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SPECTRAL PROBLEMSIN ELASTICITY. SINGULAR BOUNDARY
PERTURBATIONS

S.A.NAZARQOV AND J.SOKOLOWSKI

The paper is dedicated to E. Sanchez-Palencia for his 65th bithday

Asstract. The three-dimensional spectral elasticity problem is studied in an anisotropic
and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks.
Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed
and justified. New technicalities of the asymptotic analysis are related to varialtfe coe
cients of diferential operators, vectorial setting of the problem, and usage of intrinsic inte-
gral characteristics of defects. The asymptotic formulae are developed in a form convenient
for application in shape optimization and inverse problems.

Keywords: Singular perturbations; Spectral problem; Asymptotics of eigenfunctions and eigneval-
ues; Elasticity boundary value problem
MSC:Primary 35C20, 35325, 35B40; Secondary 35320, 46E35,49Q10, 74P15

1. INTRODUCTION.

1.1. Shape optimisation problemsfor eigenvalues. In the paper asymptotic analysis of
eigenvalues and eigenfunctions is performed with respect to singular perturbations of geo-
metrical domains (see Fig. 1).

Fig. 1

The case of low frequencies is considered for elasticity spectral problems in three spa-
tial dimensions. The results established here can be directly used in some applications,
for example in inverse problems of identification of small defects in the body based on
the observation of elastic eigenmodes. Compared to the existing results in the literature,
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2 S.A.NAZAROV AND J.SOKOLOWSKI

the technical dficulties of the present paper mainly concern vectorial setting of boundary
value problems, anisotropy of physical properties, and variablficieats of diferential
operators, i.e., inhomogeneity of elastic materials. Exisiting results on elasticity problems
with singular perturbations of boundaries (see monographs [35, 38] and [17]) deal with
homogeneous, mainly isotropic elastic bodies. For a systemflefeintial equations, an
asymptotic analysis is required to be much more elaborated and direct adopting of the
methods proper for scalar equations may lead to an unfortunate mistake (cf. [18] and cor-
rections in [1]). The known results are given in particular for singular perturbations of
isolated points of the boundary (small holes in the domain, see [15], [16], [5], [1], [17],
[34] and others), perturbations of straight boundaries including perturbations by changing
the type of boundary conditions (cf. [2]-[3]), and the dependence of the obtained results
in more general geometrical domains on the curvature is clarified in [29] in the case of
scalar equations. The most of attention is paid in the present paper to derivation of explicit
formulae for solutions and extraction of principal characteristics of elastic fields and de-
fects which influence these formulae. To this end, we employ niaddixmn notation, use

the notion of elastic polarization matrix (tensor), and perform certain additional technical
calculations which are not needed in the case of homogeneous, isotropic elastic materials.

Small defects can be regarded as singular perturbations of the interior piece of the
boundary of the body. In this way we can consider e.g., the finite nhumber of isolated
points which approximate small cavities. More generally, by means of asymptotic analysis
we can model the creation of caverns, i.e., some piece of material is t&k&oro the
elastic body. We can also fill the cavern with some other elastic material and model such a
phenomenon by formation of one or more inclusions in the body.

Roughly speaking, the influence of a substantial change of local properties of the elastic
body cannot be analysed by the classical tools of the shape sensitivity analysis or any other
type of sensitivity analysis, but it requires the application of asymptotic methods. Espe-
cially, such methods turn out to be of importance for the microcracks, since the microcrack
implies the creation of a new portion of internal boundary in the body, which cannot be
taken into account in the framework of classical sensitivity analysis based on regular per-
turbations of the cdéicients and of the boundary. The asymptotic methods seem to be the
only avalaible tool to perform theflicient analysis of solutions, eigenvalues and eigen-
functions, and of shape functionals, in general setting. The internal perturbations of the
domain by creation of small openings or holes, but very close to the boundary (see Fig. 2)

Fig. 2



SPECTRAL PROBLEMS 3

will be a subject of another paper. Here, we consider small caaverns inside the body,
i.e., at a distance form the exterior boundary.

We leave aside an important and still not completed topic related to the so-called con-
centrated masses. Since the pioneering work [36] of E. Sanchez-Palencia, a lot of attention
has been paid to mathematical analysis of vibrations of elastic bodies, with small parts wich
are very heavy (e.g., pellets in an aspic or in a meat-jelly); see papers [37, 32, 19, 8, 10, 4],
as well as the monographs [38, 33] in an incomplete list. Such problems are the best ex-
amples of the topping role of the boundary layfeet. Although we analyse the boundary
layers in details, the purposes of the present paper is essentiédisedt so that we cannot
mutually serve for an analysis of concentrated masses.

1.2. Preliminaries, anisotropic inhomogeneous elastic body. Let us consider in three
spatial dimensions the elasticity problem for an elastic Kegdyritten in the matrixcolumn
notation, see e.g., [9], [23] for more details,

0 in Q
g? on 99,

(1) Lu = D(=Vy) " AXD(Vx)u
) NeU = D(N)"AX)D(Vy)u

whereA is a symmetric positive definite matrix functiondnof size 6<6, with measurable
or smooth elements, consisting of the elastic material moduli (the Hooke'sfliress
matrix) andD(Vy) is 6 x 3-matrix of the first order dierential operators,

& 0 0 0 2128 27V
(3) DE"=| 0 & 0 2Y% 0 228
0 0 fg 271/252 271/261 0

u is displacement columm = (ng,ny,ng)" is the unit outward normal vector af2
and " stands for transposition. In this notation the stra{n; X) and stressr(u; x) =
AMX)D(Vx)u(X) columns are given respectively by

.

4) D(Vy)u = g(u) = (811, £22, €33, V223, V2¢31, ‘/2912) ,
T

(%) AD(Vu = o(u) = (U 11, 022, 0733, V2023, V20731, V20r 12) .

The factors 22 and V2 imply that the norms of strain and stress tensors coincide with
the norms of columns (4) and (5), respectively. From the latter property in nhattimn
notation, any orthogonal transformation of coordinateé&3gives rise to orthogonal trans-
formations of columns (4) and (5) ik®.

Remark 1.1. The straing4) and the stressd$) degenerate on the space of rigid motions,

(6) R={d(X)c : ceR%, dimR=6,
where
1 00 0 —27 2%y 2712y,
) dx)=| 0 1 0 2%2x 0 -2 V2%
0 0 1 —2%2x, 212y 0

This subspace plays a critical role in many questions in the elasticity theory, it appears
also in the so-called polynomial propef30, 21](see alsd28]).
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The following equalities can be verified by direct computations,
(8) DVID(X)" =16, D(Vx)d(X) = Op ,
d(Ve) " D(X) k=0 =T,  d(Vy)"d(X)x=0 = I
wherely andOy are the unit and null Nk N-matrices, respectively.

The loadg® is supposed to be self equilibrated in order to assure the existence of a
solution to the elasticity problem,

(9) fa . d(x)Tg®(x)ds, = 0 e R® .

2. VIBRATIONS OF ELASTIC BODIES.

Consider inhomogenuous anisotropic elastic b@dy R3 with the Lipschitz boundary
0Q. Spectral problems for the body are formulated in a fixed Cartesian coordinate system
X = (X1, X2, X3) T, and in matrix notation.
We assume that the matrif of elastic moduli is a matrix function of spatial variable
x € R3, symmetric and positive definite fore Q U Q. The problem on eigenvibrations
of the bodyQ takes the form

(10) L(X, V)U(X) := D(=V5) "AKX)D(Vx)u(x) Ay(Xu(x) xeQ,
(11) NE(X, V)u = D) TAX)D(Vx)u(X) 0, xeX, u(X)=0, xeT,
wherey > 0 is the material density, is the eigenvalue, the square of eigenfreguency. The
partI” of the surfac®Q is clamped, and the first boundary condition is prescribed on the
— 0
traction free remaining pakt = 9Q\I of the surface. We denote by*(Q; T)? the energy
space, i.e., the subspace of the Sobolev spi¢@)? with null traces on the subsEt The
variational formulation of problem (10)-(11) reads :
(0]
Find a non trivial functioru € H(Q;T)3 and a numben such that for all test functions
0
v e HY(Q; I3 the following integral identity is verified
12) (ADU, DV)q = A(yu,V)a ,

where ()q is the scalar product in the Lebesgue spiat(€?).

If the stiffness matrixA and the density are measurable functions of the spatial variables
X, and in addition uniformly positive and bounded, then variational problem (12) admits
the normal positive egenvalugg, which form the sequence

(13) O< <A< <Ay > oo

taking into account its multiplicities, and the corresponding eigenfunctignshe elastic
vibration modes, are subject to the orthogonality and normalization conditions

(14) (yu(p)’ u(q))Q = 5p,q ’ p’ q € N = {l’ 2’ e } s

wheresp q is the Kronecker symbol.

In the sequel it is assumed that the elements of the matrand the density are
smooth functions if2, continuous up to the boundary. In such a c@de called asmooth
inhomogenuous body. For such a body the elastic maggare smooth functions in the
interior of Q, and up to the boundary in a case of the smooth sudgcalVe have also the
equivalence between the variational form and the form (10)-(11) of spectral problem. We
require only thenterior regularity of elastic modes in the sequel, in any case the elastic
modes have singularities on the collision liBe " and therefore, are excluded from the
Sobolev spacél?(Q)°.
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Along with the smooth inhomogenuous ba@yet us consider a bodfy, with defects;
hereh > 0 stands for a small dimensionless geometrical parameter, which describes the
relative size of defects. Actually, we select in the interioothe pointsP?, ..., P’ and
denote byws, ..., w; the elastic bodies bounded by the Lipschitz surfakes.. ., dw;,
furthemore, for the sake of simplicity we assume that the or@ibelongs towj, j =
1,...,J. The body with defects is defined by

(15) E(h) =Qh) Uwlu---U )

where

(16) W ={x: & =hx-P)ew), M=o o
j=1

The stithess matrix and the density of thempositébody (15) take the form

17) ﬂh(x)z{g((ﬁéj)’ iiﬁéh) 7h(x)z{y(x), xe o)

7)), xew

The matricesA and A(; as well as the scalarg andy(j are diferent each from other,
i.e., w? are inhomogenuous inclusions of small diameters. We assumeAthaandy ;)
are measurable, bounded and positive uniformly,gnin particular, for almost alf € w;
the eigenvalues of the matrif(j)(¢) are bounded from below by a constant> 0. There
are no special assumptions on the relation between the properties of the inclusions and
of the matrix (body without inclusions), we assume only that the densiieg;, and
entries of the matrices, A are of similar orders, respectively. We point out that in
the framework of our asymptotic analysis, in section 4 there are performed the pasages
Ay — 0 andy — 0 (a hole) as well agA(j) — o andy — oo (an absolutely rigid
inclusion). However, the passagg) — oo with the fixed matrix functionA; (heavy
concentrated masses) can be analysed with some oth&#zensee [35, 37, 4]. In the
fracture mechanics, the most intereting case is the weakening of elastic material due to the
crack formation. The cracks are modelled by two-sided, two dimensional surfaces, with
the first boundary conditions from (11) prescribed on the both crack lips, i.e. the surface
is traction free from both sides. The case of a microcrack is not formally included in our
problem statement, since we assume that the deferst of positive volume and with the
Lipschitz boundarnpw;. However, the asymptotic procedure works also for the cracks.
Small changes which are required in the justification part, are given separately (see the end
of section 4, proof of Proposition 5.1 and Remark 5.1). The polarization matrices for the
cracks can be found in [40], [30].

The exchange of and A by y" and A" from (17), respectively, transforms (12) in
the integral identity for the body weakened by defec?s. . wg the identity is further
denoted by (12) We observe also, that for smoothfBtess matrixA and densityy the
differential problem for vibrations of a composite body contains not only the system of
equations, denoted in our notation by (Oestricted to union of domains (15), along
with boundary conditions (1) but in addition it contains the transmition conditions on
the surfaceﬁw? where the ideal contact is assumed. Since we use only the variational
formulations of spectral problems, the transmission conditions are not explicitely given. In
the similar way as for problem (13), there is the sequence of eigenvalues for problém (12)

(18) O</lrl‘g,l*2‘g...§/1";g.,._,+oo’
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and the corresponding eigenfunctim*(iﬁ meet the orthogonality and normalization condi-
tions

(19) (thPp), u?q)).Q = 6p,CI7 p7 q € N

3. FORMAL CONSTRUCTION OF ASYMPTOTICS

We introduce the following asymptotic &itge for eigenvalues and eigenfunctions in
problem (12)

(20) A= Ap+hup+...,
(21)

0 = 09+ 09 (o (1 )+l = 1)+ g+
j=

wherey; € CZ(Q), j = 1,..., J, are cut-df functions, with non overlaping supportsh
and for eachj, xj(X) = 1 for x € wj andyi(P’) = 6i ;.

First, we assume that the egenvalse A, in problem (12) is simple, and for brevity the
subscriptp is omitted. The corresponding eigenfunctioe: u, € |9|l(£2; I3, normalized
by condition (14), is smooth in the interior of the dom&in

Columns of the matriced(x) andD(xX)" form a basis in twelve dimensional space of
linear vector functions iiR3. In this way, the Taylor formula takes the form

(22) u(x) = d(x - Pha + D(x - P)Tel + O(Ix - PIP),
and, by equalities (4), (5) and (8), the columns
al =d(V)TuP), & =D(VIuP),

represent the column of rigid motions, and of strains, at the fiinSince in the vicinity
of the inclusionw! we have

eu,X) =&l + O(x) = &l + O(h) ,

the main terms of discrepancies, left by the fia{d) in problem (12) for the composite
bodyQ", appear in the system of equation&jjﬁand in the transmition conditions qﬂa)']‘

For the compensation of the discrepancies are used the special solutions of the elasticity
problem in a homogenuous space with the inclusigof unit size

LOHVWIK(E) 1= D(-V)T APHD(VIWE(E) =0, ¢ € ©) = R\wj,
LI, VOWK(E) 1= D(=Vo)T A ) D(VIWK(E) = DDA E)ex, € € wj,
WEE) = WE@), DI (E)T (A ) D(Ve) WK @)

- APHD(VAW Q) = DOV/E)T(APY) - AgyE))e, ¢ € dw.

Herev is the unit vector of the exterior normal on the boundasy of the bodyw;j, & =
(61 - .-, 06x)T is a orthant in the spade®, W, andW._ are limit values of the functiolv
on the surfacéw; evaluated from outside and from inside of the inclusignrespectively.

We denote byd’ the fundamental (X 3)-matrix of the operatot%(V;) in R%. The
(3 x 3)-matrix is infinitely diferentiable irR*\O and enjoys the following positive homo-
geneity property

(24) o) =t dpE), t>0.

(23)
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It is known (see, e.g., [27], Ch. 6]), that the solutiond of problem (23) admit the
expansion

6 3
(25) WHE) = > My, D DR(VIDIE) +O0(é%). £ € R3NEBw
p=1 g=1

whereD,, = (D5, D2, D3) is a line from the matrixD (see (3)) D, ©12, ®13 are columns

of the matrix®!, and the radiuR of the ballBg = {¢ : [£ < R} is chosen such that

@; c Bgr. The codicients Mip in (25) form the (6x 6)-matrix M} which is called the
polarization matrixof the elastic inclusionw; (see[40, 22] and also [[27], Ch. 6], [5],
[28]). Some properties of the polarization matrix, and some comments on the solvability
of problem (23) are given in section 4.

The columnesVit, ..., Wi compose the (% 6)-matrixW! and we set

(26) wH(€) = Wi@)e! .
In section 5 it is verified, that the right choice of boundary layer is given by formula (26),
since it compensates the main terms of discrepancies. From (25) and (26) it follows that
(27) w(E) = (MID(V)OI(E)T) e +0(°) . ¢ € R3NBr.
Relatiorl1 (27) can be ferentiated term by term on the §t\Bg under the rul&7,O(l¢|"P) =
—p-
Oqlﬂ vie\z\./ of (24) the detached term of asymptotics equals
(28) h2(MID(V, )@l (x — P)T)T&l .

It produces discrepancies of ordet (we point out that there is the factbron wli in
(21)), which should be taken into account when constructing the regular typenterm
On the other hand, discrepancies of the same ditlare left in the problem fov by the
subsequent terdPw(h~2(x — P))), which solves the transmission problem analoguous to
(23)

(29)  L(VwWI©) =FY(9), €@, UEVIWIE) =F©), écwj

(30) W (@) =wW©); DME) (A @ DVIW (@)
— APYDVIWE ) = G(E), £ € dwj,
and with the decay ra®(|¢|™1) at|¢| — oo, smaller compared to the decay ratendf.
We derive the right-hand sides for problems (29), (30). First, by the representation of
the stifhess matrix
(31) AX) = APY) + (x = PYTV,APY) + O(Ix — PP

and the corresponding splitting ofttéirential operator with the variable dtieients£2(x, Vy)
from (10), we find that the right-hand side of system (29) is the main term of the expression
(32) , _ _ . :

—Lo(x, VOwWH (e (x=P))) = e 2D(V) T (€T VAP D(VIWH () +- - - =1 e FO(E) +. ..

We note that.% (V,)wl(h-1(x — P)) = 0in (32), and the dots.. stand for the terms of
lower order, which are unimportant for our asymptotic analysis. The Taylor formula (31)
generates the following discrepancy also in the second transmission condition (30)

(33) GlE) = DU E VRAPHDVIWI(E) + &)
+DE)T(AP) = A END(V)U(€)-



8 S.A.NAZAROV AND J.SOKOLOWSKI

The second term comes out from the elaborated Taylor formula
(34) u(x) = d(x - Phal + D(x - P)Tel + Ul(x - P)) + O(Ix - P'F)
and contains the quadratic vector function

3
. . ~ _ - 1 &4
Ix =P = —p! — Phyira Ipq — —
(35) Ul(x ) pqEﬂ(xp ) (Xq QUM U 2 Bxo%e

(P)).

Finally, the right-hand side of system (29) takes the form
(36) FI€) = ~j(@)u(P’) + D(V) A (E)D(VIU ().

Besides the term obtained from the quadratic vector function (35) in the Taylor formula
(34), expression (36) contains the discrepaigyu(P’) which originates from the inertial
term AMy;u" in accordance to aatze (35) and (35).

In order to establish properties of solutions to problem (29), (30), we need some com-
plementary results.

Lemma3.1. Assume that &) = D(V,)TY(¢) and
(37) Y(©) =p200),  Z(E) = p°300),

where(p, §) are spherical coordinates arll € C*(S?)®, 3 € C(S?)® are smooth vector
functions on the unit sphere.
The model problem

(38) LI(VX(E) = Z(£), ¢ e R3\(0},

admits a solution ¥) = p~1%(6), which is defined up to the ter (¢)c with ce RS, and
becomes unique under the orthogonality condition

(39) f DE)TAP)D(Ve)X(E)ds: = 0 € B2,
52

Proof After separating variables and rewriting the operaﬁifvg) =1722(0,Vy,rd/ar)
in spherical coordinates, system (38) takes the form

(40) (0, Vg, -1)X(0) = 3(9), 6 €S>

Sinceg(0, Vg, 0) is the formally adjoint operator fati(6, V4, —1) (see, for example, [[27];
Lemma 3.5.9]), the compability condition for the system dfeatiential equations (40)
implies the equality

(41) 3()dgy =0eR3.
/

The equality represents the orthogonality condition in the spa¢¥) of the right-hand
side 3 of system (40) to the solutions of the system

(42) 21(0,V,,0)8(0) =0 6es?,

which are but constant columns. Indee_d, after transformation to the Cartesian coordinate
systemé equations (42) take the fori® (V.)V(¢) = 0, ¢ € R3O, and any solution
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V(¢) = p°B(0)) is constant. Leb > a > 0 be certain numbers, and Etbe the annulus
{¢ 1 a<p < b}. We have

b

Ing f 3(6)ds = f p tdp f 3)ds = f p33(0)d¢ =
s2 a s2 E

- f D(VTY(E)de = f D) Y(@)ds - f D(pe)TY(©)ds = 0.
= s2 sz

We have used here the Gauss formula the fact that the integrands on the spheresof radii
andb are equal td=2D(0)™Y anda2D(F)™Y, respectively, i.e., the integrals cancel one
another.

Therefore, the compability condition (41) is verified and system (40) has a solution
X € C(S?)?3. The solution is determined up to a linear combination of trace§%oof
columns of the fundamental matrix(¢); recall that the matrixd(¢) is the only homogen-
uous solutions of degreel of the homogenuous model problem (38).

According to the definition and utility the columds! verify the relations

43) f DE)TAP)D(V)P(E)ds = f LO(V,)00(&)dé = f 5()eqds = &
S2 By B1

where¢ is the unit outer normal to the sphefé = 9B, B = (¢ : p < 1}, 6 is the Dirac
massgq = (014, 929, 634) " IS the basis vector of the axig, and the last integral ovés;
is taken in the sense of the theory of distributions. Thus, owing to (43), the orthogonality
condition (39) can be satisfied which implies the uniqueness of the soRitiomproblem
(38), (39).m

In view of (32) and (27), (28), the right-hand side of (38) takes the form

(44) Z(¢) = D(Ve) (€T VAP DV (MID(V)$ () e .

General results of [6] (see also[[273.5, §6.1, §6.4]) show that there exists a unique
decaying solution of problem (29), (30), which admits the expansion

(45) W) = XI€) + @)E)C! + O XL +1Inol), ¢ € R\Br.

In the same way as in relation (27), the relation (45) can ferdintiated term by term
under the rul&’O(jo| (1 + [Inp|)) = O(lo| P (L +[Inpl)).
The method [13] is applied in order to evaluate the coluhn

Lemma 3.2. The equality is valid
(46) C = a7 - y(P)lwjlu(P) - 1,

wherelwj] is the volume, angj = |w;|™* fw 7j(€)dé the mean scaled density of the inclu-
J
sionwj, i.e., its mass i¥jlw;l, and

@7) = [ DO AP DENMIDTI0I") s
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Proof In the ballBg we apply the Gauss formula and obtain, thatRo oo,

f FOJd§+fF'd$+fGJd% fLJWz'df

Br\wj Owj

f D(v)Tmm(f)zxvf)wF' ﬂ(PJ)@(vg)wz')dsf
(48) | |
- f Do 8T APYDV WA () ds
OBR
- f DRTAP)DITIXI(E) + ¢ CH)de + o(1) = ~C + o(1).
OBR

We have also taken into accout equalities (39) and (43). On the other hand, in view of
formulae (36) and (32) it follows that

f Fi)de = -1 f yi©deu(Pl) + f (V)T A DU E)de

= —AFjlwjlu(P) + f DME) A DV @),
(49) _ o | .
f FO@)dé = f DUE)(E VAP DV W €)ds
Br\wj 8‘“]
+ f DR (€ VAP DV W ().
IBR

We turn back to decomposition (27), and taking into account the homogeneity degree of
the integrand, we see that the integral over the spiere dBr equals

(50) f D(E) (ETVRAP)D(V)(MID(V,)9!(€)T) dsee! + OR™Y.

The integrals over surfacés; in the right-hand sides of (49) simplify with two integrals,
which appear according to (33) in formula

f GiE)ds = f D) (€ VAP DT IWI (E)d s

Owj owj

61 - f DE)T A () DV (€)dé + f DME) (€ VAP dse!
ﬁa)j ﬁwj

+ [ DWE)TAP)D(V)UI(E)ds.

Owj
Finally, by the equality
D(=V) " A(PYD(-VU(€) + D(=Vx) " (X" VxAUP))e! = 1y (P)u(P') ,

resulting from equation (33) at the poixt= P!, the sum of the pair of two last integrals in
(51) takes the form

f (D(=V) T APYD(-VU!(€) + D(=Ve) (€ VXA (P))e!)dé = 1y (P)lwjlu(P) .

It remains to pass to the limMR — +co. m
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Now, we are in position to determine the terinandy in ansatze (21) and (20), which
are given by solutions of the problem

(52) L(X, V)V(X) = Ay(QV(X) + y(Qu(x) + F(X), xe Q\{PL,...,P7},

(53) D)) AXDVIV(X) =0, xeZ, vxX) =0, xel.

The right-hand sidé includes the discrepancies, which results from the terms of boundary
layer type and of the ordé®. By decompositions (27) and (45) we obtain
(54)

J
F00 = D (L0 V) = OTa)y i QUMID(T )@ (x = PHYT)Tel + X (%) + @ (x — PI)CI).

j=1

The terms in the curly braces enjoy the singulari@x — Pi|2) andO(|x — Pi|™}),
respectively, therefore, it should be clarified in what sense problem (52), (53) is considered.
Equation (52) is posed in the punctured dom@jrthus the Dirac mass and its derivatives,
which are obtained by the action of the operafasn the fundamental matrix, are not taken
into account. Beside that, by virtue of the definition of the te¢thimplying a solution to
the model problem (38) with the right-hand side (44), and according to the estimates of
remainders in the expansions (27), (45), the following relations are valid
(55) f) =O(r;?(+Inry)., rj:=x-P|->0 j=1...3J
which accepts the fierentation according to the usual rule
V00 P+ [Inrj)) = O P (L + lInry))) .

In other words, expression (54) should be written in the combersome way
J

(56) 100 = Y {TLxi] - dnx Ta)(ST + S+

j=1
+x 1 D(V)T (A = APY) = (x= PYTV,AP))D(V,)S! + (A - AP D(V,)S ] .

Here, [A,B] = AB — BA is the commutator of operatofs andB, andSi?, Si2 = Sit +
X + ®IC! are expressions in curly braces in (54).

Lemma 3.3. LetA be a simple eigenvalue in problegit0), (11), and u the corresponding
vector eigenfunction normalized by conditi@i¥). Problem(52), (53) admits a solution
v e HY(Q)? if and only if

(57) u= —(Isi_rgjg;é u(x)" f(x)dx,

whereQ?® = Q\(IB%; U---u Bg) andB{j; ={X:r;<dh

Proof The variant of one dimensional Hardy’s inequality

1 1 1
f|U(r)|2drchr2 ?j—l:(r)zdr+f|U(r)|2dr]
0

0 1/2

provides the estimate

(58) IIFj_lV; L2(@Q)Il < cllV; HY(Q)II.

In this way, the last term in the integral identity for problem (52), (53)
(59) AV, ViV)a = AV, V) = u(pu, Vo + (. V)a, V€ HY(Q)®,
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turns out to be a continuous functional over the Sobolev spH¢®)3, owing to the in-
equalities

1/2 1/2

J
(V3o <o| Vi La@i+ Y| [ Fifeaax| | [riaveorax] | <aiviHi

=1 | 4
B; B;

)
frﬂf(x)lzdxs cfrfrj‘z(1+ [Inrj)?drj < +co.
B! 0
Thus, Lemma follows from the Riesz representation theorem and Fredholm alternative, in

addition, formula (57) is valid because the integrand is a smooth funct@s (%, . . ., P’}
with the absolutely integrable singularities at the pofits...,P’. m

Remark 3.1. If the points P are considered as tips of the complete coRés.Pi, the
elliptic theory in domains with conical points (see the fundamental contribufiyris, 14]
and also e.g., monograp27]) allows for estimates in weighted norms of the solution v
to problem(52), (53). Indeed, owing to relatiorf55) for any r > 1/2 the inclusions
rrf e L2(1')® are valid, wherel/) stands for a neighbourhood of the point, i addition

U NU* = @ for | # k, therefore, the termgT?v, ri-'V,v and £V3v are square integrable
inuU.m
We evaluate the limit in the right-hand side of (57) o~ +0. By the Green formula

and representation (54), the limit is equal to the sum of the surface integrals
(60)

f (SITDEH(x = PY)TAND(TU() ~ U ™D (X~ PY)TAND(V)SH () + S7) ds.
OB}

J

We apply the Taylor formulae (31) and (22) to the matfixand the vectou, and
take into account relations (8) for the matrickand . We also introduce the stretched
coordinateg = 6-1(x — PJ). As a result, up to an infinitely small term s~ +0, integral
(60) equals to

—671|0 +li+lo+1l3+ 14+ 15+ 0(1)
- -5 [ WP DO AP)DT)S HEds
SZ
- f (d©)a - u(P)) D) AP)D(V)S(¢)ds
SZ
(61) - [uP D@ € v AP OIS s
S2

- f U(P)TDETAP)DVIXIE) + 6 (6)C)d s

SZ
i f (S DETAPHD(V)DE) &!

(D) )T DT AP)DVISHE) s + o(L).
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Integralsly andl, vanish. Indeed, due to the second equality in (8) we have :

RS> f AT DETAP)D(V S (E)ds
(62) f d&)" D" AP)D(VIMID(V)P!(¢)) el
f 4T DETSEREM e = (D)) |eoMIe = 0.

These equalities are to be understood in the sense of distributions. By formula (47), we
obtain

=—u(P)TIl.
Relations (39) and (43) yield

=-u(PH'C!.
Finally, in the same way as in (62), we obtain

I = f (D)) DV AP)D(V)SH(E)deé
(63) B . o
Y f DEDV) Migls(E)dé = ()T Mg,
B

Now, we could apply the derived formulae. We insert the obtained expressiohsirito
(61) — (60) — (57) and in view of equation (46) for the colunti, we conclude that

J
(64) = (M + A(P) - FlwiIu(P)P).
j=1

If the equality (64) holds, then problem (52), (53) admits a solutica H(Q)3. The
construction of the detached terms in @tze (20) and (21) is completed.

In the forthcoming sections the formal asymptotic analysis is confirmed and generalized
into the following result.

Theorem 3.2. LetAp, be an eigenvalue in proble(d2) with the multiplicityx,, i.e., in the
sequencéll)

(65) /lp_l < /lp == /lp+;{p_1 < /lp_,.;{p .

There exist j > 0 and G, > 0 such that for he (0, hy] the eigenvalueg!),--- , A" of

p+xp
singularly perturbed probler(i2)', and only the listed eigenvalues, verify the estimates

(66) prae1 — Ap — WPl < cp(@)h®®, q=1,....%p

where ¢(e) is a multiplier depending on the number p and the exponeat(0, 1/2) but

independent of k& (0, hy], Whl|ey(p), : ,uﬁz) imply the eigenvalues of symmetkigx » -
matrix MP with the elements
(67)

J
MP = Z (S(Up+k—1; PYMIe(upsk-1; PY) — Ap(7j - Y(P]))|‘Uj|Up+k—1(PJ)Tup+k—1(PJ)) ,
i1
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M! is the polarization matrix of the scaled inclusion ($86)and (27)), ), - -  Ugpex,-1)
are vector eigenfunctions in proble¢h2) corresponding to eigenvalug, and orthonor-
malized by conditiof14), finally the quantitied; and|wj| are defined in Lemma 3.2.

We explain which changes are necessary iraes(20), (21) and in the asymptotic
procedure in order to construct asymptotics in the case of a multiple eigernyalédrst,
for up andugy in (20) and (21) should be selected unknown numkg@rand the linear
combination

(68) UEg)) = bg_q)U(p) + -0+ b;(:i)U(pﬂp_l)

of vector eigenfunctions; the columbf® = (b{?, ... ,bf,qp))T e R* is of the unit norm.
After the indicated changes the formulae for boundary layé#$ and w29 remain un-
changed. The same applies to problem (52), (53) for the correctionvé%))rmf regular
type. However, the compability conditions are modified, and turn inte gvelations

(69) HP D, Upim1)a = lim f Upsme1()TF()dX, m=1,....%p.
6—-+0 J s

The left-hand side of (69) equals ,tiép)bﬁﬁ) by (14) and (68). It can be evaluated by the
same method as for formula (57), that (69) becomes the system of algebraic equations

%p
(70) pPO = MBBD . m=1,.. %,

k=1
with coeficients from (67). In this way, the eigenvalues of the maw¥) and its eigen-
vectorsb@ e R*» furnish the explicit values for the terms of &@mse (20) and (21).
We emphasise that by the orthogonality and normalization conditid®3™e® = &4
for the eigenvectors of symmetric matrix(®, it follows that the vector eigenfunctions
Up) = (ugg e ug’;;’)) p=1---,%p, in problem (12), which are given by formulae (68),
are as well orthonormalized by the conditions (14).

If we have good luck, and from the beginning the eigenveaigys: - - , Up:x,-1) have

the required form (68), then the matiM(P is diagonal and the system of equations (70) is
decomposed into the collection 8§ independent relations, fully analoguous to relations
(64) in the case of a simple eigenvalue. Such an observation is the key ingredient of the
algorithm of defects identification which will be described in a forthcoming paper, and it
makes the identification method insensitive to the multiplicity of eigenvalues in the limit
problem.

4. REMARKS ON POLARIZATION MATRICES

The results presented in this section are borrowed from [22], and forthcoming paper
[30]. ’

Variational formulation of problem (23) for the special fie&®, which define the
elements of the polarization matri! in decomposition (25), are of the form
2EN (WK, W) = (APYD(VIWN, D(Ve) W)e, + (A D(Ve) WK, D(Ve) W),

= (R())8 D(Ve) W)y, W € V(R

whereVé(R"’) is the Kondratiev space [6], which is the completion of the linear space
C=(R®) (infinitely differentiable functions with compact supports) in the weighted norm

IW; V3Rl = (IVeW; LRI + 111 + p) "W, LAR3)[1)H?

(71)
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The following result, established in [22, 30] can be shown by using transformations ana-
loguous to (62) and (63) operating with the fieltld< andIM = D(&) g + WIM.

Proposition 4.1. The equalities hold true
(72) My, = 2B W) = [ (nP) = (1 D)
wj

From the above representation it is clear that the matrixs symmetric, the property
follows by the symmetry of the sfhess matrices®, Al and of the energy quadratic form
El. In addition, the representation allows us to deduce if the maffixs negative or
positive definite. We writel! < M? for the symmetric matrices* and M? provided all
eigenvalues oM? — M1 are non-negative.

Proposition 4.2. (see [30])1° If A(é) < A(P)) for & € wj (the inclusion is softer
compared to the matrix material), then!Ns a negative definite matrix.
2° If the matrix A is constant and?l(‘ﬁ < A(PH)~t (the homogenuous inclusion is rigid
compared to the matrix), then s a positive definite matrix.

It is also possible to consider the limit cases, either of a cavity With= 0, or of an
absolutely sff inclusion withA(j) = co. For the case of a cavity the figrential problem
takes the form

(73) LO(VAWK(E) =0, £€0; =R\,

D((&)) AP)D(Ve)WH(£) = ~D((&) AP, ¢ € dwj .
For an absolutely rigid inclusion the integral@rential equations occur as follows
(74 LIVIWKE =0, £e0;, WKE =dE)cH -DE@) e £ € dw,

] d@)T D) AP D(VWH() - e)ds = 0 € R®.

wj

The Dirichlet conditions in (74) contains a colurali € R, which allows for rigid mo-

tion of w; and can be determined by the integral condition which annuls the principal
vector and moment of forces applied to the baedyvanish. The variational formula-
tion of problems (73) and (74) can be established in the function sp@{@s)?’ and

(W e V§(®j)3 : W|(9wj € R}, whereR is the linear space of rigid motions (6). The as-
ymptotic procedures of derivation of problems (73) and (74) from problems (23) and (71)
can be found in [35, 12].

In accordance with Proposition 4.2 the polarization matrix for a cavity is always nega-
tive definite, and that for an absolutely rigid inclusion, is always positive definite. Theorem
3.2 gives an asymptotic formula, which can be combined with the indicated facts and the
information from Proposition 4.2, and it makes possible to deduce the sign of the varia-
tion of a given eigenvalue in terms of the defect properties. For example, in the case of a
defect-crack, with the null volume and negative polarization matrix, the eigenvalues of the
weakened body are smaller compared to the initial body. Such an observation is already
employed in the bone China porcelane shops by the qualified personel.

5. JUSTIFICATION OF ASYMPTOTICS

The following statements well known for the entire body (see [31, 7] and others) are to
be shown in the case of a body with cavities (see (16)).



16 S.A.NAZAROV AND J.SOKOLOWSKI

Proposition 5.1. For a vector function e |9|1(Q; I') the inequality

(75) lIryu; LA@Q)I + IVxu; LA(Q)I < cllD(Vx)u; LAQ)II

holds true. The above inequality remains valid with a constant independerg ¢3,lng],
if the domainQ is replaced by the domaifa(h) with defects.

Proof The particular inequality (75) follows by the Korn inequality

llu; HH(Q)Il < clID(Vx)u; LAQ)II
and the Hardy’s inequality (58).

For analysis of displacement fields in the dom@itm) with caverns (in particular, with
cracks) we apply the methoﬂescribed in [[282.3]. Let us consider the restrictian
of u to the setQ" = O\ Ule BLR, WhereBﬂ;R = {x: |x = Pl| < hR} and radiushR of the
balls is selected in such a way th;? c B%R. We construct an extensianto Q of the

fieldU. To this end, we introduce the annulakz B;jth\Brj]R and perform the stretching
of coordinatesx - ¢! = hfl(x — P’). The vector functionsr and u written in the¢’-
coordinates are denoted Byandu!, respectively. It is evident that

(76) hID(VIU; L2E)IP = [D(V)T; LAEDIP < [D(V,)u; LAQW)IZ;
whereZ = Bor\Br. Let

(77) (el =T, (&) + deh)al,

whered is the matrix (7), and the columal € R is selected in such a way that
(78) [ dehmal e ez

By the orthogonality condition (78), the Korn inequality is valid
(79) 0 HY @) < GRID(VT; LX) = cRID(VU; LAE)]
(see, e.g., [7] and [[23]; Thm 2.3.3]), and the last equality follows from the second formula

(8) since the rigid motionla generates null strains (4). L&t denote an extension in the
Sobolev clas$i! of the vector functioni, from = ontoBg, such that

(80) @ ; H (Bor)ll < callT; H@)I-

Now, the required extension of the fialdnto the whole domaif is given by the formula
[T, xeQ", _

(81) u(x) = { dE)al +T, (&), xeBl, j=1...d

In addition, according to (77) and (76), (79), (80) we have

(82) ID(V)T; LAQ)Il < cllD(Vx)u; LAQW)II-

Applying the Korn’s inequality (79) in the entire domdin we obtain

(83) Iy u; LAQM| + [IVxu; LAQM < 11T LoQ)Il + IV,T; Lall < dID(V)T; LAQ)].
We turn back to the functioa! and find

(84) hIT; HA@)I? < c(lIr; T LAQ)IP + IVT; LAQ)IP).

The other variant of the Korn’s inequality

(85) s HE BarNw)I < cID(V U LAENw))I + W LAE)IP)
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(see e.g., [7] or [[23]§3.1]), after returning back to thecoordinates leads to the relations
(86) h72Jlu; LA Banr NI < ¢ Vxu; L (Banr\)II?
< c(ID(V)u; L2 Banr 2 + h2l|u; LAE]IP)

By virtue of Ch>rj > ch> O forx e Bth\wT o) E%R, the multiplierh~ can be inserted
into the norm, and transformed ttpl, but the normlrj‘lu; L2(E] Il is already estimated in
(83), owing tou = uon Eﬂm. Estimates (86)j = 1,..., J, modified in the indicated manner
along with relation (83) imply the Korn inequality in the domah). m

Remark 5.1. If wj is a domain, then in the proof of Proposition 5.1 we do not need to
restricti toQ", but operate directly with the sef¥h) andBog\w j since there is a bounded
extension operator in the class'idver the Lipschitz boundadw; with the estimate of type

(80). Unfortunately, the presence of cracdo$ makes the existence of such an extension
impossible. However, the Korn’s inequal{86) is still valid in this case, since to maintain
the validility the union of Lipschitz domains is required (§€¢. m

The bilinear form
(87) (U,v) = (A"D(V,)u, D(V)V)a

0
can be taken as a scalar product in Hilbert spab@; T)%. In this way, the integral identity
(12)" can be rewritten as the abstract spectral equation

(88) KM = mhu"

wherem" is the new spectral parameter, afitlis a compact, symmetric, and continuous
operator, thus selfadjoint,

(89) m"= @AY (®"uv ="V, uves.
Eigenvalues of the operat8f' constitute the sequence

(90) m22m22-~2m22-~~—>+0,

with the elements related to the sequence in (18) by the first formula in (89).

The following statement is known as Lemma @most eigenvalues and eigenvectors
(see, e.g., [39)).

Proposition 5.2. Letm andu € $ be such that

(91) lg =1, 18" —nulg = 6.

Then there exists an eigenvalm% of the operatoR", which satisfies the inequality
(92) |m — m?,l <6

Moreover, for anys, > § the following inequality holds

(93) e —wallg < 26/64

whereu, is a linear combination of eigenfunctions of the opera®dr associated to the
eigenvalues from the segmént — &,, m + d.], and|ju.|lg = 1.

For the asymptotic approximatioms andu of solutions to the abstract equation (88)
we take

(94) m = (p + h3up)™ ,u=U; $I"*U,
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whereU stands for the sum of terms separated in ansatz (21). Let us evaluate the quantity
¢ from formula (91). By virtue oft, > 0, for h € (0, hy] andh, > 0 small enough, we have

(95) ¢ =8 —m; §ll = (A + h3up) HIU; Sl supl(2p + ¥ )K", ) — (U, V)|

ve@

< esup|(A"D(VU; D(Vx)V)q — (Ap + hup) (0"U", V)al;

Ve
whereG = {V € § : ||V; 9|l = 1} is the unit sphere. In addition, to estimate the norm
lU; 9| the following relations are used

(96) lIugpy; SIZ = (A"D(V,)Up)s D(Vi)Upy)a = € > O,

Iy Wiy Sl < ™2 i = 1,2, Inyy; S < i,

where the first relation follows from the continuity at the poiR¥sof the second order
derivatives of the vector function, combined with the integral identity (12) and the
normalization condition (19). We transform the expression under thessigim (95).
Substituting into the expression the sum of terms in ansatz (21), we have

lo = (A"D(V)Up). D(V:)V)a = (Ap + hup) (YU V)
(©7) = 211 {( @) - DEIVY = (0" = P Ve
—bup(" U V)a = Xy 1 - 19,

(98) 1] = N(ADV, ;W DVOV)a—H (1o +hup) Yy Wiy V)a = 110-11°, i=12,

L4 = B((AD(VV() D(V)V)a = Ap(WV(p), V)a) = hPup(y"V, V)a
©9)  +0° 2L, {((Ag) ~ ADEIp: DIV = (71 = VG Vg
=hg+hoIt+ 3T 1.
In (97) we used thati, andl, verify identity (12). Furthermore, by the Taylor formulae
(34) and (31), we obtain
(oo
1= 15" =11 < S(tPUD(V)V; LA@)fll + hilV; L@
+ f IV = V'|dx) < chPh¥3D(V)V; LA(Q)|| = ch’/2,
2
15 = (Ag) =~ AP, DVV), 1. |
15 = (A = APNDTIU . DVV),,; + (x = P VAPl DVV),,;
—Ap((yj = ¥ (P U (P), V) -
Let explain the derivation of above formulae. The following substitutions are performed
DVIUp)(X) - &y + DV )Up(X).
AX) - APY) + (x - P)TV AP,
Up)(X) = Ugp) (P),

with pointwise estimates for remainders of ordetsh?, andh, respectively. These gave
rise to the following multipliers in the majorants

ID(VIV; LY (wh)ll < chPID(V,)V; LAQ)I,
IV; L)l < eI v; LAQ)I
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Note that the factoh®? is proportional to (meg.f)"/?, andh™'r; does not exceed a con-
stant on the inclusiow;‘. Beside that, the Poindarnequality is employed

(1012) f IV(x) — V|dx < ch?/2 f IV(x) — V[2dx < ch¥/2h? f IV V(X)Pdx,
wh wh lx)h
] ] ]

together with the relation

(102) f (1 (%) = 7y (P V() x = f (i) =7 e (P (V(X) - V)dlx

HereV' stands for the mean value Vfoverw'j‘. Finally, all the norms of the test function
V are estimated by Proposition 5.1. _
In similar but simpler way, by virtue of Remark 3.1, the telrj”rirom (99) verifies

(103)  h3I)] < (M I 1V, L2 + B2l 2v(p; LAWMIDIV; $If < e,

wherer > 1/2 is arbitrary. It is clear thah®|I}} < CH°. The integralh®l$ cancels the
integral -h*19 in (97) and some parts of integrals from (98), which we are going to
consider.

In the notation of formula (56) we have

Iij =h {(~?I(J')@(VX)V\;(IIP),D(Vx)v)w'i1 + (ﬂ(Pj)D(VX)V\)(jp)’ D(VX)XjV)Q\wT
+h_1(51,2((X _ pJ)TVXﬂ(Pj)D(Vx)W(l;), D(Vx)XiV)Q\w?}

N {(ﬂ[D(Vx).,Xj]vvi(jp)’D(V_X)V)Q - (@(Vx)Mjp), [Z)(Vx)’Xi]V)Q}
(A= APY) = 5ia(x = PYT AP DV )Wy, DVIX Vs

= hil 01t 2

(104)

Furthermore, the integralsl ijo andl I" cancel each other according to the integral identities

(105) 2EI(W, V) = ((APY) = A)eh, DV Vs

2E2(W?, x;V) = (FOJ,XjV)Rs\wj +(FL, V), + (G, V)su,»
The latter formulae are provided by (71), (26) and (29), (30), (32), (33), (36). We point
out that the test functiog — yj(h¢é + P))V(hé + P') in (105) has a compact support,
i.e., the function belongs to the Kondratiev sp&(éél@), and in the analysed integrals the
stretching of coordinatesi— ¢ = h~1(x — P)) has to be performed. )

From integrals* andI * the expressions including asymptotic terg{s (h*(x-P))) =

h3-i S(jip)(x — PJ) are detached,

= P{AIDT. XISy DVIV)a - (ADVIS DV, xi]V)a)
h(L.x ST, V)a,

e = DA = AP) = 6.1(x = PHTVAPHDV)S{, DX V) ofs

(106)
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and the remainders are estimated by virtue of decompositions (27) and (45), namely,
(207)

1/2
P10 < chivi s f ((+ ) + 2L+ i) ®)dx| - < ci,
uplVx |
1/2
12121 < crIv; gl f ((L+ 0™+ h2(L+ i) )@+ [Inh'r)))dx
uplVx;jl
< ch*(@+|Inh]),
1/2
Il < chiv; sl frj‘(1+h*1rj)*6dx <ch,
\ou'j1
1/2
12 -3 < chRIv; sl f rf(L+hr) @+ lIn(h~tr))’dx| < c(L+]Inhi).

\m;'

Inequalities for the integral$O from (98) are obtained in a similar way and look as follows

10— 181 < clirp Vs LA(Q)IN KL + 6 21 In hl) < chf(L + 6; 21 In h),

110 = B (1Sl Va

According to formula (56) for the right-hand sideof problem (52), (53) and the associated
integral identity (59), the sum of the expressidn?ﬂs?1 from (99) andl :g from (106), (108)
(the latter is summed ovgr= 1,...,J andq = 0, 1, 2) turns out to vanish. As a result,
collecting the obtained estimates, we derive that the quantitym formula (94) (see also
(91)) satisfies the estimate

(108)

(109) § < g h*e

foranya € (0,1/2).
Now we are in position to prove the main theorem on asymptotics of solutions of sin-
gularly perturbed problem.
Proof of Theorem 3.2 From the columng, . .., b®») of matrix M with elements (67)
can be constructed linear combinations (68) of vector eigenfunatigps. . , Up+x,-1) as
well as the subsequent terms of asymptotic ansatz (21). As aresugjt=for. .., p+x,—-1

the approximate solutior{(‘./lp +h3up)t, ||U§g;; 55||‘1U((g;} of the abstract equation (88) are

obtained, such that the quantifyfrom relations (91) verifies inequality (109). We apply
the second part of Proposition 5.2 with

(110) 8. = C.h** | a, €(0,0).
Let the list
(111) mh = (A7 oy = ()

include all eigenvalues of the operattt, located in the segment

(112) [(/lp)—l _ C.h3+a., (/lp)_l + C.h3+a.] ’
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for sufficiently smallh,, such that {, + h3,up)‘l with h € (0, h,] belongs to segment (112).
Our immediate objective becomes to show that

(113) n=p, N=uxp.

The quantitiesn) for m > n+N-1 are uniformly bounded ih € (0, h,]. By Proposition

5.1, the same assumptions provide the uniform boundedness of theﬁﬁm{nh(-)ll(ﬁ; 3|
of the vector functionglf, € $" constructed for the vector eigenfunctiodfs, in (12)'
according to (81). Hence, there is an infinitely small sequéhge such that the limit
passagé; — +0, leads to the convergences,

W W0 weakly inHY(Q)® and strongly in.2(Q)% .

(m) (m)
We substitute into integral identity (I2jhe test functiorv e CX(Q\(T' U {PL, - - , P}))3.
According to definition (17) and for siiciently smallh > 0, the stifness matrixA" and
the densityy" coincide on the support afwith A andy, respectively. Therefore, the limit
passagéy; — +0 in the integral identity (12)leads to the equality

(124) mh - m® = (1),

SinceC(Q\(T' U {P,--- ,P)))% is dense irlgll(Q I3, the integral identity (115) holds

for all test functions irv € Hl(Q I')3. We observe that the weighted norﬂn};lu L2(Q)|l
are uniformly bounded by virtue of inequality (75), thus

()"

(7 u(m), (|))Q A m(Y U(m), (|))Q =0(1) forh— +0.

In this way, taking into account formulae (19) and (114), we find that
(116) O Urys U)o = Sm -

Hence, 1% is an eigenvalue, ana‘; is a normalized vector eigenfunction of the limit
problem (12). This implies thai+», > n+N. Considering consenguently the eigenvalues
Aps ..., A1, we conclude that

(117) p=n, xp>N.

In order to establish the inequalitips< nandx, < N we select the factas, in (110) such
that forx¥ # {2 the number {, + h3.{)-1 is excluded from the segment

(118) [ + M) — c.h®™ e (2 + BPu) L + b .

Let K(p“) be the multiplicity of the eigenvalupﬁ') of matrix M. By Proposition 5.1 and
estimate (119) there are, not necessarily distinct, eigenvahgﬁlgs...,m{}me of the

operato" such that

(119) |m|f‘zk) (/lp+ h3 (Q)) l| < h3+01
In addition, Proposition 5.1 furnishes the normalized colunffis= (a8, a0 )7,
such that

ne+N,—-1

(120) Ul - sl > ®u®; 5| <

i=1

s

ﬁ < Eha—a.
0 C,
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whereuf) ,---,ull . are normalized i vector eigenfunctions of the operat®f cor-

responding to all eigenvalues from segment (118). By formulae (96), and (12), (14),
KU® - Uy = Apsial = o(1) for h— +0.
Furthermore, owing to formula (120), we have

KU = U = 4p®) 7 = o(1) for h— +0.

Thus, for stficiently smallh the numbem, cannot be smaller thakqu). Hence, there

are eigenvaluest”, - - - ,th+ «_, Which verify inequality (119) with the majoraifyh+e
Kp -

(since the exponent € (0,1/2) is arbitrary, we can choose, < a without loosing of
the precision in the final estimate (66)). Selecting all eigenvalues of the mtftfx and

subsequently the numbedg_s, - - - , 43, it turns out that necesserily the equality in (117)

occurs, and alsdl, = «9.

The proof of Theorem 3.2 is completenl.

Remark 5.2. Theorem 3.2 provides inequalit¥20), which allows for derivation of some
asymptotic formulae for vector eigenfunctiorfa of problem(12)". We emphasise that,
first, the estimates of remainder are not as good as in the case of eigenvalues, and, sec-
ond, for multiple eigenvalues of matrix{(P’ even the initial approximation for[H is not
available. And this is not a lack of the obtained estimates but just the matter of asymptotic
procedures; we refer the reader to the chapter 7 of @8k and to paper$24, 25, 11, 12]
where is discussed the notion of individual and collective asymptotics of solutions to spec-
tral problems. We present one variant of the estimates proved above.

If /,c(p‘“) is a simple eigenvalue of the matiM(® (for exampled, is a simple eigenvalue
of problem(12)) and B9 the corresponding normalized eigenvector, then there is an eigen-
vaIue/lQ| in problem(12)) (if A, is simple than p= ), which is simple, and together with
the corresponding vector eigenfunction verifies the estimates

15 = 2p — W] < cp@)h®
Iy = B gy +-- + bJ(icl]J)u(p+%p_l)); HY(Q)Il < Cpla)h®,

wheree € (0, 1/2) is arbitrary, and the factors g{a), Cy(a) are independent of parameter
h e (0, hy].
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