ω), g ∈ C([0, T ];L1(Ω)) are nonnegative functions. Then
(10)–(12) admits a unique solution v ∈ C0([0, T ];L1(Ω)), and v is nonneg-
ative.

Proof. The result, when g ≡ 0, has been proved in [3]. Proposition 3.3 easily
follows, using the Duhamel principle. �

As pointed out in [3], the singular Neumann boundary conditions (12) are
the only ones which allow a unified treatment of the initial-boundary value
problem for the evolution equation (10) independently on the degeneracy of
α. In particular, they are automatically satisfied if α is highly degenerate
and reduce to the classical Wentcel conditions of boundary regularity of the
solutions for low order zeros.

Thanks to the previous result, we are able to prove the following existence
theorem.

Theorem 3.4. Let f in a nonnegative function of class L1(Ω). Then there
exists a nonnegative weak solution f ∈ L∞(0, T ;L1(Ω)) of problem (8)–(9),
that is of

∫

Ω
ft(t, x)ϕ(x) dx =

∫

Ω
[α(x)ϕx(x)]x f(t, x) dx+ 〈Q(f, f), ϕ〉,

for all ϕ ∈ C2(Ω̄), where the equation takes sense in D′(−T, T ) with initial
condition f(0, x) = f in(x) for all x ∈ Ω.
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Proof. Let us set

ρ =

∫

Ω
f in(x∗) dx∗,

and consider the sequence (fn)n∈N defined by finite induction as f0 ≡ 0 and
as solutions of

(13)

∫

Ω
fn+1

t ϕdx−
∫

Ω
(αϕx)xf

n+1 dx+βρ

∫

Ω
fn+1ϕdx = 〈Q+(fn, fn), ϕ〉,

for all ϕ ∈ C2(Ω̄), together with the initial conditions

fn(0, ·) = f in, n ≥ 1,

and the boundary conditions

lim
x→±1

α(x)fn
x (t, x) = 0 a.e. t, n ≥ 1.

Thanks to Lemma 2.5, we can apply Proposition 3.3 and deduce, by induc-
tion, that fn exists, belongs to C0([0, T ];L1(Ω)) and is nonnegative.

If we pick ϕ ≡ 1 in (13), it comes

d

dt

∫

Ω
fn+1 dx+ βρ

∫

Ω
fn+1 dx = β

(
∫

Ω
fn dx

)2

.

Therefore, by finite induction, we immediately get
∫

Ω
fn dx ≤ ρ, n ≥ 1.

Moreover, (fn) is a non-decreasing sequence. Indeed, for n ≥ 1, if we
substract Equation (13) for fn from Equation (13) for fn+1, the quantity
(fn+1 − fn) satisfies the following equation, which is of type (10):

∫

Ω
(fn+1 − fn)tϕdx−

∫

Ω
(αϕx)x(fn+1 − fn) dx

= 〈Q+(fn, fn), ϕ〉 − 〈Q+(fn−1, fn−1), ϕ〉 − βρ

∫

Ω
(fn+1 − fn)ϕdx,

with initial datum equal to 0 and singular Neumann boundary conditions
(12). We know that f0 ≡ 0, and that f1 ≥ 0 by Proposition 3.3. If we
suppose, by induction, that fn ≥ fn−1, then the second member of the
previous equation is nonnegative, and hence Proposition 3.3 implies that
(fn+1 − fn) ≥ 0, i.e. fn+1 ≥ fn.

Therefore, by monotone convergence, there exists f ∈ L∞(0, T ;L1(Ω))
such that (fn) converges to f almost everywhere and in L∞(0, T ;L1(Ω)).

Equality (9) is clear. Let us prove now that f solves (8) in D′
t. First of

all, for all ϕ ∈ C2(Ω̄) and ψ ∈ D(−T, T ), the quantities
∫ T

0

∫

Ω
fn+1(t, x)ϕ(x)ψ(t) dxdt +

∫

Ω
fn+1(0, x)ϕ(x)ψ(0) dx

and
∫ T

0

∫

Ω
[α(x)ϕx(x)]x f

n+1(t, x)ψ(t) dxdt
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are clearly convergent when n goes to +∞, respectively towards
∫ T

0

∫

Ω
f(t, x)ϕ(x)ψ(t) dxdt +

∫

Ω
f in(x)ϕ(x)ψ(0) dx

and
∫ T

0

∫

Ω
[α(x)ϕx(x)]x f(t, x)ψ(t) dxdt

for all ϕ ∈ C2(Ω̄) and ψ ∈ D(−T, T ).
For the collision term, the loss part easily is treated because of mass

conservation given by Lemma 3.1

βρ

∫ T

0

∫

Ω
fn+1(x)ϕ(x)ψ(t) dxdt → β

∫ T

0

∫∫

Ω2

f(x∗)f(x)ϕ(x)ψ(t) dxdx∗dt

when n goes to +∞, for all ϕ ∈ C2(Ω̄) and ψ ∈ D(−T, T ).
Finally, we are concerned with the nonlinear limit, when n goes to +∞,

of

β

∫ T

0

∫∫

Ω2

fn(x)fn(x∗)ϕ(x′)ψ(t) dxdx∗dt,

with ϕ ∈ C2(Ω) and ψ ∈ D(−T, T ). For the sake of simplicity, we assume
that ‖ϕ‖L∞(Ω) = 1. We successively have

∫∫

Ω2

|fn(x)fn(x∗) − f(x)f(x∗)| |ϕ(x′)| dxdx∗

≤
∫∫

Ω2

|fn(x) − f(x)|fn(x∗) dxdx∗ +

∫∫

Ω2

|fn(x∗) − f(x∗)|f(x) dxdx∗

≤ 2ρ ‖fn(t, ·) − f(t, ·)‖L1(Ω)

which obviously goes to 0 when n goes to +∞.
By collecting the previous results, we hence deduce that f satisfies (8).

The proof is therefore complete. �

Remark 3.5. The previous theorem gives an existence proof of the problem
(8)–(9), without uniqueness, and does not provide either a characterization
of the solutions in term of boundary data, even if they have been built as
limit of solutions of problem (10)–(12), which satisfy boundary conditions of
type (12). This happens because we have limited ourselves to build a theory
in L1(Ω), and therefore the meaning of the trace of the solution on the space
boundary is not guaranteed.

Of course, if one supposes that f(t, ·) belongs to the class C2(Ω̄), we
would automatically have that limα(x)fn

x (t, x) = 0 when x → ±1. In
the next section, we shall treat the solution as a smooth function of class
C1([0, T ];C2(Ω̄)), and therefore the selected numerical solution satisfies in
a natural way the singular Neumann conditions (12).
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Figure 1. Constant initial datum

Figure 2. Monomodal initial datum

4. Numerical tests

In this section, we present some numerical results. The computations
were performed using the Inria software Scilab [10]. We consider a regular
subdivision (x1, . . . , xN ) of Ω, with N ≥ 2. The function f is computed at
the center xi+1/2 of each interval [xi, xi+1], 1 ≤ i ≤ N − 1.

The scheme itself conserves the total opinion, i.e. ‖f(t)‖L1
x
, and is time-

splitted into a diffusion part and a collision one. The diffusion part is here
a standard explicit scheme and the collision one uses a slightly modified
Bird method [2]. In particular, an opinion which is numerically going out
from [−1, 1] is instantaneously relocated in x1 or xN regarding its location
with respect to ±1. Hence the quantity ‖f(t)‖L1

x
is numerically conserved at

each time step, during the whole computation. Moreover, since the diffusive
scheme is explicit, the diffusion time step is very small with respect to the
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Figure 3. Bimodal initial datum

collision time step, so that we need several diffusion steps for one collision
step.

For the four following computations, we set N = 1001, the diffusion
coefficient α(x) = .1(1 − x2)1/3 and the collision frequency β = 50, so that
neither the diffusion nor the collisions are preponderant.

As already explained in Section 3, we are also interested in the computa-
tions of the integrals of f over (−1, 0) and (0, 1). They are here respectively
denoted I−(t) and I+(t).

4.1. Constant initial datum. We first choose a constant initial datum
equal to 1/2. Fast enough, here at time t = 10, f is very different from
the constant profile (see Figure 1). Moreover, it appears in this particular
computation, that I−(t) = 0.507 and I+(t) = 0.493. In terms of poll, the
uniform opinion is here a little bit modified, with 50.7% more favorable for
opinion −1 and 49.3% nearer opinion 1.

We can also note the profile of f is almost centered, but not completely.
That also explains why there is that difference between I−(t) and I+(t).

4.2. Monomodal profile. Here we choose a monomodal initial datum.
More precisely, from −1 to −1/2, f in equals 2, and anywhere else equals
0. The solution f is fastly regularized (see Figure 2). We also note that the
support of f is larger than the one of its initial condition. Hence, at time
10, the average opinion still favours opinion 1 with 100% of the individuals.

4.3. Uncentered bimodal profile. Here we deal with an uncentered bi-
modal initial datum. More precisely, from −1/2 to 0, and from 1/2 to 1,
f in is set to 2, and elsewhere equals 0. Once again, the solution is fastly
regularized (see Figure 3). The support of f is then widely modified, since
it is a segment almost centered on the middle of the two components of the
support of f in. The result of the poll is very different from the initial datum.
Only 1% of the individuals can be considered as favorable to opinion −1,
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Figure 4. Dirac masses initial datum

and the huge majority favours opinion 1, whereas the average opinions were
initially well-balanced.

4.4. Dirac masses. We finally propose two Dirac masses in −0.99 and 0.98
as the initial datum for f . The support of the solution significantly changes.
Figure 4 shows the situation of f at time t = 13. Note that obviously the
initial datum and the current solution do not share the same scale of density.
Indeed one can only see a small part of the initial datum in the figure. Before
this time, the diffusion seems to be the leading process. Some perturbations
due to the collisions then appear. Further computations show in fact that
the collisions begin to disturb the behaviour of f after time t = 13, as shown
in Figure 4 on the upper part of the graph.

The opinions are initially equally distributed. At time t = 13, they are
not anymore, since I−(t) = 50.2% and I+(t) = 49.8%.
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