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SUBHARMONIC DYNAMO ACTION IN

THE ROBERTS FLOW

F. PLUNIANa,* and K.-H. RÄDLERb

aLaboratoires des Ecoulements Géophysiques et Industriels, B.P. 53, 38041 Grenoble Cedex 9,
France; bAstrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482, Potsdam, Germany

The paper deals with the dynamo action of the Roberts flow, that is, a flow depending periodically on
two cartesian coordinates, X and Y , but being independent of the third one, Z. In particular the case is
considered in which the magnetic fields, which are periodic in X ,Y and Z, have period lengths in the XY-
plane being integer multiples of that of the flow. Two approaches are used. Firstly, the equations governing
the magnetic field are reduced to a matrix eigenvalue problem, which is solved numerically. Secondly, a mean
magnetic field is defined by averaging over proper areas in the XY-plane, corresponding equations are derived,
in which the induction effect of the flow occurs as an anisotropic �-effect, and analytic solutions are given.
The results are of particular interest for the Karlsruhe dynamo experiment, which works with a Roberts
type flow consisting of 52 cells inside a cylindrical volume. In order to check the reliability of predictions
concerning self-excitation based on the mean-field approach, analogous predictions are derived for a rectan-
gular box containing 50 cells, and are compared with results obtained with the help of direct solutions of
the eigenvalue problem mentioned. It turns out that the simple mean-field approach in general underestimates
the requirements for self-excitation. The corresponding results agree with those obtained in the subharmonic
approach only if the side length L of the box, its height H and the edge length l of a spin generator satisfy
L � H � l.
In Appendix B, some comments on previous results concerning ABC dynamos are made in the light of

the subharmonic formalism used in the paper.

Keywords: Dynamo effect; Roberts flow; Subharmonic solutions; Dynamo experiment; Mean-field theory

1. INTRODUCTION

It is widely believed that the magnetic fields of cosmic bodies are due to dynamo action.

The kinematic approach to dynamo models consists in studying the induction equation

for the magnetic field with a given motion. This equation reads

@B

@t
¼ J3 ðU3BÞ þ �r2B, J EB ¼ 0, ð1Þ

where � means the magnetic diffusivity, B the magnetic field and U the fluid velocity. In

the case of a steady flow we may expect solutions varying like expðptÞ in time, with the
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real part of p being the growth rate of the magnetic field considered. In this case, an

eigenvalue problem for B with the eigenvalue parameter p occurs.

Although the fluid motions in the cosmic objects are rather complex it is useful to

consider also simple steady flow patterns which are periodic with respect to two or

three cartesian coordinates. In this way we may find some understanding of the basic

dynamo mechanisms. The domain of integration of (1) can then be restricted to one

cell of such a pattern. In particular, flows possessing hyperbolic stagnation points

and helicity have been investigated. Their analysis is based on the emergence of mag-

netic structures such as flux ropes and sheets, lying between the hyperbolic stagnation

points of the flow (Childress, 1979).

A well-known example is the Roberts flow given by

U ¼ U sin
Y

LU

, sin
X

LU

,� cos
X

LU


 cos
Y

LU

� �� �

ð2Þ

(Roberts, 1972), where X , Y , Z are cartesian coordinates, LU and U the characteristic

length and speed of the flow. The coefficient � is a parameter related to the helicity

of the flow. The flow pattern is sketched in Fig. 1. When speaking in the following

of a ‘‘cell’’ of this pattern we mean the smallest-possible region bounded by straight

stream lines, e.g., that defined by 0 � Y 
 X � 2�LU and 0 � Y þ X � 2�LU .

Neighboring cells have opposite flow directions. For later use we define the magnetic

Reynolds number Rm by

Rm ¼ ULU

�
: ð3Þ

Roberts (1972) demonstrated that flows of this kind are capable of dynamo action.

In his numerical investigations, he considered magnetic fields with the same periodicity

in X and Y as the flow pattern. Furthermore, he restricted attention on magnetic fields

which have a mean part, that is, a non-zero average taken over an area corresponding

FIGURE 1 Stream lines of the Roberts flow in the XY-plane. They coincide with isolines of the velocity in
the Z-direction.
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to two cells, e.g., the period square shown in Fig. 1. This mean field does not depend on

X and Y but depends on Z and is therefore subject to dissipation. The overall mean

(over X , Y and Z) is zero. By this reason the dynamo considered is different from

an externally excited one.

The dynamo action of the Roberts flow can be understood in terms of an anisotropic

�-effect with respect to the mean magnetic field. In the limit of large Rm, the order of

magnitude of the �-coefficient has been estimated (Childress, 1979) to be OðR
1=2
m Þ.

Soward (1987) has shown that in this limit the dimensionless growth rate p̂p ¼ LUp=U

of the fastest mode satisfies p̂p ¼ O½lnðlnRmÞ= lnRm
. That is, p̂p ! 0 as Rm ! 1. So

the Roberts dynamo proves to be a slow one. Nevertheless it shows a great efficiency

(see also Soward, 1989, 1990, 1994; Childress and Gilbert, 1995).

In the Forschungszentrum Karlsruhe a dynamo experiment has been carried out

with a flow of liquid sodium similar to the Roberts flow inside a cylindrical container

(Müller and Stieglitz, 2000; Stieglitz and Müller, 2001). This has renewed the interest

in the Roberts dynamo (see Busse et al:, 1996; Rädler et al:, 1996, 1997a,b, 1998;

Tilgner, 1997).

Tilgner and Busse (1995) considered the case in which the period lengths of the

magnetic field in the X and Y directions are integer multiples of the period length

of the flow. They presented, however, numerical results for a few selected examples

of such magnetic fields only.

In this paper, we deal in some more detail with subharmonic solutions of the Roberts

dynamo problem for which the period length LB of the magnetic field is an integer

multiple of the period length LB of the flow, that is

LB

LU

¼ N, with an integer N � 1: ð4Þ

We further consider a mean-field approach to the Roberts dynamo problem, apply it

for an estimate of the self-excitation condition in the Karlsruhe experiment and com-

pare this with estimates gained with the help of subharmonic solutions (Section 3).

Finally we discuss conclusions for the experiment (Section 4).

2. SUBHARMONIC SOLUTIONS OF THE ROBERTS DYNAMO PROBLEM

2.1 Reduction of the Basic Equation

We focus our attention on the induction Eq. (1) governing the magnetic field B in

all space. Concerning the fluid velocity U we assume at first only that it is periodic

with respect to X and Y with a period length 2�LU and independent of Z. We look

for solutions B periodic in X and Y with a period length 2�LB so that (4) applies,

and periodic in Z with any period length.

In order to justify a proper representation for B we express for a moment the coor-

dinates X ,Y and Z, shortly denoted by X, according to X ¼ x̂xLB by dimensionless

coordinates x̂x. Then these solutions can be represented as series of Fourier modes

proportional to expfiK E x̂xg, where Kx and Ky are integers but Kz is an arbitrary real

constant. The corresponding representation of U, however, contains then only modes

proportional to expfiNK0
E x̂xg, where K 0

x and K 0
y are again integers but K

0
z ¼ 0.
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Considering Eq. (1) in view of the mode couplings caused by the U3B term, we see

immediately that there is a set of independent solutions B, each of which corresponds to

a fixed vector F and is a series of modes proportional to expfiðFþNK0Þ E x̂xg. Here Fx

and Fy are integers, called a and b in the following and satisfying


N=2 < a, b � N=2, ð5Þ

Fz is an arbitrary real constant, and K0 is again to be understood in the above sense.
In the following we shall use other dimensionless coordinates x instead of x̂x, defined

by X ¼ xLU , or x̂x ¼ x=N. Then the last-mentioned modes are described by

expfiðf þ K0Þ E xg with f ¼ F=N. In this way we see that all solutions B of (1) with the

periodicity described above can be represented in the form

B ¼ Re½eif E xbðx, tÞ
, ð6Þ

where f is a vector given by

f ¼ ða=N, b=N, kÞ, ð7Þ

with integers a and b satisfying (5) and k being the dimensionless wave number for the

z-direction. Further b is a vector field depending on x and y only and being periodic in

both of them with the period length 2�, or in X and Y with 2�LU . Of course, b depends

on f, too. In Table I the possible choices of a=N and b=N are given for N up to 10.

We note that for any given f several independent solutions of type (6) may exist.

Obviously the solutions with a ¼ b ¼ 0 coincide for all N, that is, are in fact the solu-

tions with N ¼ 1 already investigated by Roberts. For N ¼ 1 there is, of course, no

other choice of a and b than a ¼ b ¼ 0. Furthermore, solutions (6) for a given set a,

b, N coincide with those for which this set is replaced by na, nb, nN with any integer

n (see also Table I). We finally point out that solutions with a ¼ 0 or b ¼ 0 possessing

a non-zero mean in the above sense (depending on z only) have, despite finite LB, infi-

nite length scales in X or Y directions, respectively.

Returning to Eq. (1), we put

U ¼ Uu, ð8Þ

and introduce so the dimensionless velocity field u, replace X by xLU and t by tLU=U

with a new t, which is now dimensionless. Inserting then (6), we find

@b

@t
¼ J3 ðu3 bÞ þ if3 ðu3 bÞ þ R
1

m ½r2bþ 2iðf EJÞb
 jfj2b
, ð9Þ

J E bþ ib E f ¼ 0: ð10Þ

Using (10), we can rewrite (9) into1

@b

@t
þ ðu EJÞb ¼ ðb EJÞu
 iðf E uÞbþ R
1

m ½r2bþ 2iðf EJÞb
 jfj2b
: ð11Þ

1This equation has been already derived by Roberts (1972) but he used it only in the simplest case a ¼ b ¼ 0
in its numerical calculations.
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The x and y components of the last equation contain bx and by only but not bz. With

ðbx, byÞ ¼
X

m, n

ðgm, n, hm, nÞexpfiðmxþ nyÞ þ ptg,

where p is a complex quantity, they turn into

ðpþ R
1
m ½ðmþ fxÞ2 þ ðnþ fyÞ2 þ k2
Þbm, n

¼ 
 1
2
ik�ðbmþ1, n þ bm
1, n 
 bm, nþ1 
 bm, n
1Þ

þ 1
2
ðmþ fxÞðbm, nþ1 
 bm, n
1Þ þ 1

2
ðnþ fyÞðbmþ1, n 
 bm
1, nÞ

þ 1
2
(hm, nþ1 þ hm, n
1, gmþ1, n þ gm
1, n): ð12Þ

The Eq. (12) define a matrix eigenvalue problem with p being the eigenvalue parameter.

After solving it, we know bx and by, and we can calculate bz from (10) without any

TABLE I The possible choices of (a=N, b=N) with 0 � a � b for N up to 10

N 1 2 3 4 5 6 7 8 9 10

(0,0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 1
2
Þ (0, 1

3
Þ (0, 1

4
Þ (0, 1

5
Þ (0, 1

6
Þ (0, 1

7
Þ (0, 1

8
Þ (0, 1

9
Þ (0, 1

10
Þ

(1
2
, 1
2
Þ (1

3
, 1
3
Þ (1

4
, 1
4
Þ (1

5
, 1
5
Þ (1

6
, 1
6
Þ (1

7
, 1
7
Þ (1

8
, 1
8
Þ (1

9
, 1
9
Þ ( 1

10
, 1
10
Þ

(0, 1
2
Þ (0, 2

5
Þ (0, 1

3
Þ (0, 2

7
Þ (0, 1

4
Þ (0, 2

9
Þ (0, 1

5
Þ

(1
4
, 1
2
Þ (1

5
, 2
5
Þ (1

6
, 1
3
Þ (1

7
, 2
7
Þ (1

8
, 1
4
Þ (1

9
, 2
9
Þ ( 1

10
, 1
5
Þ

(1
2
, 1
2
Þ (2

5
, 2
5
Þ (1

3
, 1
3
Þ (2

7
, 2
7
Þ (1

4
, 1
4
Þ (2

9
, 2
9
Þ (1

5
, 1
5
Þ

(0, 1
2
Þ (0, 3

7
Þ (0, 3

8
Þ (0, 1

3
Þ (0, 3

10
Þ

(1
6
, 1
2
Þ (1

7
, 3
7
Þ (1

8
, 3
8
Þ (1

9
, 3
9
Þ ( 1

10
, 3
10
Þ

(1
3
, 1
2
Þ (2

7
, 3
7
Þ (1

4
, 3
8
Þ (2

9
, 1
3
Þ (1

5
, 3
10
Þ

(1
2
, 1
2
Þ (3

7
, 3
7
Þ (3

8
, 3
8
Þ (1

3
, 1
3
Þ ( 3

10
, 3
10
Þ

(0, 1
2
Þ (0, 4

9
Þ (0, 2

5
Þ

(1
8
, 1
2
Þ (1

9
, 4
9
Þ ( 1

10
, 2
5
Þ

(1
4
, 1
2
Þ (2

9
, 4
9
Þ (1

5
, 2
5
Þ

(3
8
, 1
2
Þ (1

3
, 4
9
Þ ( 3

10
, 2
5
Þ

(1
2
, 1
2
Þ (4

9
, 4
9
Þ (2

5
, 2
5
Þ

ð0, 1
2
Þ

( 1
10
, 1
2
Þ

(1
5
, 1
2
Þ

( 3
10
, 1
2
Þ

(2
5
, 1
2
Þ

(1
2
, 1
2
Þ
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integration. The real part of p gives the growth rate of the magnetic field. If there is a

non-zero imaginary part of p the magnetic field migrates in Z direction.

We are in particular interested in the growth rates of the various solutions B. Due to

the symmetries of the flow the growth rates of different solutions coincide. As a rota-

tion of the flow pattern by �=2 about the z-axis changes only the signs of all velocity

components, and reflections at the plane x ¼ 0 or y ¼ 0 change only the sign of the

components in the xy-plane, and so the sign of the helicity, the growth rate remains

unchanged under these transformations. In order to obtain the full spectrum of

growth rates of solutions with a given N, it is thus sufficient to investigate the solutions

with 0 � a � b � N=2 (see Table I). For N ¼ 2q as well as for N ¼ 2qþ 1 the number

of cases to be investigated is ðqþ 1Þðqþ 2Þ=2. In addition, starting from solutions

with k > 0, solutions with k < 0 can be obtained by reflection at z ¼ 0, under which

again only the sign of the helicity is changed. Solutions obtained by such a reflection,

too, coincide in p. Therefore, it is sufficient to consider only positive values of k.

2.2 Numerical Results

The eigenvalue problem defined by (12) has been solved numerically using the subrou-

tine CGEEV of the standard LA PACK driver routine (version 1.0).

In Fig. 2 the growth rates ReðpÞ for � ¼ 1, Rm ¼ 16 and both N ¼ 8 and N ¼ 10 are

plotted versus k. For each type of solutions with given a and b only that with the largest

growth rate is considered. All these solutions have a non-zero mean part in the sense

explained above, that is, as an average over an area corresponding to two cells of the

flow pattern. The solution with a ¼ b ¼ 0 (depending on z only) is dominant for all

k, that is, shows the largest growth rate when compared to the other solutions. Like

this solution also those with a ¼ 0 and b ¼ 1, as well as those with a ¼ 1 and b ¼ 0,

have infinite length scales. The fastest-growing solution with finite length scales is,

apart from a range of small k, that with a ¼ b ¼ 1.

Tilgner and Busse (1995) presented results like those given in Fig. 2, but for Rm ¼ 15

and only with a=N ¼ 0, 0:5 and b=N ¼ 0, 0:5. They are in good agreement with our

results.

Let us focus our attention on the parameter range which is of interest for the

Karlsruhe dynamo experiment, that is, Rm in the order of unity, � between 0 and 10,

N around 10, and k close to 1=5 (see Section 3.3).

In Fig. 3 the growth rates ReðpÞ for several such values of Rm and k ¼ 1=5 are plotted

versus �. Among the non-decaying solutions with finite length scales always that with

a ¼ b ¼ 1 is dominant. Only with decaying solutions a dominance of such with other

a and b has been observed for Rm � 1 and � � 6.

In Fig. 4 marginal values of Rm are plotted versus k or, in other words, the ranges of

dynamo activity in the Rmk-plane are given for � ¼ 1 and various values of

f ¼ a=N ¼ b=N. For Rm up to 60, the range for f ¼ 1=10 contains those for larger f .

In order to determine the marginal curve for finite length scales solutions in the case

N ¼ 10 it is therefore sufficient to consider the solution with a ¼ b ¼ 1. The curve

for f ¼ 0 is again given for comparison only.

Here we open a parenthesis to report the results of further calculations of the solution

a ¼ b ¼ 0 for larger Rm. For this purpose it is sufficient to adopt N ¼ 1. As mentioned

by Roberts (1972), due to the symmetries of the flow, there are four independent

solutions. Only two of them have non-zero mean parts. They have been studied by

6



Roberts (1972) for Rm � 64 and by Soward (1987) in the asymptotic limit of large Rm.

However, it is not a priori obvious that these solutions are always dominant in the limit

of large Rm (see, e.g., Plunian et al:, 1999). This is why we made further calculations for

Rm up to 211, looking for all four solutions. It appears that the solution with largest

growth rate always has a non-zero mean. For Rm � 29 there is indeed a growing

zero-mean solution with positive growth rate but the latter is by a factor 10 below

the growth rate of the dominant solution. As a result, the assumption of non-zero

mean made by Soward (1987) for asymptotic estimate of p in the limit of large Rm

seems indeed to be the relevant one.

3. MEAN-FIELD APPROACH TO THE ROBERTS DYNAMO PROBLEM

AND ITS APPLICATION TO THE KARLSRUHE EXPERIMENT

3.1 The Mean-Field Approach

Following the lines of mean-field dynamo theory as it is often used in astrophysical con-

text (see, e.g., Krause and Rädler, 1980), a mean-field approach has been developed to

FIGURE 2 Growth rates ReðpÞ versus k, for � ¼ 1, Rm ¼ 16 and both N ¼ 8 (top) and N ¼ 10 (bottom).
The labels give the values of a and b (cf. Table I). Note that the results for a ¼ b ¼ 0 apply to arbitrary N.
Labels for N ¼ 10 are not at the curves for the sake of clarity.
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the Roberts dynamo problem (see Rädler et al:, 1996, 1997a, 1998). In this approach

both the magnetic field B and the fluid velocity U are understood as sums of mean

fields, B and U, and fluctuating fields, B0 and U0. A mean field is defined by averaging

the original field over an area corresponding to two cells in the XY -plane, for example

BðX ,Y ,Z, tÞ ¼
Z þ�LU


�LU

Z þ�LU


�LU

BðX þ 
,Y þ �,Z, tÞ d
 d�: ð13Þ

Clearly, we have U¼ 0. Subjecting the induction Eq. (1) to this kind of averaging we

obtain

@B

@t
¼ J3 E þ �r2B, J EB ¼ 0, ð14Þ

FIGURE 3 Growth rates ReðpÞ versus �, for k ¼ 1=5 and (a) Rm ¼ 0:75, (b) Rm ¼ 1, (c) Rm ¼ 2 and (d)
Rm ¼ 4. The dashed curves correspond to the solutions with a ¼ b ¼ 0, the solid curves to those with
a ¼ b ¼ 1 and N ¼ 10, and the dotted curves to the other solutions with finite length scales with a=N
and b=N as given for N ¼ 10 in Table I. The labels a b on the right of (a) belong in this order to the left
ends of the curves. In (b), (c) and (d) the first eight of these labels have to be assigned to the eight upper left
ends of the curves.
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where E is a mean electromotive force due to the fluid motions given by

E ¼ U3B: ð15Þ

We may consider E as a functional of U and B. Let us accept the assumption usually

adopted in the mean-field context that E in a given point in space and time depends
on B only via the components of B and their first spatial derivatives in this point.

This is reasonable for sufficiently small variations of B in space and time. Then we

may conclude from the symmetry properties of the Roberts flow that

E ¼ 
�?½B
 ðẐZ EBÞẐZ
 
 �?J3B
 ð�k 
 �?ÞðẐZ EJ3BÞẐZ

 �3ẐZ3 ½JðẐZ EBÞ þ ðẐZ EJÞB
, ð16Þ

(see also Rädler et al:, 1996), where �?,�?,�k and �3 are constants determined by

U,�,LU and �, and ẐZ is the unit vector in Z-direction. The term with �? describes

an anisotropic �-effect, acting in the XY-plane only. The terms with �? and �k can
be interpreted by introducing a mean-field conductivity different from the conductivity

involved in � and being anisotropic. Finally, the term with �3 describes a part of E
depending on the derivatives of B, which cannot be expressed by J3B, and therefore

not interpreted in the sense of a modified conductivity.

For a first approximation, on which we restrict ourselves here, we consider no other

contributions to E than that describing the anisotropic �-effect, that is, we ignore all

containing derivatives of B. Then we conclude from (14) and (16) that

@B

@t
¼ 
r3 f�?½B
 ðẐZ EBÞẐZ
g þ �r2B, J EB ¼ 0: ð17Þ

FIGURE 4 Marginal values of Rm versus k for � ¼ 1 and various f ¼ a=N ¼ b=N. Curve (a) belongs to
f ¼ 0, (b) to f ¼ 1=10, (c) to f ¼ 1=8, (d) to f ¼ 1=6, (e) to f ¼ 1=4.
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Several calculations of �? have been carried for the Roberts flow (see Rädler et al:,

1996, 1997a,b, 1998). In our notation the result reads

�? ¼ � �

16
ffiffiffi

2
p �

LU

RmkRm?
ðRm?Þ, ð18Þ

(see Appendix). The sign of �? agrees with that of the helicity, that is, the upper sign

applies to � > 0, the lower to � < 0. Rm? and Rmk are magnetic Reynolds numbers
for the flow in the XY -plane and in Z-direction, respectively, which are connected to

Rm introduced with (3) by

Rmk ¼
8

ffiffiffi

2
p

�
�Rm, Rm? ¼ 2Rm: ð19Þ

Furthermore, 
 is a function satisfying 
ð0Þ ¼ 1 and monotonously decreasing to zero

with growing Rm?. It is given in detail, e.g., in Rädler et al: (1996, 1997a,b, 1998, 2001).

3.2 A Simple Mean-Field Theory of the Experiment

The essential piece of the Karlsruhe dynamo experiment (see, e.g., Müller and Stieglitz,

2000; Stieglitz and Müller, 2001) is the ‘‘dynamo module’’, a cylindrical container

with both radius and height somewhat less than 1 m, through which liquid sodium is

driven by external pumps. By means of system of channels with conducting walls,

constituting 52 ‘‘spin generators’’, a helical motion is organized. The flow pattern is

of Roberts type, with 52 cells in the sense explained above.

A simple estimate of the self-excitation condition for this experimental device has

been derived from a special solution B of the mean-field Eq. (17) with �? assumed

to be constant in all infinite space. There is in particular an axisymmetric solution

for which special cylindrical surfaces around the symmetry axis and special planes

perpendicular to it are not intersected by electric currents. The self-excitation condition

for this solution, with the smallest of these cylindrical surfaces and two neighboring

planes of this type coinciding with the surface of the dynamo module, was interpreted

just as the excitation condition for the experimental device. It reads

j�?j � �
�

H
1þ 3:83

�

� �2
H

R

� �2
" #

, ð20Þ

where R and H are radius and height of the cylinder (see, e.g., Rädler et al:, 1996).

This relation is by several reasons only a rough approximation. Apart from the

neglect of all induction effects other than the �-effect, the solution used does not satisfy

realistic conditions to be required at the boundary of the dynamo module. In addition,

it corresponds to the limit of a large number of cells inside the dynamo module. Finally,

other investigations have shown that a magnetic field with a non-axisymmetric

mean part can be excited more easily, that is, with lower values of j�?j, than that

with an axisymmetric mean part assumed for the estimate (see, e.g., Rädler et al:,

1996, 1997a,b, 1998).
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In the Karlsruhe experiment self-excitation has been indeed achieved with flow rates

in the channels of the spin generators slightly above those predicted by a simple mean-

field theory, and a magnetic field with a non-axisymmetric mean part has been

observed.

In the following we repeat the above simple estimate of the self-excitation condition

for a dynamo module which is no longer a cylinder but a rectangular box. Of course the

consideration of box seems less realistic but it opens the possibility of a comparison of

the mean-field results with such of direct solutions of the induction equation and to get

so an idea on the reliability of the estimates based on the mean-field approach. More

specifically, in this way we may learn about the errors resulting from the neglect of

induction effects other than the �-effect or on the dependence of the results on the

number of spin generators.

With this in mind we consider Eq. (17) with constant �? in all space and ask for

solutions B which are periodic in X , Y and Z with period lengths 2�LBX
, 2�LBY

and 2�LBZ
, respectively . We may represent B as a sum of a poloidal and a toroidal

part,

B ¼ 
J3 ðẐZ3JSÞ 
 ẐZ3JT , ð21Þ

with two defining scalars S and T . Inserting this in (17) and dropping unimportant con-

stants we find easily that

��S 
 �?T 
 @S

@t
¼ 0;

��T þ �?
@2S

@Z2

 @T

@t
¼ 0:

ð22Þ

The special solution of (17) which we want to deal with here, is obtained by the ansatz

S ¼ S0 cos
X

LBX

� �

cos
Y

LBY

� �

cos
Z

LBZ

� �

expfptg;

T ¼ ðT0=S0ÞS, ð23Þ

where S0 and T0 are constants. When inserting this in (22) we arrive at two linear homo-

geneous equations for S0 and T0. The requirement that they allow non-trivial solutions

leads to

p ¼ 
�
1

LBX

2
þ 1

LBY

2
þ 1

LBZ

2

� �

� j�?j
LBZ

: ð24Þ

Growing B correspond to the upper sign of the last term of (24) and require that j�?j
is sufficiently large. The excitation condition reads

j�?j � �
LBZ

LBX

2
þ LBZ

LBY

2
þ 1

LBZ

� �

: ð25Þ

Let us now adjust the above solution of the mean-field Eq. (17) to the dynamo

module, now assumed to be a rectangular box with the bottom area being a square
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with the side length L, and with a height H. We require that the edge lengths of the

box are just equal to the halves of the corresponding period lengths of the magnetic

field. Putting in that sense �LBX
¼ �LBY

¼ L and �LBZ
¼ H we obtain from (25) the

self-excitation condition in the form

j�?j � �
�

H
1þ 2

H

L

� �2
" #

: ð26Þ

We point out that there is, compared to the cylindrical case, one more problematic

issue of our reasoning. It consists in the fact that we cannot exclude electric currents

through the side walls of our box but only through the bottom and top covers.

For a comparison with case of a cylinder we may assume that the bottom area of

the box, L2, is equal to that of the cylinder, �R2. Then (26) can be written in the

form (20), but with 2=� instead of ð3:83=�Þ2. So the results for box and cylinder

agree in the limit H=R ! 0, For finite H=R, however, the excitation condition derived

by considering the box can be easier satisfied than that for the cylinder. Reasons for

this discrepancy might be that we are dealing here no longer with axisymmetric fields

and that we admit currents through the side walls of the box.

Combining the condition (26) with the relation (18) for j�?j and introducing the edge
length l of a Roberts cell by l ¼ �

ffiffiffi

2
p

LU (see Fig. 8a) we find

RmkRm?
ðRm?Þ �
16l

�H
1þ 2

H

L

� �2
" #

: ð27Þ

Note that the quantities on the left-hand side are determined by U and l but those on

the right-hand side only by the aspect ratios l=H and L=H of an individual spin genera-

tor and of the whole dynamo module. When expressing Rmk by a new quantity R�
mk

defined by

Rmk ¼
16l

�H
1þ 2

H

L

� �2
" #

R�
mk, ð28Þ

the condition (27) takes the simple form

R�
mkRm?
ðRm?Þ � 1 : ð29Þ

The geometry of the dynamo module is now hidden in the definition of R�
mk. In the

Fig. 5 (and likewise in the Figs. 6 and 7) the curve (a) shows the neutral line, or line

of marginal stability, in the Rm?R
�
mk-plane, which is defined by R�

mkRm?
ðRm?Þ ¼ 1.

This line separates the region of values of Rm? and R�
mk allowing dynamo action

from that where no dynamo works. As long as the condition (29) applies dynamo

action requires that R�
mk exceeds some critical value. It is however possible for any

Rm? if only R�
mk is sufficiently large.

12



FIGURE 5 Marginal values of R�
mk versus Rm?. Curve (a) is defined by the relation R�

mkRm?
ðRm?Þ ¼ 1
obtained in the mean-field approach and already given by Rädler et al: (1996). In the sense of the considera-
tions explained in Section 3.3 it is reproduced in the double limit L=H ! 1 and l=H ! 0, that is, for
L � H � l. The other curves apply also to the limit L=H ! 1 but to finite l=H. For curve (b) the value
of l=

ffiffiffi

2
p

H is 1/32, for (c) 1/16, for (d) 1/8 and for (e) 1/5.

FIGURE 6 Marginal values of R�
mk versus Rm? for a dynamo box with the aspect ratio L=H ¼ 2 and

different values of l=H, or N. Curve (a) is the same as in Fig. 5, here given for a comparison only. Curve
(b) applies to N ¼ 64, (c) to N ¼ 32, (d) to N ¼ 16, (e) to N ¼ 10 and (f) to N ¼ 8.
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3.3 Comparison of the Results of Mean-Field Approach and Subharmonic Analysis

Let us now adjust the most easily excitable subharmonic solution B of the induction

Eq. (1) with finite length scales in the same way to the box-shaped dynamo module

as we have done it with the mean-field solutions B of the Eq. (17). As explained in

Section 2.2 in the parameter range which is of interest for the experiment the most

easily excitable solution of that kind is that with a ¼ b ¼ 1. This means �LB ¼ L and

�LU=k ¼ H, where k is now dimensionless. Since for this solution fX and fY coincide

we put fX ¼ fY ¼ f . So the solution to be considered is determined by f and k. We

have, of course, f ¼ 1=N. Using the edge length l of a spin generator, l ¼
ffiffiffi

2
p

�LU ,

we find N ¼
ffiffiffi

2
p

L=l and so f ¼ l=
ffiffiffi

2
p

L. The mentioned relations connecting LB with

L and LU=k with H imply k ¼ L=NH and k ¼ l=
ffiffiffi

2
p

H. Apart from a factor, k is just

the aspect ratio l=H of an individual spin generator. Instead of f and k we will use

in the following also, e.g., L=H and l=H.

The period square of B, that is, its two-dimensional periodicity interval in the

XY-plane, covers an of area ð2LÞ2, that is, four times the bottom area of the dynamo-

box. According to (4) this interval contains 2N2 cells. Therefore, the box contains

N2=2 such cells. In view of the experimental device the best choice of N is N ¼ 10.

Then we have 50 cells in the dynamo-box, which is very close to the real situation with

52 spin generators. An appropriate choice for the aspect ratio L=H of the dynamo

box is L=H ¼ 2. The choice N ¼ 10 and L=H ¼ 2 implies that L=l ¼ 10=
ffiffiffi

2
p

, k ¼ 1=5

and f ¼ 1=10. In the experiment the dynamo worked with values of Rm? between 1.2

and 2.0.

Analogous to the mean-field approach we then interpret the excitation condition of

the solution B specified in this way as the excitation condition of the experimental

device. Again we have to point out that there are reasons to consider this interpretation

with caution. As in the case of the mean-field approach we cannot exclude currents

intersecting the walls of the box, now not even at the bottom and the top surfaces.

FIGURE 7 Marginal values of R�
mk versus Rm? for dynamo boxes with different aspect ratios L=H in the

limit l=H ! 0 or, what is the same, N ! 1. Curve (a) is again the same as in Fig. 5, given for a comparison
only. For curve (b) the aspect ratio L=H is 8, for (c) 4, for (d) 2, for (e) 1, for (f) 1/2 and for (g) 1/4.
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In addition the cells of the flow pattern, or the spin generators, are necessarily cut

by the side walls of the dynamo box, see also Fig. 8, in the best case by at least two

of them.

We will represent our results again in the form of marginal curves in the Rm?R
�
mk-

plane, with R�
mk again defined by (28).

Let us first consider the limit L=H ! 1. If then in addition l=H ! 0 we obtain the

same marginal curve in the Rm?R
�
mk-diagram as in the mean-field approach, that is,

curve (a) in Fig. 5 (and likewise in the Figs. 6 and 7). In other words, it is the condition

L � H � l, ð30Þ

which brings us back to the mean-field approach.

It is of some interest to consider the limit L=H ! 1 also for finite l=H. Figure 5

shows results for l=
ffiffiffi

2
p

H ¼ 1=32, 1=16, 1=8 and 1=5. At this point we recall that in

our simple mean-field approach we neglected all contributions to the electromotive

force E connected with derivatives of B, which would give rise to the introduction of
a mean-field conductivity different from the usual conductivity etc. In the calculation

of the coefficient �? no derivatives of B are considered either. The deviations of the

results for finite l=H from that for l=H ! 0 reflect just the influence of contributions

to E connected with Z-derivatives of B neglected in our mean-field approach.

For the considered values of l=H and Rm? > 2 this influence is very weak. For smaller

Rm?, however, it is well important. At least for l=
ffiffiffi

2
p

H ¼ 1=5 it can be clearly seen

that dynamo action requires that not only R�
mk but also Rm? exceeds a critical value.

Let us now proceed to finite L=H and finite l=H. We fix the aspect ratio of the

dynamo box first by L=H ¼ 2. Then we have l=H ¼ 2
ffiffiffi

2
p

=N. In Fig. 6 neutral curves

in the Rm?R
�
mk-plane are given for N ¼ 64, 32, 16, 10 and 8 . At least for N ¼ 16, 10

and 8 it is obvious that a dynamo can only work if both R�
mk and Rm? exceed critical

values. Again the deviations of the results presented here from that of our mean-field

estimate reflect the influence of the derivatives of B whose contribution to E has

been neglected in this estimate. Now, however, not only the derivatives with respect

to Z are of interest but also those with respect to X and Y . The values of R�
mk are

always higher than those obtained in the mean-field approximation. The deviations

are no longer restricted to a range of small Rm? but occur also for large Rm?.
For the situation in the experiment, N ¼ 10 and Rm? between 1.2 and 2.0, the relative
deviation is larger than 20%. In the limit N ! 1, the neutral curves coincide but

are different from curve (a), at least for Rm? > 1. Here the condition L � H contained

in (30) is not satisfied.

We finally compare dynamo boxes with different aspect ratios L=H in the limit

l=H ! 0. Since l=H ¼
ffiffiffi

2
p

ðL=HÞ=N, this limit is for any fixed L=H equivalent with

N ! 1. Figure 7 shows results for L=H ¼ 8, 4, 2, 1, 1=2 and 1=4. As mentioned

before in (30), the results for large L=H and H=l coincide with those of the mean-

field approach.

4. CONCLUSIONS

We have dealt with the Roberts dynamo in two different ways. Firstly, we reduced

the induction equation governing the magnetic field, considering in particular
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subharmonic solutions, to a matrix eigenvalue problem and solved it numerically.

Secondly, we gave analytic solutions of an equation for the mean magnetic field,

which can be derived under certain assumptions from the induction equation.

Both kinds of solutions have been used for estimates of the self-excitation con-

dition of the Karlsruhe dynamo experiment. We focussed particular attention to the

neutral lines in the plane of the two Reynolds numbers Rmk and Rm? which sepa-

rate the region of these parameters allowing dynamo action from the other where

dynamos cannot work.

In our simple mean-field approach there occurs a critical value of Rmk so that a
dynamo is only possible if Rmk exceeds this value, but dynamo action may take place
with an arbitrary value of Rm? if only Rmk is sufficiently large. In the approach

based on subharmonic solutions of the induction equation, however, critical values

in that sense occur, at least for a not too high number of spin generators in the

dynamo module, for both Rmk and Rm?.
Apart from this, the requirements for dynamo action derived with our mean-field

approach are lower than those concluded from the subharmonic solutions, that is, in

the first case the self-excitation conditions can be satisfied with smaller values of Rmk
and Rm? than in the second one.

There are good reasons to believe that this discrepancy is due to the neglect of induc-

tion effects in our mean-field estimate, in particular the effects which are usually

described in terms of a mean-field conductivity. That is why we consider the predictions

made on the basis of the subharmonic solutions as more realistic than the mean-field

estimates.

Of course, both kinds of predictions have to be considered with caution, e.g., because

the solutions used of the original induction equation as well as those of the correspond-

ing mean-field equation do not satisfy realistic boundary conditions.

It is, of course, not possible to derive detailed predictions concerning the experi-

ment with a cylindrical dynamo module from our considerations on a rectangular

dynamo box. We can only conclude from the above results in what sense the mean-

field results for a cylindrical dynamo module will change if, e.g., the finite number

of spin generators is taken into account. A feature that should not critically

depend on the form of the dynamo-active region is the shape of the neutral line

in the diagram of the axial and helical flow rates. This line, in particular its

slope, obtained in the subharmonic approach reflects the experimental data clearly

better than the corresponding result of the simple mean-field approach (see Rädler

et al:, 2001).

The subharmonic formalism for the solution of the induction equation, which we

established in Section 2.1, can save much computation time when one is interested in

a specific spatial period of the B-field only. As we will show in Appendix B this form-

alism may also help to interpret results of direct numerical simulation of ABC dynamos
as the ones reported by Galanti et al. (1992).
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APPENDIX A

Our representation (2) of the Roberts flow as well as our representation (18) of the coef-

ficient �? differ from those in Rädler et al: (1996, 1997b, 1998) (referred to as R96-98

in the following). We explain here the relations between these representations.

In R96-98 the Roberts flow is given in the form

u
 ¼ u?
�

2
sin

�

l




 �

cos
�

l
�


 �

; ðA:1Þ

u� ¼ 
u?
�

2
cos

�

l




 �

sin
�

l
�


 �

; ðA:2Þ

uZ ¼ uk
�

2


 �2

sin
�

l




 �

sin
�

l
�


 �

; ðA:3Þ

with respect to a coordinate system ð
, �,ZÞ whose relation to the system ðX ,Y ,ZÞ is
shown in Fig. 8. With a coordinate transformation

X ¼ 1
ffiffiffi

2
p ð
 
 �Þ, Y ¼ 1

ffiffiffi

2
p ð
 þ �Þ

and the substitutions

l ¼ �LU

ffiffiffi

2
p

, U ¼ �

2
ffiffiffi

2
p u?, 2�U ¼ �

2


 �2

uk; ðA:4Þ

we rediscover our representation (2).

The result for �? occurs in R96-98 in the form

FIGURE 8 (a) A periodic square of the Roberts flow covering an area ð2�LU Þ2 corresponding to two cells
which contains two Roberts cells. (b) The parallelepipedal dynamo box contains 25 periodic squares
2�LU 3 2�LU or equivalently 50 Roberts cells. Therefore, N ¼ LB=LU ¼ 10.
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�? ¼ ��2

16

�

l
RmkRm?
ðRm?Þ, Rm? ¼ lu?

2�
, Rmk ¼

luk
�

: ðA:5Þ

Starting from this and using (A.4) we arrive at (18) and (19).

By the way, we see here that the Roberts flow pattern has two different period length,

2l and 2�LU . According to (A.4) their ratio is irrational.

APPENDIX B

The ABC flow, named after Arnold, Beltrami and Childress, is periodic in the three
cartesian directions and has been studied in details in the frame of fast dynamo

theory (for references on ABC dynamo see e.g., Arnold and Korkina 1983; Galloway
and Frisch 1984, 1986; Dombre et al:, 1986; Gilbert and Childress, 1990; Feudel

et al., 1995). In the paper by Galanti et al. (1992) (subsequently denoted G92), the

authors considered the ABC dynamo with a magnetic field satisfying (4) with 2�LB

being the period of the magnetic field identical in the three cartesian directions (see

also Galanti et al., 1993). They found that the magnetic modes with a larger period

length than the flow pattern, that is N > 1, can be more easily excited than those

with N ¼ 1. Furthermore, they found that there exist values of Rm for which dynamo

action is possible for N ¼ 2 but not for N ¼ 1.

At first glance, these results seem to be in conflict with our explanations in

Section 2.1 and the numerical results presented in Section 2.2 according to which the

largest growth rates for the magnetic modes belonging to a given N are independent

of N. The difference in the results is connected with the difference in the length

scales, which are responsible for the dissipation. In the ABC case the largest length

scale of the magnetic fields is N times that of the flow. In the Roberts case, however,

the largest length scales are those in the X and Y directions, which are infinite. By

the way, infinite length scales in the ABC case would imply a homogeneous magnetic
field, which cannot decay. Admitting this we would no longer deal with a self-exciting

dynamo but with an externally excited one. In the Roberts case the parts of the mag-

netic field with infinite length scales still depend on Z and are therefore subject to dis-

sipation.

Some results of G92 can be understood in the light of the subharmonic formalism

explained in Section 2.1. For example, in Fig. 10 of G92, the growth rates of different

subharmonic modes are given for N ¼ 2 (N is denoted k0 in G92). We can identify

these growth rates as corresponding to different independent solutions. According to

our classification (Table I), for N ¼ 2 there exist four independent solutions charac-

terized by

ða, b, cÞ 2 fð0, 0, 0Þ, ð0, 0, 1Þ, ð0, 1, 1Þ, ð1, 1, 1Þg:

The curves of Fig. 10b of G92 correspond to ð0, 0, 0Þ. The curves 1–3 of Figs. 10c
and 4–9 of Fig. 10d correspond to ð0, 0, 1Þ. And the curves 4–6 of Fig. 10c and 1–3
of Fig. 10d correspond to ð0, 1, 1Þ. Therefore, it is clear why the curves of each group
exhibit the same growth rate. Some further remarks given in the text of G92, p. 197,

can also be interpreted in terms of our independent solutions.
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