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SPECTRAL PROBLEMS IN ELASTICITY. SINGULAR BOUNDARY
PERTURBATIONS

S.A.NAZAROV AND J.SOKOLOWSKI

The paper is dedicated to E. Sanchez-Palencia for his 65th bithday

A. The three-dimensional spectral elasticity problem is studied in an anisotropic
and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks.
Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed
and justified. New technicalities of the asymptotic analysis are related to variable coeffi-
cients of differential operators, vectorial setting of the problem, and usage of intrinsic inte-
gral characteristics of defects. The asymptotic formulae are developed in a form convenient
for application in shape optimization and inverse problems.

Keywords:Singular perturbations; Spectral problem; Asymptotics of eigenfunctions and eigneval-
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1. I.

1.1. Shape optimisation problems for eigenvalues. In the paper asymptotic analysis of
eigenvalues and eigenfunctions is performed with respect to singular perturbations of geo-
metrical domains (see Fig. 1).

Fig. 1

The case of low frequencies is considered for elasticity spectral problems in three spa-
tial dimensions. The results established here can be directly used in some applications,
for example in inverse problems of identification of small defects in the body based on
the observation of elastic eigenmodes. Compared to the existing results in the literature,
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2 S.A.NAZAROV AND J.SOKOLOWSKI

the technical difficulties of the present paper mainly concern vectorial setting of boundary
value problems, anisotropy of physical properties, and variable coefficients of differential
operators, i.e., inhomogeneity of elastic materials. Exisiting results on elasticity problems
with singular perturbations of boundaries (see monographs [35, 38] and [17]) deal with
homogeneous, mainly isotropic elastic bodies. For a system of differential equations, an
asymptotic analysis is required to be much more elaborated and direct adopting of the
methods proper for scalar equations may lead to an unfortunate mistake (cf. [18] and cor-
rections in [1]). The known results are given in particular for singular perturbations of
isolated points of the boundary (small holes in the domain, see [15], [16], [5], [1], [17],
[34] and others), perturbations of straight boundaries including perturbations by changing
the type of boundary conditions (cf. [2]-[3]), and the dependence of the obtained results
in more general geometrical domains on the curvature is clarified in [29] in the case of
scalar equations. The most of attention is paid in the present paper to derivation of explicit
formulae for solutions and extraction of principal characteristics of elastic fields and de-
fects which influence these formulae. To this end, we employ matrix/column notation, use
the notion of elastic polarization matrix (tensor), and perform certain additional technical
calculations which are not needed in the case of homogeneous, isotropic elastic materials.

Small defects can be regarded as singular perturbations of the interior piece of the
boundary of the body. In this way we can consider e.g., the finite number of isolated
points which approximate small cavities. More generally, by means of asymptotic analysis
we can model the creation of caverns, i.e., some piece of material is taken off from the
elastic body. We can also fill the cavern with some other elastic material and model such a
phenomenon by formation of one or more inclusions in the body.

Roughly speaking, the influence of a substantial change of local properties of the elastic
body cannot be analysed by the classical tools of the shape sensitivity analysis or any other
type of sensitivity analysis, but it requires the application of asymptotic methods. Espe-
cially, such methods turn out to be of importance for the microcracks, since the microcrack
implies the creation of a new portion of internal boundary in the body, which cannot be
taken into account in the framework of classical sensitivity analysis based on regular per-
turbations of the coefficients and of the boundary. The asymptotic methods seem to be the
only avalaible tool to perform the efficient analysis of solutions, eigenvalues and eigen-
functions, and of shape functionals, in general setting. The internal perturbations of the
domain by creation of small openings or holes, but very close to the boundary (see Fig. 2)

Fig. 2
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will be a subject of another paper. Here, we consider small caaverns inside the body,
i.e., at a distance form the exterior boundary.

We leave aside an important and still not completed topic related to the so-called con-
centrated masses. Since the pioneering work [36] of E. Sanchez-Palencia, a lot of attention
has been paid to mathematical analysis of vibrations of elastic bodies, with small parts wich
are very heavy (e.g., pellets in an aspic or in a meat-jelly); see papers [37, 32, 19, 8, 10, 4],
as well as the monographs [38, 33] in an incomplete list. Such problems are the best ex-
amples of the topping role of the boundary layer effect. Although we analyse the boundary
layers in details, the purposes of the present paper is essentially different so that we cannot
mutually serve for an analysis of concentrated masses.

1.2. Preliminaries, anisotropic inhomogeneous elastic body. Let us consider in three
spatial dimensions the elasticity problem for an elastic bodyΩ, written in the matrix/column
notation, see e.g., [9], [23] for more details,

Lu = D(−∇x)
⊤A(x)D(∇x)u = 0 in Ω,(1)

NΩu = D(n)⊤A(x)D(∇x)u = gΩ on ∂Ω,(2)

whereA is a symmetric positive definite matrix function inΩ of size 6×6, with measurable
or smooth elements, consisting of the elastic material moduli (the Hooke’s or stiffness
matrix) andD(∇x) is 6× 3-matrix of the first order differential operators,

D(ξ)⊤ =


ξ1 0 0 0 2−1/2ξ3 2−1/2ξ2
0 ξ2 0 2−1/2ξ3 0 2−1/2ξ1
0 0 ξ3 2−1/2ξ2 2−1/2ξ1 0

 ,(3)

u is displacement column,n = (n1,n2,n3)⊤ is the unit outward normal vector on∂Ω
and ⊤ stands for transposition. In this notation the strainε(u; x) and stressσ(u; x) =
A(x)D(∇x)u(x) columns are given respectively by

D(∇x)u = ε(u) =
(
ε11, ε22, ε33,

√
2ε23,

√
2ε31,

√
2ε12

)⊤
,(4)

AD(∇x)u = σ(u) =
(
σ11, σ22, σ33,

√
2σ23,

√
2σ31,

√
2σ12

)⊤
.(5)

The factors 2−1/2 and
√

2 imply that the norms of strain and stress tensors coincide with
the norms of columns (4) and (5), respectively. From the latter property in matrix/column
notation, any orthogonal transformation of coordinates inR3 gives rise to orthogonal trans-
formations of columns (4) and (5) inR6.

Remark 1.1. The strains(4) and the stresses(5) degenerate on the space of rigid motions,

R = {d(x)c : c ∈ R6} , dimR = 6 ,(6)

where

d(x) =


1 0 0 0 −2−1/2x3 2−1/2x2

0 1 0 2−1/2x3 0 −2−1/2x1

0 0 1 −2−1/2x2 2−1/2x1 0

 .(7)

This subspace plays a critical role in many questions in the elasticity theory, it appears
also in the so-called polynomial property[20, 21] (see also[28]).
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The following equalities can be verified by direct computations,

D(∇x)D(x)⊤ = I6 , D(∇x)d(x) = O6 ,(8)

d(∇x)
⊤D(x)⊤|x=0 = I6 , d(∇x)

⊤d(x)|x=0 = I6 ,

whereIN andON are the unit and null N× N-matrices, respectively.

The loadgΩ is supposed to be self equilibrated in order to assure the existence of a
solution to the elasticity problem,

∫

∂Ω

d(x)⊤gΩ(x)dsx = 0 ∈ R6 .(9)

2. V   .

Consider inhomogenuous anisotropic elastic bodyΩ ⊂ R3 with the Lipschitz boundary
∂Ω. Spectral problems for the body are formulated in a fixed Cartesian coordinate system
x = (x1, x2, x3)⊤, and in matrix notation.

We assume that the matrixA of elastic moduli is a matrix function of spatial variable
x ∈ R3, symmetric and positive definite forx ∈ Ω ∪ ∂Ω. The problem on eigenvibrations
of the bodyΩ takes the form

L(x,∇x)u(x) := D(−∇x)
⊤A(x)D(∇x)u(x) = λγ(x)u(x) x ∈ Ω,(10)

NΩ(x,∇x)u = D(n)⊤A(x)D(∇x)u(x) = 0, x ∈ Σ, u(x) = 0, x ∈ Γ,(11)

whereγ > 0 is the material density,λ is the eigenvalue, the square of eigenfreguency. The
partΓ of the surface∂Ω is clamped, and the first boundary condition is prescribed on the

traction free remaining partΣ = ∂Ω�Γ of the surface. We denote by
o
H1(Ω;Γ)3 the energy

space, i.e., the subspace of the Sobolev spaceH1(Ω)3 with null traces on the subsetΓ. The
variational formulation of problem (10)-(11) reads :

Find a non trivial functionu ∈
o
H1(Ω; Γ)3 and a numberλ such that for all test functions

v ∈
o
H1(Ω; Γ)3 the following integral identity is verified

(12) (ADu,Dv)Ω = λ(γu, v)Ω ,

where (, )Ω is the scalar product in the Lebesgue spaceL2(Ω).
If the stiffness matrixA and the densityγ are measurable functions of the spatial variables
x, and in addition uniformly positive and bounded, then variational problem (12) admits
the normal positive egenvaluesλp, which form the sequence

(13) 0< λ1 ≤ λ2 ≤ · · · ≤ λp ≤ · · · → ∞
taking into account its multiplicities, and the corresponding eigenfunctionsu(p), the elastic
vibration modes, are subject to the orthogonality and normalization conditions

(14) (γu(p),u(q))Ω = δp,q , p,q ∈ N := {1,2, . . . } ,
whereδp,q is the Kronecker symbol.

In the sequel it is assumed that the elements of the matrixA and the densityγ are
smooth functions inΩ, continuous up to the boundary. In such a caseΩ is called asmooth
inhomogenuous body. For such a body the elastic modesu(p) are smooth functions in the
interior ofΩ, and up to the boundary in a case of the smooth surface∂Ω. We have also the
equivalence between the variational form and the form (10)-(11) of spectral problem. We
require only theinterior regularity of elastic modes in the sequel, in any case the elastic
modes have singularities on the collision lineΣ ∩ Γ and therefore, are excluded from the
Sobolev spaceH2(Ω)3.
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Along with the smooth inhomogenuous bodyΩ let us consider a bodyΩh with defects;
hereh > 0 stands for a small dimensionless geometrical parameter, which describes the
relative size of defects. Actually, we select in the interior ofΩ the pointsP1, . . . ,PJ and
denote byω1, . . . , ωJ the elastic bodies bounded by the Lipschitz surfaces∂ω1, . . . , ∂ωJ,
furthemore, for the sake of simplicity we assume that the originO belongs toω j , j =
1, . . . , J. The body with defects is defined by

(15) Ξ(h) = Ω(h) ∪ ωh
1 ∪ · · · ∪ ωh

J

where

(16) ωh
j =
{
x : ξ j := h−1(x− P j) ∈ ω j

}
, Ω(h) = Ω�

J⋃

j=1

ωh
j .

The stiffness matrix and the density of thecompositebody (15) take the form

(17) Ah(x) =

{
A(x), x ∈ Ω(h);
A( j)(ξ j), x ∈ ωh

j ;
γh(x) =

{
γ(x), x ∈ Ω(h);
γ j(ξ j), x ∈ ωh

j .

The matricesA andA( j) as well as the scalarsγ andγ( j) are different each from other,
i.e.,ωh

j are inhomogenuous inclusions of small diameters. We assume thatA( j) andγ( j)

are measurable, bounded and positive uniformly onω j . In particular, for almost allξ ∈ ω j

the eigenvalues of the matrixA( j)(ξ) are bounded from below by a constantc j > 0. There
are no special assumptions on the relation between the properties of the inclusions and
of the matrix (body without inclusions), we assume only that the densitiesγ, γ( j), and
entries of the matricesA, A( j) are of similar orders, respectively. We point out that in
the framework of our asymptotic analysis, in section 4 there are performed the pasages
A( j) → 0 andγ( j) → 0 (a hole) as well asA( j) → ∞ andγ( j) → ∞ (an absolutely rigid
inclusion). However, the passageγ( j) → ∞ with the fixed matrix functionA( j) (heavy
concentrated masses) can be analysed with some other ansätze, see [35, 37, 4]. In the
fracture mechanics, the most intereting case is the weakening of elastic material due to the
crack formation. The cracks are modelled by two-sided, two dimensional surfaces, with
the first boundary conditions from (11) prescribed on the both crack lips, i.e. the surface
is traction free from both sides. The case of a microcrack is not formally included in our
problem statement, since we assume that the defectω j is of positive volume and with the
Lipschitz boundary∂ω j . However, the asymptotic procedure works also for the cracks.
Small changes which are required in the justification part, are given separately (see the end
of section 4, proof of Proposition 5.1 and Remark 5.1). The polarization matrices for the
cracks can be found in [40], [30].

The exchange ofγ andA by γh andAh from (17), respectively, transforms (12) in
the integral identity for the body weakened by defectsωh

1, . . . , ω
h
J, the identity is further

denoted by (12)h. We observe also, that for smooth stiffness matrixA and densityγ the
differential problem for vibrations of a composite body contains not only the system of
equations, denoted in our notation by (10)h, restricted to union of domains (15), along
with boundary conditions (11)h, but in addition it contains the transmition conditions on
the surface∂ωh

j where the ideal contact is assumed. Since we use only the variational
formulations of spectral problems, the transmission conditions are not explicitely given. In
the similar way as for problem (13), there is the sequence of eigenvalues for problem (12)h

(18) 0< λh
1 ≤ λh

2 ≤ · · · ≤ λh
p ≤ · · · → +∞,
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and the corresponding eigenfunctionsuh
( j) meet the orthogonality and normalization condi-

tions

(19) (γhuh
(p),u

h
(q))Ω = δp,q, p,q ∈ N

3. F   

We introduce the following asymptotic ansätze for eigenvalues and eigenfunctions in
problem (12)h

λh
p = λp + h3µp + . . . ,(20)

uh
(p)(x) = u(p)(x) + h

J∑

j=1

χ j(x)
(
w1 j

(p)

(
h−1
(
x− P j

))
+ hw2 j

(p)

(
h−1
(
x− P j

)))
+ h3v(p) + . . .

(21)

whereχ j ∈ C∞c (Ω), j = 1, . . . , J, are cut-off functions, with non overlaping supports inΩ,
and for eachj, χ j(x) = 1 for x ∈ ω j andχi(PJ) = δi, j .

First, we assume that the egenvalueλ = λp in problem (12) is simple, and for brevity the

subscriptp is omitted. The corresponding eigenfunctionu = u(p) ∈
o
H1(Ω; Γ)3, normalized

by condition (14), is smooth in the interior of the domainΩ.
Columns of the matricesd(x) andD(x)⊤ form a basis in twelve dimensional space of

linear vector functions inR3. In this way, the Taylor formula takes the form

(22) u(x) = d(x− P j)a j +D(x− P j)⊤ε j +O(|x− P j |2) ,

and, by equalities (4), (5) and (8), the columns

a j = d(∇x)
⊤u(P j) , ε j = D(∇x)u(P j) ,

represent the column of rigid motions, and of strains, at the pointP j . Since in the vicinity
of the inclusionωh

j we have

ε(u, x) = ε j +O(x) = ε j +O(h) ,

the main terms of discrepancies, left by the fieldu(x) in problem (12)h for the composite
bodyΩh, appear in the system of equations inωh

j and in the transmition conditions on∂ωh
j .

For the compensation of the discrepancies are used the special solutions of the elasticity
problem in a homogenuous space with the inclusionω j of unit size

(23)

L0 j(∇ξ)W jk(ξ) := D(−∇ξ)TA(P j)D(∇ξ)W jk(ξ) = 0, ξ ∈ Θ j = R
3�ω j ,

L j(ξ,∇ξ)W jk(ξ) := D(−∇ξ)TA( j)(ξ)D(∇ξ)W jk(ξ) = D(∇ξ)A( j)(ξ)ek, ξ ∈ ω j ,

W jk
+ (ξ) =W jk

− (ξ), D(ν(ξ))T(A( j)(ξ)D(∇ξ)W jk
− (ξ)

−A(P j)D(∇ξ)W jk
+ (ξ)) = D(ν(ξ))T(A(P j) −A( j)(ξ))ek, ξ ∈ ∂ω j .

Hereν is the unit vector of the exterior normal on the boundary∂ω j of the bodyω j , ek =

(δ1,k, . . . , δ6,k)⊤ is a orthant in the spaceR6, W+ andW− are limit values of the functionW
on the surface∂ω j evaluated from outside and from inside of the inclusionω j , respectively.

We denote byΦ j the fundamental (3× 3)-matrix of the operatorL0 j(∇ξ) in R3. The
(3× 3)-matrix is infinitely differentiable inR3�O and enjoys the following positive homo-
geneity property

(24) Φ(tξ) = t−1Φ(ξ) , t > 0 .
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It is known (see, e.g., [[27], Ch. 6]), that the solutionsW jk of problem (23) admit the
expansion

(25) W jk(ξ) =
6∑

p=1

M j
kp

3∑

q=1

Dq
p(∇x)Φ

jq(ξ) +O(|ξ|−3), ξ ∈ R3
�BR,

whereDp = (D1
p,D2

p,D3
p) is a line from the matrixD (see (3)),Φ j1,Φ j2,Φ j3 are columns

of the matrixΦ j , and the radiusR of the ballBR = {ξ : |ξ| < R} is chosen such that
ω j ⊂ BR. The coefficientsM j

kp in (25) form the (6× 6)-matrix M j which is called the
polarization matrixof the elastic inclusionω j (see[40, 22] and also [[27], Ch. 6], [5],
[28]). Some properties of the polarization matrix, and some comments on the solvability
of problem (23) are given in section 4.

The columnesW j1, . . . ,W j6 compose the (3× 6)-matrixW j and we set

(26) w1 j(ξ) =W j(ξ)ε j .

In section 5 it is verified, that the right choice of boundary layer is given by formula (26),
since it compensates the main terms of discrepancies. From (25) and (26) it follows that

(27) w1 j(ξ) = (M jD(∇ξ)Φ j(ξ)⊤)⊤ε j +O(|ξ|−3) , ξ ∈ R3
�BR .

Relation (27) can be differentiated term by term on the setR3�BR under the rule∇ξO(|ξ|−p) =
O(|ξ|−p−1).

In view of (24) the detached term of asymptotics equals

(28) h2(M jD(∇x)Φ
j(x− P j)⊤)⊤ε j .

It produces discrepancies of orderh3 (we point out that there is the factorh on w1 j in
(21)), which should be taken into account when constructing the regular type termh3v.
On the other hand, discrepancies of the same orderh3 are left in the problem forv by the
subsequent termh2w(h−1(x − P j)), which solves the transmission problem analoguous to
(23)

(29) L0 j(∇ξ)w2 j(ξ) = F0 j(ξ), ξ ∈ Θ j , L j(ξ,∇ξ)w2 j(ξ) = F j(ξ), ξ ∈ ω j ,

w2 j
+ (ξ) = w2 j

− (ξ); D(ν(ξ))T(A( j)(ξ)D(∇ξ)w2 j
− (ξ)(30)

−A(P j)D(∇ξ)w2 j
+ (ξ)) = G j(ξ), ξ ∈ ∂ω j ,

and with the decay rateO(|ξ|−1) at |ξ| → ∞, smaller compared to the decay rate ofw1 j .
We derive the right-hand sides for problems (29), (30). First, by the representation of

the stiffness matrix

(31) A(x) = A(P j) + (x− P j)T∇xA(P j) +O(|x− P j |2)

and the corresponding splitting of differential operator with the variable coefficientsL0(x,∇x)
from (10), we find that the right-hand side of system (29) is the main term of the expression
(32)
−L0(x,∇x)w

1 j(ε−1(x−P j)) = ε−1D(∇ξ)T(ξT∇xA(P j))D(∇ξ)w1 j(ξ)+ · · · =: ε−1F0 j(ξ)+ . . .

We note thatL0 j(∇x)w1 j(h−1(x − P j)) = 0 in (32), and the dots. . . stand for the terms of
lower order, which are unimportant for our asymptotic analysis. The Taylor formula (31)
generates the following discrepancy also in the second transmission condition (30)

G j(ξ) = D(ν(ξ))T(ξT∇xA(P j))(D(∇ξ)w1 j(ξ) + ε j)(33)

+D(ν(ξ))T(A(P j) −A( j)(ξ))D(∇ξ)U j(ξ).
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The second term comes out from the elaborated Taylor formula

(34) u(x) = d(x− P j)a j +D(x− P j)Tε j + U j(x− P j) +O(|x− P j |3)

and contains the quadratic vector function

(35) U j(x− P j) =
3∑

p,q=1

(xp − P j
p)(xq − P j

q)U jpq, U jpq =
1
2
∂2u
∂xp∂xq

(P j).

Finally, the right-hand side of system (29) takes the form

(36) F j(ξ) = −λγ j(ξ)u(P j) +D(∇ξ)TA( j)(ξ)D(∇ξ)U j(ξ).

Besides the term obtained from the quadratic vector function (35) in the Taylor formula
(34), expression (36) contains the discrepancyλγ ju(P j) which originates from the inertial
termλhγ juh in accordance to ansätze (35) and (35).

In order to establish properties of solutions to problem (29), (30), we need some com-
plementary results.

Lemma 3.1. Assume that Z(ξ) = D(∇ξ)⊤Y(ξ) and

(37) Y(ξ) = ρ−2Y(θ), Z(ξ) = ρ−3Z(θ),

where(ρ, θ) are spherical coordinates andY ∈ C∞(S2)6, Z ∈ C∞(S2)3 are smooth vector
functions on the unit sphere.

The model problem

(38) L0 j(∇ξ)X(ξ) = Z(ξ), ξ ∈ R3
�{0},

admits a solution X(ξ) = ρ−1X(θ), which is defined up to the termΦ j(ξ)c with c∈ R3, and
becomes unique under the orthogonality condition

(39)
∫

S2

D(ξ)TA0(P j)D(∇ξ)X(ξ)dsξ = 0 ∈ R3.

Proof After separating variables and rewriting the operatorL0 j(∇ξ) = r−2L(θ,∇θ, r∂/∂r)
in spherical coordinates, system (38) takes the form

(40) L j(θ,∇θ,−1)X(θ) = Z(θ), θ ∈ S2.

SinceL(θ,∇θ,0) is the formally adjoint operator forL j(θ,∇θ,−1) (see, for example, [[27];
Lemma 3.5.9]), the compability condition for the system of differential equations (40)
implies the equality

(41)
∫

S2

Z(θ)dsθ = 0 ∈ R3 .

The equality represents the orthogonality condition in the spaceL2(S2) of the right-hand
sideZ of system (40) to the solutions of the system

(42) L j(θ,∇θ,0)V(θ) = 0 θ ∈ S2 ,

which are but constant columns. Indeed, after transformation to the Cartesian coordinate
systemξ equations (42) take the formL0 j(∇ξ)V(ξ) = 0, ξ ∈ R3�O, and any solution
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V(ξ) = ρ0V(θ)) is constant. Letb > a > 0 be certain numbers, and letΞ be the annulus
{ξ : a < ρ < b}. We have

ln
b
a

∫

S2

Z(θ)dsθ =

b∫

a

ρ−1dρ
∫

S2

Z(θ)dsθ =
∫

Ξ

ρ−3Z(θ)dξ =

=

∫

Ξ

D(∇ξ)TY(ξ)dξ =
∫

S2
b

D(ρ−1ξ)TY(ξ)dsξ −
∫

S2
a

D(ρ−1ξ)TY(ξ)dsξ = 0 .

We have used here the Gauss formula the fact that the integrands on the spheres of radiia
andb are equal tob−2D(θ)⊤Y anda−2D(θ)⊤Y, respectively, i.e., the integrals cancel one
another.

Therefore, the compability condition (41) is verified and system (40) has a solution
X ∈ C∞(S2)3. The solution is determined up to a linear combination of traces onS2 of
columns of the fundamental matrixΦ(ξ); recall that the matrixΦ(ξ) is the only homogen-
uous solutions of degree−1 of the homogenuous model problem (38).

According to the definition and utility the columnsΦq verify the relations

(43)
∫

S2

D(ξ)TA(P j)D(∇ξ)Φq(ξ)dsξ =
∫

B1

L0 j(∇ξ)Φq(ξ)dξ =
∫

B1

δ(ξ)eqdξ = eq

whereξ is the unit outer normal to the sphereS2 = ∂B1, B1 = {ξ : ρ < 1}, δ is the Dirac
mass,eq = (δ1,q, δ2,q, δ3,q)⊤ is the basis vector of the axisxq, and the last integral overB1

is taken in the sense of the theory of distributions. Thus, owing to (43), the orthogonality
condition (39) can be satisfied which implies the uniqueness of the solutionX to problem
(38), (39).�

In view of (32) and (27), (28), the right-hand side of (38) takes the form

(44) Z(ξ) = D(∇ξ)T(ξT∇ξA(P j))D(∇ξ)(M jD(∇ξ)φ j(ξ)T)Tε j .

General results of [6] (see also[[27];§3.5, §6.1, §6.4]) show that there exists a unique
decaying solution of problem (29), (30), which admits the expansion

(45) w2 j(ξ) = X j(ξ) + Φ j(ξ)C j +O(ρ−2(1+ | ln |ρ||)), ξ ∈ R3
�BR.

In the same way as in relation (27), the relation (45) can be differentiated term by term
under the rule∇ξO(|ρ|−p(1+ | ln ρ|)) = O(|ρ|−p−1(1+ | ln ρ|)).

The method [13] is applied in order to evaluate the columnC j .

Lemma 3.2. The equality is valid

(46) C j = λ(γ j − γ(P j))|ω j |u(P j) − I j ,

where|ω j | is the volume, andγ j = |ω j |−1
∫
ω j
γ j(ξ)dξ the mean scaled density of the inclu-

sionω j , i.e., its mass isγ j |ω j |, and

(47) I j =

∫

S2
D(ξ)⊤(ξ⊤∇ξA(P j))D(∇ξ)(M jD(∇ξ)Φ j(ξ)⊤)⊤dsξε

j .
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Proof In the ballBR we apply the Gauss formula and obtain, that forR→ ∞,

(48)

∫

BR�ω j

F0 jdξ +
∫

ω j

F jdξ +
∫

∂ω j

G jdsξ =
∫

ω j

L jw2 jdξ

+

∫

∂ω j

D(ν)T(A( j)(ξ)D(∇ξ)w2 j
− −A(P j)D(∇ξ)w2 j

+ )dsξ

= −
∫

∂BR

D(ρ−1ξ)TA(P j)D(∇ξ)w2 j(ξ)dsξ

= −
∫

∂BR

D(R−1ξ)TA(P j)D(∇ξ)(X j(ξ) + φ j(ξ)C j)dξ + o(1) = −C j + o(1).

We have also taken into accout equalities (39) and (43). On the other hand, in view of
formulae (36) and (32) it follows that

(49)

∫

ω j

F j(ξ)dξ = −λ
∫

ω j

γ j(ξ)dξu(P j) +
∫

ω j

D(∇ξ)TA( j)(ξ)D(∇ξ)U j(ξ)dξ

= −λγ j |ω j |u(P j) +
∫

∂ω j

D(ν(ξ))TA( j)(ξ)D(∇ξ)U j(ξ)dξ,

∫

BR�ω j

F0 j(ξ)dξ = −
∫

∂ω j

D(ν(ξ))T(ξT∇ξA(P j))D(∇ξ)w1 j(ξ)dsξ

+

∫

∂BR

D(R−1ξ)T(ξT∇xA(P j))D(∇ξ)w1 j(ξ)dsξ.

We turn back to decomposition (27), and taking into account the homogeneity degree of
the integrand, we see that the integral over the sphereS2

R = ∂BR equals

(50)
∫

S2

D(ξ)T(ξT∇xA(P j))D(∇ξ)(M jD(∇ξ)φ j(ξ)T)Tdsξε
j +O(R−1).

The integrals over surfaces∂ω j in the right-hand sides of (49) simplify with two integrals,
which appear according to (33) in formula

(51)

∫

∂ω j

G j(ξ)dsξ =
∫

∂ω j

D(ν(ξ))T(ξT∇xA(P j))D(∇ξ)w1 j(ξ)dsξ

−
∫

∂ω j

D(ν(ξ))TA( j)(ξ)D(∇ξ)U j(ξ)dξ +
∫

∂ω j

D(ν(ξ))T(ξT∇xA(P j))dsξε
j

+
∫

∂ω j

D(ν(ξ))TA(P j)D(∇ξ)U j(ξ)dsξ.

Finally, by the equality

D(−∇x)
⊤A0(P j)D(−∇x)U

j(ξ) +D(−∇x)
⊤(x⊤∇xA0(P j))ε j = λγ0(P j)u(P j) ,

resulting from equation (33) at the pointx = P j , the sum of the pair of two last integrals in
(51) takes the form
∫

ω j

(D(−∇ξ)⊤A(P j)D(−∇ξ)U j(ξ) +D(−∇ξ)⊤(ξ⊤∇xA0(P j))ε j)dξ = λγ0(P j)|ω j |u(P j) .

It remains to pass to the limitR→ +∞. �
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Now, we are in position to determine the termsv andµ in ans̈atze (21) and (20), which
are given by solutions of the problem

(52) L(x,∇x)v(x) = λγ(x)v(x) + µγ(x)u(x) + f (x), x ∈ Ω�{P1, . . . ,PJ},

(53) D(ν(x))TA(x)D(∇x)v(x) = 0, x ∈ Σ, v(x) = 0, x ∈ Γ.
The right-hand sidef includes the discrepancies, which results from the terms of boundary
layer type and of the orderh3. By decompositions (27) and (45) we obtain
(54)

f (x) =
J∑

j=1

(L(x,∇x) − λγ(x)I3)χ j(x){(M jD(∇x)Φ
j(x− P j)T)Tε j + X j(x) + Φ j(x− P j)C j}.

The terms in the curly braces enjoy the singularitiesO(|x − P j |−2) andO(|x − P j |−1),
respectively, therefore, it should be clarified in what sense problem (52), (53) is considered.
Equation (52) is posed in the punctured domainΩ, thus the Dirac mass and its derivatives,
which are obtained by the action of the operatorL on the fundamental matrix, are not taken
into account. Beside that, by virtue of the definition of the termX j implying a solution to
the model problem (38) with the right-hand side (44), and according to the estimates of
remainders in the expansions (27), (45), the following relations are valid

(55) f (x) = O(r−2
j (1+ ln r j)), r j := |x− P j | → 0, j = 1, . . . , J,

which accepts the differentation according to the usual rule

∇xO(r−p
j (1+ | ln r j |))) = O(r−p−1

j (1+ | ln r j |))) .
In other words, expression (54) should be written in the combersome way

f (x) =
J∑

j=1

{
([L, χ j ] − λγχ jI3)(S j1 + S j2)+(56)

+χ jD(∇x)
⊤((A−A(P j) − (x− P j)⊤∇xA(P j))D(∇x)S

j1 + (A−A(P j))D(∇x)S
j2
}
.

Here, [A,B] = AB − BA is the commutator of operatorsA andB, andS j1, S j2 = S j1 +

X j + Φ jC j are expressions in curly braces in (54).

Lemma 3.3. Letλ be a simple eigenvalue in problem(10), (11), and u the corresponding
vector eigenfunction normalized by condition(14). Problem(52), (53) admits a solution
v ∈ H1(Ω)3 if and only if

µ = − lim
δ→0

∫

Ωδ
u(x)⊤ f (x)dx ,(57)

whereΩδ = Ω�(B1
δ
∪ · · · ∪ BJ

δ
) andB j

δ
= {x : r j < δ}.

Proof The variant of one dimensional Hardy’s inequality
1∫

0

|U(r)|2dr ≤ c



1∫

0

r2
∣∣∣∣∣
dU
dr

(r)
∣∣∣∣∣
2

dr +

1∫

1/2

|U(r)|2dr



provides the estimate

(58) ‖r−1
j V; L2(Ω)‖ ≤ c‖V; H1(Ω)‖.

In this way, the last term in the integral identity for problem (52), (53)

(59) (A∇xv,∇xV)Ω − λ(γv,V)Ω = µ(ρu,V)Ω + ( f ,V)Ω, V ∈ H1(Ω)3,
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turns out to be a continuous functional over the Sobolev spaceH1(Ω)3, owing to the in-
equalities

|( f ,V)Ω| ≤ c


‖V; L2(Ω)‖ +

J∑

j=1



∫

B
j
δ

r2
j | f (x)|2dx



1/2 

∫

B
j
δ

r−2
j |V(x)|2dx



1/2
≤ c‖V; H1(Ω)‖,

∫

B
j
δ

r2
j | f (x)|2dx≤ c

δ∫

0

r2
j r
−2
j (1+ | ln r j |)2dr j < +∞.

Thus, Lemma follows from the Riesz representation theorem and Fredholm alternative, in
addition, formula (57) is valid because the integrand is a smooth function inΩ�{P1, . . . ,PJ},
with the absolutely integrable singularities at the pointsP1, . . . ,PJ. �

Remark 3.1. If the points Pj are considered as tips of the complete conesR3�P j , the
elliptic theory in domains with conical points (see the fundamental contributions[6, 13, 14]
and also e.g., monograph[27]) allows for estimates in weighted norms of the solution v
to problem(52), (53). Indeed, owing to relation(55) for any τ > 1/2 the inclusions
rτj f ∈ L2(U j)3 are valid, whereU j stands for a neighbourhood of the point Pj , in addition

U j ∩Uk = ∅ for j , k, therefore, the terms rτ−2
j v, rτ−1

j ∇xv and rτj∇2
xv are square integrable

inU j . �

We evaluate the limit in the right-hand side of (57) forδ → +0. By the Green formula
and representation (54), the limit is equal to the sum of the surface integrals
(60)∫

∂B
j
δ

(
S j(x)⊤D(δ−1(x− PJ))⊤A(x)D(∇x)u(x) − u(x)⊤D(δ−1(x− P j))⊤A(x)D(∇x)S

j1(x) + S j2
)
dsx .

We apply the Taylor formulae (31) and (22) to the matrixA and the vectoru, and
take into account relations (8) for the matricesd andD. We also introduce the stretched
coordinatesξ = δ−1(x− P j). As a result, up to an infinitely small term asδ→ +0, integral
(60) equals to

(61)

−δ−1I0 + I1 + I2 + I3 + I4 + I5 + o(1)

= −δ−1

∫

S2

u(P j)TD(ξ)TA(Pi)D(∇ξ)S j1(ξ)dsξ

−
∫

S2

(d(ξ)a j − u(P j))TD(ξ)TA(P j)D(∇ξ)S j1(ξ)dsξ

−
∫

S2

u(P j)TD(ξ)T(ξT∇xA(P j))D(∇ξ)S j1(ξ)dsξ

−
∫

S2

u(P j)TD(ξ)TA(P j)D(∇ξ)(X j(ξ) + φ j(ξ)C j)dsξ

+

∫

S2

(S j0(ξ)TD(ξ)TA(P j)D(∇ξ)D(ξ)Tε j

−(D(ξ)Tε j)TD(ξ)TA(P j)D(∇ξ)S j1(ξ))dsξ + o(1).
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IntegralsI0 andI1 vanish. Indeed, due to the second equality in (8) we have :

(62)

R6 ∋
∫

S2

d(ξ)TD(ξ)TA(P j)D(∇ξ)S j1(ξ)dsξ

= −
∫

B1

d(ξ)TD(ξ)TA(P j)D(∇ξ)(M jD(∇ξ)Φ j(ξ)T)Tε jdξ

= −
∫

B1

d(ξ)TD(ξ)Tδ(ξ)dξM jε j = −(D(∇ξ)d(ξ))T |ξ=0M jε j = 0.

These equalities are to be understood in the sense of distributions. By formula (47), we
obtain

I3 = −u(P j)⊤I j .

Relations (39) and (43) yield

I4 = −u(P j)⊤C j .

Finally, in the same way as in (62), we obtain

(63)

I5 =

∫

B1

(D(ξ)Tε j)TD(∇ξ)TA(P j)D(∇ξ)S j1(ξ)dξ

= −(ε j)T

∫

B1

D(ξ)D(∇xi)
T M jε jδ(ξ)dξ = (ε j)T M jε j .

Now, we could apply the derived formulae. We insert the obtained expressions forIq into
(61)→ (60)→ (57) and in view of equation (46) for the columnC j , we conclude that

(64) µ =

J∑

j=1

((ε j)T M jε j + λ(γ(P j) − γ j)|ω j ||u(P j)|2).

If the equality (64) holds, then problem (52), (53) admits a solutionv ∈ H1(Ω)3. The
construction of the detached terms in ansätze (20) and (21) is completed.

In the forthcoming sections the formal asymptotic analysis is confirmed and generalized
into the following result.

Theorem 3.2. Letλp be an eigenvalue in problem(12)with the multiplicityκp, i.e., in the
sequence(13)

(65) λp−1 < λp = · · · = λp+κp−1 < λp+κp .

There exist hp > 0 and cp > 0 such that for h∈ (0,hp] the eigenvaluesλh
p, · · · , λh

p+κp−1 of

singularly perturbed problem(12)h, and only the listed eigenvalues, verify the estimates

(66) |λp+q−1 − λp − h3µ
(p)
q | ≤ cp(α)h3+α , q = 1, . . . , κp ,

where cp(α) is a multiplier depending on the number p and the exponentα ∈ (0,1/2) but
independent of h∈ (0,hp], whileµ(p)

1 , · · · , µ
(p)
κp

imply the eigenvalues of symmetricκp× κp-
matrixMp with the elements
(67)

Mp
km =

J∑

j=1

(
ε(up+k−1; P j)M jε(up+k−1; P j) − λp(γ j − γ(P j))|ω j |up+k−1(P j)⊤up+k−1(P j)

)
,
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M j is the polarization matrix of the scaled inclusion (see(25)and(27)), u(p), · · · ,u(p+κp−1)

are vector eigenfunctions in problem(12) corresponding to eigenvalueλp and orthonor-
malized by condition(14), finally the quantitiesγ j and |ω j | are defined in Lemma 3.2.

We explain which changes are necessary in ansätze (20), (21) and in the asymptotic
procedure in order to construct asymptotics in the case of a multiple eigenvalueλp. First,
for µp andu(p) in (20) and (21) should be selected unknown numberµ

(p)
q and the linear

combination

(68) u(q)
(p) = b(q)

1 u(p) + · · · + b(q)
κp

u(p+κp−1)

of vector eigenfunctions; the columnb(q) = (b(q)
1 , · · · ,b

(q)
κp

)⊤ ∈ Rκp is of the unit norm.
After the indicated changes the formulae for boundary layersw1 jq andw2 jq remain un-
changed. The same applies to problem (52), (53) for the correction termv(q)

(p) of regular
type. However, the compability conditions are modified, and turn into theκp relations

(69) µ
(p)
q (γu(q)

(p),up+m−1)Ω = lim
δ→+0

∫

Ωδ
up+m−1(x)⊤ f (x)dx , m= 1, . . . , κp .

The left-hand side of (69) equals toµ(p)
q b(q)

m by (14) and (68). It can be evaluated by the
same method as for formula (57), that (69) becomes the system of algebraic equations

(70) µ
(p)
q b(q)

m =

κp∑

k=1

M(p)
mkb

(q)
k , m= 1, . . . , κp .

with coefficients from (67). In this way, the eigenvalues of the matrixM(p) and its eigen-
vectorsb(q) ∈ Rκp furnish the explicit values for the terms of ansätze (20) and (21).
We emphasise that by the orthogonality and normalization conditions (b(q))⊤b(k) = δq,k
for the eigenvectors of symmetric matrixM(p), it follows that the vector eigenfunctions
u(p) =

(
u(1)

(p), . . . ,u
(κp)
(p)

)
, p = 1, · · · , κp, in problem (12), which are given by formulae (68),

are as well orthonormalized by the conditions (14).
If we have good luck, and from the beginning the eigenvectorsu(p), · · · ,u(p+κp−1) have

the required form (68), then the matrixM(p) is diagonal and the system of equations (70) is
decomposed into the collection ofκp independent relations, fully analoguous to relations
(64) in the case of a simple eigenvalue. Such an observation is the key ingredient of the
algorithm of defects identification which will be described in a forthcoming paper, and it
makes the identification method insensitive to the multiplicity of eigenvalues in the limit
problem.

4. R   

The results presented in this section are borrowed from [22], and forthcoming paper
[30].

Variational formulation of problem (23) for the special fieldsW jk, which define the
elements of the polarization matrixM j in decomposition (25), are of the form

(71)
2E j(W jk,W) := (A(P j)D(∇ξ)W jk,D(∇ξ)W)Θ j + (A( j)D(∇ξ)W jk,D(∇ξ)W)ω j

= (R( j)ek,D(∇ξ)W)ω j ,W ∈ V1
0(R3)3,

whereV1
0(R3) is the Kondratiev space [6], which is the completion of the linear space

C∞c (R3) (infinitely differentiable functions with compact supports) in the weighted norm

‖W; V1
0(R3)‖ = (‖∇ξW; L2(R3)‖2 + ‖(1+ ρ)−1W; L2(R3)‖2)1/2
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The following result, established in [22, 30] can be shown by using transformations ana-
loguous to (62) and (63) operating with the fieldsW jk andW jm = D(ξ)⊤ek +W jm.

Proposition 4.1. The equalities hold true

(72) M j
km = −2E j(W jk,W jm) −

∫

ω j

(Akm(P j) − (A( j))km(ξ))dξ .

From the above representation it is clear that the matrixM j is symmetric, the property
follows by the symmetry of the stiffness matricesA0, A j and of the energy quadratic form
E j . In addition, the representation allows us to deduce if the matrixM j is negative or
positive definite. We writeM1 < M2 for the symmetric matricesM1 andM2 provided all
eigenvalues ofM2 − M1 are non-negative.

Proposition 4.2. (see [30])1◦ If A( j)(ξ) < A(P j) for ξ ∈ ω j (the inclusion is softer
compared to the matrix material), then Mj is a negative definite matrix.
2◦ If the matrixA( j) is constant andA−1

( j) < A(P j)−1 (the homogenuous inclusion is rigid

compared to the matrix), then Mj is a positive definite matrix.

It is also possible to consider the limit cases, either of a cavity withA j = 0, or of an
absolutely stiff inclusion withA( j) = ∞. For the case of a cavity the diifferential problem
takes the form

L0 j(∇ξ)W jk(ξ) = 0, ξ ∈ Θ j = R
3
�ω j ,(73)

D(ν(ξ))TA(P j)D(∇ξ)W jk(ξ) = −D(ν(ξ))TA(P1)ek, ξ ∈ ∂ω j .

For an absolutely rigid inclusion the integral-differential equations occur as follows

L0 j(∇ξ)W jk(ξ) = 0, ξ ∈ Θ j , W jk(ξ) = d(ξ)c jk −D(ξ)Tek, ξ ∈ ∂ω j ,(74)
∫

∂ω j

d(ξ)⊤D(ν(ξ))⊤A(P j)(D(∇ξ)W jk(ξ) − ek)dsξ = 0 ∈ R6 .

The Dirichlet conditions in (74) contains a columnc jk ∈ R6, which allows for rigid mo-
tion of ω j and can be determined by the integral condition which annuls the principal
vector and moment of forces applied to the bodyω j vanish. The variational formula-
tion of problems (73) and (74) can be established in the function spacesV1

0(Θ j)3 and
{W ∈ V1

0(Θ j)3 : W
∣∣∣∂ω j ∈ R}, whereR is the linear space of rigid motions (6). The as-

ymptotic procedures of derivation of problems (73) and (74) from problems (23) and (71)
can be found in [35, 12].

In accordance with Proposition 4.2 the polarization matrix for a cavity is always nega-
tive definite, and that for an absolutely rigid inclusion, is always positive definite. Theorem
3.2 gives an asymptotic formula, which can be combined with the indicated facts and the
information from Proposition 4.2, and it makes possible to deduce the sign of the varia-
tion of a given eigenvalue in terms of the defect properties. For example, in the case of a
defect-crack, with the null volume and negative polarization matrix, the eigenvalues of the
weakened body are smaller compared to the initial body. Such an observation is already
employed in the bone China porcelane shops by the qualified personel.

5. J  

The following statements well known for the entire body (see [31, 7] and others) are to
be shown in the case of a body with cavities (see (16)).
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Proposition 5.1. For a vector function u∈
o
H1(Ω; Γ)3 the inequality

(75) ‖r−1
j u; L2(Ω)‖ + ‖∇xu; L2(Ω)‖ ≤ c‖D(∇x)u; L2(Ω)‖

holds true. The above inequality remains valid with a constant independent of h∈ (0,h0],
if the domainΩ is replaced by the domainΩ(h) with defects.

Proof The particular inequality (75) follows by the Korn inequality

‖u; H1(Ω)‖ ≤ c‖D(∇x)u; L2(Ω)‖ ,
and the Hardy’s inequality (58).

For analysis of displacement fields in the domainΩ(h) with caverns (in particular, with
cracks) we apply the method described in [[26];§2.3]. Let us consider the restriction̂u

of u to the setΩh = Ω�
⋃J

j=1B
j
hR, whereB j

hR = {x : |x − P j | < hR} and radiushRof the

balls is selected in such a way thatωh
j ⊂ B

j
hR. We construct an extensioñu to Ω of the

field û. To this end, we introduce the annulaeΞ j
h = B

j
2hR�B

j
hR and perform the stretching

of coordinatesx 7→ ξ j = h−1(x − P j). The vector functionŝu andu written in theξ j-
coordinates are denoted byû j andu j , respectively. It is evident that

(76) h‖D(∇ξ )̂u j ; L2(Ξ)‖2 = ‖D(∇ξ )̂u; L2(Ξ j
h)‖2 ≤ ‖D(∇x)u; L2(Ω(h))‖2;

whereΞ = B2R�BR. Let

(77) û j(ξ j) = û j
⊥(ξ j) + d(ξ j)a j ,

whered is the matrix (7), and the columna j ∈ R6 is selected in such a way that

(78)
∫

Ξ

d(ξ j)T û j
⊥(ξ j)dξ j = 0 ∈ R6.

By the orthogonality condition (78), the Korn inequality is valid

(79) ‖̂u j
⊥; H1(Ξ)‖ ≤ cR‖D(∇ξ )̂u j

⊥; L2(Ξ)‖ = cR‖D(∇ξ )̂u j ; L2(Ξ)‖
(see, e.g., [7] and [[23]; Thm 2.3.3]), and the last equality follows from the second formula
(8) since the rigid motiondaj generates null strains (4). Letũ j

⊥ denote an extension in the
Sobolev classH1 of the vector function̂u j

⊥ from Ξ ontoBR, such that

(80) ‖̂u j
⊥; H1(B2R)‖ ≤ cR‖̂u j

⊥; H1(Ξ)‖.
Now, the required extension of the fieldu onto the whole domainΩ is given by the formula

(81) ũ(x) =

{
û(x), x ∈ Ωh ,

d(ξ j)a j + ũ j
⊥(ξ j), x ∈ B j

hR, j = 1, . . . , J.

In addition, according to (77) and (76), (79), (80) we have

(82) ‖D(∇x)̃u; L2(Ω)‖ ≤ c‖D(∇x)u; L2(Ω(h))‖.
Applying the Korn’s inequality (79) in the entire domainΩ, we obtain

(83) ‖r−1
j u; L2(Ωh)‖ + ‖∇xu; L2(Ωh)‖ ≤ ‖r−1

j ũ; L2(Ω)‖ + ‖∇x̂u; LΩ‖ ≤ c‖D(∇x)̃u; L2(Ω)‖.

We turn back to the function̂u j and find

(84) h‖̂u j ; H1(Ξ)‖2 ≤ c(‖r−1
j ũ; L2(Ω)‖2 + ‖∇x̃u; L2(Ω)‖2).

The other variant of the Korn’s inequality

(85) ‖u j ; H1(B2R�ω j)‖2 ≤ c(‖D(∇x)u
j ; L2(Ξ�ω j)‖2 + ‖u j ; L2(Ξ)‖2)
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(see e.g., [7] or [[23];§3.1]), after returning back to thex-coordinates leads to the relations

(86)
h−2‖u; L2(B2hR�ω

h
j )‖2 ≤ c‖∇xu; L2(B2hR�ω

h
j )‖2

≤ c(‖D(∇x)u; L2(B2hR�ω
h
j )‖2 + h−2‖u; L2(Ξ j

hR)‖2)

By virtue ofCh ≥ r j ≥ ch > 0 for x ∈ B2hR�ω
h
j ⊃ Ξ

j
hR, the multiplierh−1 can be inserted

into the norm, and transformed tor−1
j , but the norm‖r−1

j u; L2(Ξ j
hR)‖ is already estimated in

(83), owing tõu = u onΞ j
hR. Estimates (86),j = 1, . . . , J,modified in the indicated manner

along with relation (83) imply the Korn inequality in the domainΩ(h). �

Remark 5.1. If ω j is a domain, then in the proof of Proposition 5.1 we do not need to
restrictû toΩh, but operate directly with the setsΩ(h) andB2R�ω j since there is a bounded
extension operator in the class H1 over the Lipschitz boundary∂ω j with the estimate of type

(80). Unfortunately, the presence of cracksωh
j makes the existence of such an extension

impossible. However, the Korn’s inequality(86) is still valid in this case, since to maintain
the validility the union of Lipschitz domains is required (see[7]). �

The bilinear form

(87) 〈u, v〉 = (AhD(∇x)u,D(∇x)v)Ω

can be taken as a scalar product in Hilbert space
o
H1(Ω; Γ)3. In this way, the integral identity

(12)h can be rewritten as the abstract spectral equation

(88) Khuh = mhuh ,

wheremh is the new spectral parameter, andKh is a compact, symmetric, and continuous
operator, thus selfadjoint,

(89) mh = (λh)−1; 〈Khu, v〉 = (γhu, v)Ω , u, v ∈ H .
Eigenvalues of the operatorKh constitute the sequence

(90) mh
1 ≥ mh

2 ≥ · · · ≥ mh
p ≥ · · · → +0 ,

with the elements related to the sequence in (18) by the first formula in (89).
The following statement is known as Lemma onalmost eigenvalues and eigenvectors

(see, e.g., [39]).

Proposition 5.2. Letm andu ∈ H be such that

(91) ‖u‖H = 1 , ‖Khu −mu‖H = δ .
Then there exists an eigenvaluemh

p of the operatorKh, which satisfies the inequality

(92) |m −mh
p| ≤ δ.

Moreover, for anyδ• > δ the following inequality holds

(93) ‖u − u•‖H ≤ 2δ/δ•

whereu• is a linear combination of eigenfunctions of the operatorKh, associated to the
eigenvalues from the segment[m − δ•,m + δ•], and‖u•‖H = 1.

For the asymptotic approximationsm andu of solutions to the abstract equation (88)
we take

(94) m = (λp + h3µp)−1 , u = ‖U;H‖−1U ,
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whereU stands for the sum of terms separated in ansatz (21). Let us evaluate the quantity
δ from formula (91). By virtue ofλp > 0, for h ∈ (0,hp] andhp > 0 small enough, we have

δ = ‖Khu −mu;H‖ = (λp + h3µp)−1‖U;H‖−1 sup
v∈S
|(λp + h3µp)〈KhU, 〉 − 〈U,V〉|(95)

≤ csup
v∈S
|(AhD(∇x)U;D(∇x)V)Ω − (λp + h3µp)(ρhUh,V)Ω|;

whereS = {V ∈ H : ‖V;H‖ = 1} is the unit sphere. In addition, to estimate the norm
‖U;H‖ the following relations are used

‖u(p);H‖2 = (AhD(∇x)u(p),D(∇x)u(p))Ω ≥ c > 0,(96)

‖hiχ jw
i j
(p);H‖ ≤ chi+1/2, i = 1,2, ‖h3v(p);H‖2 ≤ ch3,

where the first relation follows from the continuity at the pointsP j of the second order
derivatives of the vector functionu(p) combined with the integral identity (12) and the
normalization condition (19). We transform the expression under the signsup in (95).
Substituting into the expression the sum of terms in ansatz (21), we have

(97)

I0 = (AhD(∇x)u(p),D(∇x)V)Ω − (λp + h3µp)(γhu(p),V)Ω

=
∑J

j=1

{
((A( j) −A)D(∇x)V)ωh

j
− λp((γh − γ)u(p),V)ωh

j

}

−h3µp(γhu(p),V)Ω =:
∑J

j=1 I j
0 − I0

0,

(98) I j
i = hi(AD(∇x)χ jw

i j
(p),D(∇x)V)Ω−hi(λp+h3µp)(γhχ jw

i j
(p)V)Ω = I j0

i −I j0
i , i = 1,2,

(99)

I4 = h3((AD(∇x)v(p)D(∇x)V)Ω − λp(γv(p),V)Ω) − h6µp(γhv,V)Ω

+h3∑J
j=1

{
((A( j) −A)D(∇x)v(p),D(∇x)V)ωh

j
− λp((γ j − γ)v(p),V)ωh

j

}

= h3I0
4 + h6I01

4 + h3∑J
j=1 I j

4.

In (97) we used thatu(p) andλp verify identity (12). Furthermore, by the Taylor formulae
(34) and (31), we obtain
(100)
|I j

0 − I j1
0 − I j2

0 | ≤ c(h2‖D(∇x)V; L1(ω)h
j ‖ + h‖V; L1(ωh

j )‖

+

∫

ωh
j

|V − V
j |dx) ≤ ch2h3/2‖D(∇x)V; L2(Ω)‖ = ch7/2,

I j1
0 = ((A( j) −A(P j))ε j ,D(∇x)V)

ω
j
h
,

I j2
0 = ((A( j) −A(P j))D(∇x)U

j
(p),D(∇x)V)

ω
j
h
+ ((x− P j)T∇xA(P j)ε j

(p)D(∇x)V)
ω

j
h

−λp((γ j − γ(P j))u(p)(P j),V)ωh
j
.

Let explain the derivation of above formulae. The following substitutions are performed

D(∇x)u(p)(x) 7→ ε j
(p) +D(∇x)U(p)(x),

A(x) 7→ A(P j) + (x− P j)⊤∇xA(P j),

u(p)(x) 7→ u(p)(P
j),

with pointwise estimates for remainders of ordersh2, h2, andh, respectively. These gave
rise to the following multipliers in the majorants

‖D(∇x)V; L1(ω j
h)‖ ≤ ch3/2‖D(∇x)V; L2(Ω)‖,

‖V; L1(ω j
h)‖ ≤ ch3/2‖r−1

j V; L2(Ω)‖ .
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Note that the factorh3/2 is proportional to (mes3ωh
j )

1/2, andh−1r j does not exceed a con-

stant on the inclusionωh
j . Beside that, the Poincaré inequality is employed

(101)
∫

ωh
j

|V(x) − V
j |dx≤ ch3/2

∫

ωh
j

|V(x) − V
2|2dx≤ ch3/2h2

∫

ωh
j

|∇xV(x)|2dx,

together with the relation

(102)
∫

ω j

(γ j(x) − γ j)u(p)(P
j)TV(x)dx=

∫

ω j

(γ j(x) − γ j)u(p)(P
j)T(V(x) − V

j
)dx.

HereV
j
stands for the mean value ofV overωh

j . Finally, all the norms of the test function
V are estimated by Proposition 5.1.

In similar but simpler way, by virtue of Remark 3.1, the termI j
4 from (99) verifies

(103) h3|I j
4| ≤ ch3(h1−τ‖rτ−1

j ∇xv(p); L2(ωh
j )‖ + h2−τ‖rτ−2

j v(p); L2(ωh
j )‖)‖V;H‖ ≤ ch4−τ,

whereτ > 1/2 is arbitrary. It is clear thath6|I01
4 | ≤ Ch6. The integralh3I0

4 cancels the
integral−h3I0

0 in (97) and some parts of integralsI j
i from (98), which we are going to

consider.
In the notation of formula (56) we have

(104)

I j
i = hi

{
(A( j)D(∇x)w

i j
(p),D(∇x)V)ωh

j
+ (A(P j)D(∇x)w

i j
(p),D(∇x)χ jV)Ω�ωh

j

+h−1δi,2((x− P j)T∇xA(P j)D(∇x)w
1 j
(p),D(∇x)χ jV)Ω�ωh

j

}

+
{
(A[D(∇x), χ j ]w

i j
(p),D(∇x)V)Ω − (AD(∇x)w

i j
(p), [D(∇x), χ j ]V)Ω

}

+((A−A(P j) − δi,1(x− P j)T∇xA(P j))D(∇x)w
i j
(p),D(∇x)χ jV)Ω�ωh

j

=: hiI j0
i + I j1

i + I j2
i .

Furthermore, the integralshiI j0
i andI ji

i cancel each other according to the integral identities

(105)
2E j(w1 j , χ jV) = ((A(P j) −A( j))ε

j
p,D(∇ξ)χ jV)ω j ,

2E2(w2 j , χ jV) = (F0 j , χ jV)R3�ω j
+ (F j ,V)ω j + (G j ,V)∂ω j ,

The latter formulae are provided by (71), (26) and (29), (30), (32), (33), (36). We point
out that the test functionξ 7→ χ j(hξ + P j)V(hξ + P j) in (105) has a compact support,
i.e., the function belongs to the Kondratiev spaceV1

0(R3), and in the analysed integrals the
stretching of coordinatesx 7→ ξ = h−1(x− P j) has to be performed.

From integralsI j1
i andI j2

i the expressions including asymptotic termsS ji
(p)(h

−1(x−P j)) =

h3−iS ji
(p)(x− P j) are detached,

(106)
I j1
i0 = h3

{
(A[D(∇x), χ j ]S

ji
(p),D(∇x)V)Ω − (AD(∇x)S

ji
(p)[D(∇x), χ j ]V)Ω

}

= h3([L, χ j ]S ji ,V)Ω,
I j2
i0 = h3((A−A(P j) − δi,1(x− P j)T∇xA(P j))D(∇x)S

ji
(p),D(∇x)χ jV)Ω�ωh

j
,
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and the remainders are estimated by virtue of decompositions (27) and (45), namely,
(107)

|I j1
1 − I j1

10| ≤ ch‖V;H‖



∫

sup|∇xχ j |

((1+ h−1r j)
−6 + h−2(1+ h−1r j)

−8)dx



1/2

≤ ch4,

|I j2
1 − I j2

10| ≤ ch2‖V;H‖



∫

sup|∇xχ j |

((1+ h−1r j)
−4 + h−2(1+ h−1r j)

−6)(1+ | ln(h−1r j)|)2dx



1/2

≤ ch4(1+ | ln h|),

|I j1
2 − I j1

20| ≤ ch‖V;H‖



∫

Ω�ωh
j

r4
j (1+ h−1r j)

−6dx



1/2

≤ ch4,

|I j2
2 − I j2

20| ≤ ch2‖V;H‖



∫

Ω�ωh
j

r2
j (1+ h−1r j)

−4(1+ | ln(h−1r j)|)2dx



1/2

≤ ch4(1+ | ln h|).

Inequalities for the integralsI j0
i from (98) are obtained in a similar way and look as follows

:

(108)
|I j0

i − I j0
i0 | ≤ c‖r−1

j V; L2(Ω)‖hih4−i(1+ δi,2| ln h|) ≤ ch4(1+ δi,2| ln h|),
I j0
i0 = h3λ(p)(ρχ jS

ji
(p),V)Ω .

According to formula (56) for the right-hand sidef of problem (52), (53) and the associated
integral identity (59), the sum of the expressionsh3I0

4 from (99) andIiq
i0 from (106), (108)

(the latter is summed overj = 1, . . . , J andq = 0,1,2) turns out to vanish. As a result,
collecting the obtained estimates, we derive that the quantityδ from formula (94) (see also
(91)) satisfies the estimate

(109) δ ≤ cαh
3+α

for anyα ∈ (0,1/2).
Now we are in position to prove the main theorem on asymptotics of solutions of sin-

gularly perturbed problem.
Proof of Theorem 3.2 From the columnsb(1), . . . , b(κp) of matrixM(p) with elements (67)
can be constructed linear combinations (68) of vector eigenfunctionsu(p), . . . ,u(p+κp−1) as
well as the subsequent terms of asymptotic ansatz (21). As a result, forq = p, . . . , p+κp−1
the approximate solutions

{
(λp + h3µp)−1 , ‖U(q)

(p);H‖−1U(q)
(p)

}
of the abstract equation (88) are

obtained, such that the quantityδ from relations (91) verifies inequality (109). We apply
the second part of Proposition 5.2 with

(110) δ• = c•h
3+α• , α• ∈ (0, α) .

Let the list

(111) mh
n = (λh

n)−1, · · · ,mh
n+N−1 = (λh

n+N−1)−1

include all eigenvalues of the operatorKh, located in the segment

(112) [(λp)−1 − c•h
3+α• , (λp)−1 + c•h

3+α• ] ,
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for sufficiently smallh•, such that (λp + h3µp)−1 with h ∈ (0,h•] belongs to segment (112).
Our immediate objective becomes to show that

(113) n = p, N = κp .

The quantitiesmh
n for m≥ n+N−1 are uniformly bounded inh ∈ (0,h•]. By Proposition

5.1, the same assumptions provide the uniform boundedness of the norm‖̃uh
(m);

o
H1(Ω; Γ)3‖

of the vector functions̃uh
(m) ∈ Hh constructed for the vector eigenfunctionsuh

(m) in (12)h

according to (81). Hence, there is an infinitely small sequence{hi}, such that the limit
passagehi → +0, leads to the convergences,

(114) mh
m→ m0

m = (λ0
m)−1 , ũh

(m) → ũ0
(m) weakly inH1(Ω)3 and strongly inL2(Ω)3 .

We substitute into integral identity (12)h the test functionv ∈ C∞c (Ω�(Γ ∪ {P1, · · · ,PJ}))3.
According to definition (17) and for sufficiently smallh > 0, the stiffness matrixAh and
the densityγh coincide on the support ofv withA andγ, respectively. Therefore, the limit
passagehi → +0 in the integral identity (12)h leads to the equality

(115) (AD ũ0
(m),Dv)Ω = λ

0
m(γ ũ0

(m), v)Ω .

SinceC∞c (Ω�(Γ ∪ {P1, · · · ,PJ}))3 is dense in
o
H1(Ω; Γ)3, the integral identity (115) holds

for all test functions inv ∈
o
H1(Ω; Γ)3. We observe that the weighted norms‖r−1

j ũh
(m); L2(Ω)‖

are uniformly bounded by virtue of inequality (75), thus

(γh ũh
(m), ũ

h
(l))Ω − λ

0
m(γ ũh

(m), ũ
h
(l))Ω = o(1) for h→ +0 .

In this way, taking into account formulae (19) and (114), we find that

(116) (γ ũ0
(m), ũ

0
(l))Ω = δm,l .

Hence,λ0
m is an eigenvalue, and̃u0

(m) is a normalized vector eigenfunction of the limit
problem (12). This implies thatp+κp ≥ n+N. Considering consenquently the eigenvalues
λp, . . . , λ1, we conclude that

(117) p ≥ n , κp ≥ N .

In order to establish the inequalitiesp ≤ n andκp ≤ N we select the factorc• in (110) such
that forµ(k)

p , µ
(q)
p the number (λp + h3µ

(k)
p )−1 is excluded from the segment

(118) [(λp + h3µ
(q)
p )−1 − c•h

3+α• , (λp + h3µ
(q)
p )−1 + c•h

3+α• ] .

Let κ(q)
p be the multiplicity of the eigenvalueµ(q)

p of matrixM(p). By Proposition 5.1 and
estimate (119) there are, not necessarily distinct, eigenvaluesmh

l(q), . . . ,m
h
l(q+κq−1) of the

operatorKh such that

(119) |mh
l(k) − (λp + h3µ

(q)
p )−1| ≤ cαpqh

3+α .

In addition, Proposition 5.1 furnishes the normalized columnsa(k) = (a(k)
n• , · · · , a

(k)
n•+N•−1)⊤,

such that

(120)

∥∥∥∥∥∥∥
U(k)

(p) − ‖U
(k)
(p);H‖

n•+N•−1∑

i=1

a
(k)
i u

(h)
i ;H

∥∥∥∥∥∥∥
≤ δ
δ•
≤ c

c•
hα−α• ,
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whereuh
n• , · · · , uh

n•+N•−1 are normalized inH vector eigenfunctions of the operatorKh cor-
responding to all eigenvalues from segment (118). By formulae (96), and (12), (14),

|〈U(k)
(p) − U(l)

(p)〉 − λpδk,l | = o(1) for h→ +0 .

Furthermore, owing to formula (120), we have

|〈U(k)
(p) − U(l)

(p)〉 − λp(a(k))⊤a(l)| = o(1) for h→ +0 .

Thus, for sufficiently smallh the numberN• cannot be smaller thanκ(q)
p . Hence, there

are eigenvaluesmh
l , · · · ,mh

l+κ(q)
p −1

which verify inequality (119) with the majorantcα•pqh3+α•

(since the exponentα ∈ (0,1/2) is arbitrary, we can chooseα• < α without loosing of
the precision in the final estimate (66)). Selecting all eigenvalues of the matrixM(p), and
subsequently the numbersλp−1, · · · , λ1, it turns out that necesserily the equality in (117)
occurs, and alsoN• = κ

(q)
p .

The proof of Theorem 3.2 is completed.�

Remark 5.2. Theorem 3.2 provides inequality(120), which allows for derivation of some
asymptotic formulae for vector eigenfunctions uh

(p) of problem(12)h. We emphasise that,
first, the estimates of remainder are not as good as in the case of eigenvalues, and, sec-
ond, for multiple eigenvalues of matrixM(p) even the initial approximation for uh(p) is not
available. And this is not a lack of the obtained estimates but just the matter of asymptotic
procedures; we refer the reader to the chapter 7 of book[23] and to papers[24, 25, 11, 12],
where is discussed the notion of individual and collective asymptotics of solutions to spec-
tral problems. We present one variant of the estimates proved above.

If µ(q)
p is a simple eigenvalue of the matrixM(p) (for example,λp is a simple eigenvalue

of problem(12)) and b(q) the corresponding normalized eigenvector, then there is an eigen-
valueλh

q in problem(12)) (if λp is simple than p= q), which is simple, and together with
the corresponding vector eigenfunction verifies the estimates

|λh
q − λp − h3µ

(q)
p | ≤ cp(α)h3+α ,

‖uh
(p) − (b(q)

1 u(p) + · · · + b(q)
κp

u(p+κp−1)); H1(Ω)‖ ≤ Cp(α)hα ,

whereα ∈ (0,1/2) is arbitrary, and the factors cp(α), Cp(α) are independent of parameter
h ∈ (0,hp].
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