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Abstract : Après avoir exhibé un exemple basique montrant que les SVM à

marges douces (CSVM) ne sont pas tolérantes au bruit de classification uniforme,

nous proposons une version modifiée de CSVM basée sur une fonction objectif

utilisant un estimateur des slack variables du problème non bruité. Les bonnes

propriétés de cet estimateur sont appuyées par une analyse théorique ainsi que

par des simulations numériques effectuées sur un jeu de données synthétique.

Mots-clés : Classification Supervisée, Séparateurs linéaires, Machines à Vecteurs

de Support, Bruit de Classification Uniforme

1 Introduction

Learning from noisy data is a problem of interest both from the practical and theoretical

points of view. In this paper, where we address the problem of supervised binary classi-

fication, we focus on a particular noise setting where the noise process uniformly flips

the true label of an example to the opposite label. This noise, referred to as uniform

classification noise, was introduced by (Angluin & Laird, 1988).

Some learning algorithm families, such as statistical queries learning algorithms, can

be adapted to deal with classification noise. But it is unclear whether the best known

methods such as kernel methods can handle such data. For instance, despite soft-margin

Support Vector Machines (CSVM) seem to be a viable strategy to learn from noisy data,

we show that there are (simple) distributions for which they may fail to learn a good

classifier when provided with such data. Here, we propose a noise-tolerant large margin

learning algorithm that generalizes CSVMs such that (a) the objective function of the

learning algorithm takes into account an unbiased estimation of the non noisy slack

errors and, (b) this objective function reduces to the usual CSVM objective when the

data are clean. In addition, we show that minimizing this objective function allows to

minimize noise-free CSVM objective function if a sufficient number of data is available.

The paper is organized as follows. Section 2 introduces the notations that will be used

in the paper. Section 3 shows that CSVM may fail to learn from noisy data. Section 4

presents our noise tolerant version of CSVMs together with its theoretical justifications.

Section 5 discusses approaches to learn from noisy data related to the work presented
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here. Numerical simulations are presented in Section 6: they show the behavior of our

algorithm on a linearly separable distribution in the noise-free and noisy contexts.

2 Notation

X denotes the input space, assumed to be an Hilbert space, equipped with an inner

product denoted by ·. We restrict our study to the binary classification problem and the

target space Y is {−1,+1} and the class of functions we focus on is that of hyperplanes

from X . These assumptions make our analysis seemlessly applicable with kernels.

Given a fixed but unknown distribution D on the product space X × Y , a noise-free

sample is a sample S = {(xi, yi)}n
i=1 of data independently and identically distributed

according to D. A uniform classification noise process with rate η ∈ [0, 0.5) corrupts

a sample S by independently flipping each yi to −yi with probability η. This can be

modeled by introducing a biased1 Rademacher vector σ of size n such that P(σi =
1) = 1 − η and P(σi = −1) = η and saying that Sσ = (xi, σiyi)

n
i=1 is the noisy

version of S. This modeling will be useful in the analysis of our algorithm.

For a linear classifier f(x) = w · x + b, the class predicted for x by f is given

by sign (x); depending on the context, f will denote either the linear function or its

associated classifier. The functional margin γ : R
X × X × Y → R is such that

γ(f,x, y) = yf(x) = y(w · x + b). For a (noisy) sample S (Sσ) and parameters

w and b, we introduce the notation γi = yi(w ·xi + b) (γσ

i = σiγi = σiyi(w ·xi + b))
– the dependence of γi (γσ

i ) on w and b is not shown explicitly in the notation since it

will always be clear what parameters w and b are referred to.

The problem that we address in this paper is that of learning a large margin separating

hyperplane from Sσ = (xi, σiyi)
n
i=1, where large margin must be understood as large

margin with respect to the true (noise-free) sample.

3 Failure of CSVM on Noisy Data

A very natural thought about the problem that we tackle is that soft margins SVM, in

particular L1-soft margins SVM, on which we will focus, should be tolerant to classi-

fication noise. Indeed, recalling that the soft-margin problem applied on a sample S
writes (see, e.g., Schölkopf & Smola (2002))

min
w,b

1

2
w · w +

C

n

n
∑

i=1

ℓ(γi), (1)

where ℓ is the hinge loss function such that ℓ(γ) = 1− γ if 1− γ ≥ 0 and 0 otherwise,

it might be hoped that the second term of this objective could help dealing with uniform

classification noise provided C > 0 is well chosen. In other terms, one may think that

1
P(σi = 1) = P(σi = −1) = 0.5 for a Rademacher variable.
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Figure 1: The two-margin distribution D2-margin. Black circles denote positive data and white

ones negative data (see Definition 1 for details).

given a noisy sample Sσ , there exists a value C∗ of C such that the solution of

min
w,b

1

2
w · w +

C∗

n

n
∑

i=1

ℓ(γσ

i )

allows for a generalization error that decreases towards 0 when the number of data

grows, if D is linearly separable.

It turns out that it is not the case, i.e. there exist distributions that will make CSVM

fail to produce a reliable classifier when applied to a noisy sample. To show that, let us

introduce a distribution of data that we call the two-margin distribution.

Definition 1 (Two-margin distribution)

We define this distribution D2-margin on X ×Y , where X = R
2. Let ε > 0. Let the four

points xa = [−1 ε], xb = [1 ε], xc = [−1 − ε] and xd = [1 − 1] and the associated

classes ya = yb = +1 and yc = yd = −1.

Given pa, pb, pc, pd > 0 verifying pa + pb + pc + pd = 1, an instance drawn ac-

cording to D2-margin is such that P [(x,y) = (xa, ya)] = pa, P [(x,y) = (xb, yb)] = pb,

P [(x,y) = (xc, yc)] = pc and P [(x,y) = (xd, yd)] = pd. xa and xb are therefore

the locations of the positive instances according to D2-margin while xc and xd are the

locations of the negative ones.

Figure 1 depicts D2-margin.

We can note that for ε > 0, D2-margin is a linearly separable distribution. In addition,

we can sense that if a uniform classification noise corrupts the distribution, a classi-

cal CSVM may favor a vertical classification over a horizontal one for some values of

η, ε, pa, pb, pc and pd. This is what is going to be used to proof the following proposi-

tion. We first introduce a notion of noise tolerance. Note that this definition is different

from that provided by Angluin in the sense that we are interested by consistency on a

finite sample.
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Definition 2 (Uniform classification noise tolerance)

Let A be a learning algorithm. A is said to be tolerant to uniform classification noise,

if for all linearly separable distributions D on X × Y , for all noise rates η < 1
2 , for all

δ < 1, there exists N ∈ N such that for all S drawn from D of size n > N , if A is

given access to Sσ then, with probability at least 1− δ, A outputs a classifier consistent

with S.

Proposition 1 ()

CSVM is not tolerant to uniform classification noise: There exists a linearly separable

distribution D on X × Y and a noise level η < 1
2 such that, for all δ < 1, there exists

N ∈ N such that for all S drawn from D of size n > N , if CSVM is given access to

Sσ , then with probability at least 1 − δ, CSVM outputs a classifier non-consistent with

S.

Proof. In order to prove this proposition, it suffices to show that there exists at least

one distribution that makes CSVM not consistent with the noise free version S of Sσ if

the number of data is sufficiently high. . . .

Since the proof of this proposition is rather tedious, much part of it is deferred to

the appendix (section 8.1). Here, we only give an informal proof, which works in two

steps:

1. we assume that CSVM has direct access to a noisy version of distribution D2-margin;

optimization problem (1) can therefore be written in terms of the noise rate η and

the parameters of D2-margin;

2. we propose a set of values for ε, pa, pb, pc, pd and η such that, whatever the value

of C in (1), the objective function of (1) for any zero-error hypothesis w is always

larger than the value of the objective function for another hypothesis wη known

to have error at least min{pa, pb, pc, pd}; this simply says that it is not possible

to get a zero error hypothesis on this simple linearly separable distribution when

corrupted by noise and ends the proof.

3. using Chernoff bounds arguments, it is obvious that a finite sample version can

be derived; this ends the proof.

Said otherwise, CSVM may favor the wrong margin if the amount of noise and the value

of ε are such that this is the better way to minimize (1). �

4 Proposed Approach

From the analysis of the previous section it turns out that the problem of running the

classical CSVM on noisy data comes from the evaluation of the slack errors, accounted

for by the second term of (1). If it was possible to estimate the value of the noise free

slack errors, it would be possible to accurately learn a large margin classifier from the

noisy data. In this section, we show that such an estimation is possible.
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4.1 NSVM: a Noise Tolerant Version of CSVM

For a given noise rate η, introduce the following function:

ℓ̂(γ) =
1

1 − 2η
[(1 − η)ℓ(γ) − ηℓ(−γ)] . (2)

We have the following lemma:

Lemma 1

∀i ∈ {1, . . . , n}, ℓ̂(γσ

i ) is an estimator of ℓ(γi), i.e.:

Eσ(ℓ̂(γσ

i )) = ℓ(γi).

Consequently,

Eσ(
1

n

n
∑

i=1

ℓ̂(γσ

i )) =
1

n

n
∑

i=1

ℓ(γi)

Proof. The proof is straightforward.

Eσ(ℓ̂(γσ

i )) = Eσi
(ℓ̂(γσ

i ))

=
1

1 − 2η
[(1 − η)Eσi

ℓ(γσ

i ) − ηEσi
ℓ(γσ

i )]

=
1

1 − 2η
[(1 − η) ((1 − η)ℓ(γi) + ηℓ(−γi))

−η ((1 − η)ℓ(−γi) + ηℓ(γi))]

=
1

1 − 2η

ˆ

(1 − η)2ℓ(γi) + 0 − η2ℓ(γi)
˜

= ℓ(γi).

� This lemma simply says that, for given w and b, we can estimate the actual slack

errors from the noisy data. Using ℓ̂ we may propose a new version of CSVM based on

noisy data:

min
w,b

1

2
w · w +

C

n

n
∑

i=1

ℓ̂(γσ

i ) (3)

that we call NSVM (for noisy-SVM). We can note that:

• if the noise rate is η = 0 then problem (3) comes down to (1);

• the expectation of the objective function of (3) with respect to the noise process

is the objective function of (1);

• despite the objective function of (1) is convex, which is an interesting property

for optimization purposes, that of (3) is not necessarily convex, because of the

non convexity of ℓ̂ (see (2) and Figure 2).

The next section is devoted to the theoretical analysis of the properties of the objective

function of (3), and more precisely to its solution.
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Figure 2: ℓ̂ as a function of γ for different values of η (see (2)); this function is not convex and is
1/1−2η -Lipschitz as its largest slope has an absolute value of 1/1−2η.

4.2 Analysis of the Solution of NSVM

Here, the question we address is whether the solution of (3) is close to that of the

solution of the corresponding noise free CSVM problem (for the same value of C and

the same instances xi). We show using concentration inequalities and the convex nature

of the objective function of (1) that, provided a sufficient number of data is available it

is possible to make the solution of (3) arbitrarily close to that of (1).

In order to simplify the proofs, we assume that we are looking for a zero-bias hyper-

plane, i.e. a separating hyperplane of the form w · x = 0, and that there exists R > 0
such that all x’s drawn from D verify x · x ≤ R2. Finally, we consider the equivalent

Ivanov regularization (Ivanov, 1976; Tikhonov & Arsenin, 1977) forms of (1) and (3),

that is, we investigate the closeness of the solutions of:



















min
w

G(w) =
1

n

n
∑

i=1

ℓ(γi) subject to ‖w‖ ≤ W

min
w

Ĝ(w) =
1

n

n
∑

i=1

ℓ̂(γσ

i ) subject to ‖w‖ ≤ W

(4)

for some W > 0.

We introduce the notation

µ(S) =
1

n

n
∑

i=1

ℓ(γi), µ̂(S,σ) =
1

n

n
∑

i=1

ℓ̂(γσ

i ), (5)

and make use of the following concentration inequality by (McDiarmid, 1989) to estab-

lish Lemma 2.
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Theorem 1 ((McDiarmid, 1989))

Let X1, . . . , Xn be independent random variables taking values in a set X , and assume

that f : Xn → R satisfies

sup
x1,...,xn∈X

x
′
i
∈X

˛

˛f(x1, . . . ,xi, . . . ,xn) − f(x1, . . . ,x′
i, . . . ,xn)

˛

˛ ≤ ci

for every 1 ≤ i ≤ n. Then, for every t > 0,

P {|f(X1, . . . , Xn) − Ef(X1, . . . , Xn)| ≥ t}

≤ 2 exp

„

− 2t2
Pn

i=1
c2i

«

.

Lemma 2

For all distributions D on X × Y , ∀η ∈ [0, 0.5), ∀δ ∈ (0, 1], ∀ε ∈ R
+, for all

random sample S of n examples drawn from D and for all noise vector (of rate η)

σ = {σ1, . . . , σn}, if n > 8(1+RW )2

(1−2η)2ε2 ln 2
δ

then, with probability at least 1 − δ,

|µ(S) − µ̂(S,σ)| < ε, ∀w ∈ X , ‖w‖ ≤ W.

Proof. In order to prove the result, it suffices to establish a uniform (wrt w with

‖w‖ ≤ W ) bound on |ESµ(S) − µ(S)| and on |ESσµ̂(S,σ) − µ̂(S,σ)|, which is

equal to |ESµ(S) − µ̂(S,σ)|. It turns out that an adequate sample size for the latter

expression to be lower than ε > 0 is sufficient for the former expression to be lower

than ε as well (we let the reader check that). We therefore focus on bounding the

function ∆ defined as

∆(S,σ) = sup
w∈X ,‖w‖≤W

|ESσµ̂(S,σ) − µ̂(S,σ)| .

Since ‖w‖ ≤ W and ‖x‖ ≤ R, the minimum and maximum achievable margin by

classifier w on any instance (x, y) are γmin = −RW and γmax = RW , respectively.

Hence, according to the way ℓ̂ is defined (cf. (2) and Figure 2), it takes values in the

range [ℓ̂(γmax); ℓ̂(γmin)] ⊆
[

−η(1+RW )
1−2η

; (1−η)(1+RW )
1−2η

]

; therefore, the maximum vari-

ation of ℓ̂(γσ

i ) when changing any γσ

i = σiγi is at most 1+RW
1−2η

. Consequently, the

maximum variation of ∆(S,σ) when changing any γσ

i is at most 1+RW
n(1−2η) and, using

Theorem 1, we have

P

n

|∆(S, σ) − ESσ∆(S, σ)| ≥ ε

4

o

≤ 2 exp

„

− (1 − 2η)2nε2

8(1 + RW )2

«

,

which is upper bounded by δ/2 for the choice of n stated in the lemma.

Additionally, we have the following upper bounding on ESσ∆(S,σ) (we omit the

constraint w ∈ X , ‖w‖ ≤ W for sake of clarity), where σ
′ is a noise vector with
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parameter η, κ a vector of n Rademacher variables and S ′ a random set of size n drawn

from D:

ESσ∆(S, σ) = ESσ sup
˛

˛ES′
σ

′ µ̂(S′, σ′) − µ̂(S, σ)
˛

˛

≤ ESσ sup ES′
σ

′

˛

˛µ̂(S′, σ′) − µ̂(S, σ)
˛

˛ (triangle ineq.)

≤ ESσS′
σ

′ sup
˛

˛µ̂(S′, σ′) − µ̂(S, σ)
˛

˛ (Jensen ineq.)

=
1

n
ESσS′

σ
′ sup

˛

˛

˛

˛

˛

n
X

i=1

ℓ̂(σ′
iy

′
iw · x′

i) −
n

X

i=1

ℓ̂(σiyiw · xi)

˛

˛

˛

˛

˛

(cf. (5))

=
1

n
ESσS′

σ
′
κ

sup

˛

˛

˛

˛

˛

n
X

i=1

κi

“

ℓ̂(σ′
iy

′
iw · x′

i) − ℓ̂(σiyiw · xi)
”

˛

˛

˛

˛

˛

(σiyixi and σ′
iy

′
ix

′
i are i.i.d)

≤ 2

n
ESσκ sup

˛

˛

˛

˛

˛

n
X

i=1

κiℓ̂(σiyiw · xi)

˛

˛

˛

˛

˛

(triangle ineq.)

≤ 2

n
ESσκ sup

˛

˛

˛

˛

˛

n
X

i=1

κi(ℓ̂(σiyiw · xi) − 1)

˛

˛

˛

˛

˛

+
2

n
Eκ

˛

˛

˛

˛

˛

n
X

i=1

κi

˛

˛

˛

˛

˛

(triangle ineq.)

≤ 2

n
ESσκ sup

˛

˛

˛

˛

˛

n
X

i=1

κi(ℓ̂(σiyiw · xi) − 1)

˛

˛

˛

˛

˛

+
2√
n

(see Appendix 8.2)

We note that ℓ̂() − 1 is 1/1−2η-Lipschitz and is equal to 0 when its argument is 0. The

first term of the last inequality is the Rademacher complexity of the class of functions

defined by the composition of ℓ̂()− 1 and the set of functions defined by zero-bias sep-

arating hyperplanes w such that ‖w‖ ≤ W . The Rademacher complexity of this latter

class is bounded from above by 2WR√
n

(see (Bartlett & Mendelson, 2002)).Using struc-

tural results on the Rademacher complexity of composition of functions (see Theorem

12 in (Bartlett & Mendelson, 2002)), we get:

ESσ∆(S, σ) ≤ 4WR

(1 − 2η)
√

n
+

2√
n

≤ 4

(1 − 2η)
√

n
(1 + WR),

which, for the value of n stated in the lemma is upper bounded by ε/4. Therefore, with

probability at least 1 − δ/2 the following holds uniformly over w for ‖w‖ ≤ W :

|ESσ µ̂(S, σ) − µ̂(S, σ)| ≤ ε

4
+ ESσ∆(S, σ) ≤ ε

4
+

ε

4
=

ε

2
.

and |ESµ(S) − µ(S)| ≤ ε/2 with probability 1 − δ/2 as well. This concludes the

proof. �

This lemma says that minimizing Ĝ(w) as in (4) yields a solution wσ such that the

noise free objective G(wσ) is close to its minimal value.

Lemma 3

With the same assumptions as in Lemma 2, if w∗ is the solution of CSVM and wσ the

solution of NSVM (run respectively on S and its noisy version Sσ) then, with probabil-

ity at least 1 − δ,

0 ≤ G(wσ) − G(w∗) ≤ ε.
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Proof. It suffices to use the fact that 0 ≤ G(wσ)−G(w∗) and, with probability 1− δ:

G(wσ ) − G(w∗) = G(wσ ) − Ĝ(wσ ) + Ĝ(wσ ) − Ĝ(w∗)

+ Ĝ(w∗) − G(w∗)

≤ ε

2
+ 0 +

ε

2
= ε.

�

4.3 Implementation

In order to actually solve the NSVM learning we get back to the Tikhonov formula-

tion (3) which have minimized using the BFGS quasi-Newton minimization procedure

directly applied to the primal. As proposed by Chapelle (2007), we used a twice-

differentiable approximation Lh of the hinge loss function ℓ, with, for h > 0

Lh(γ) :=







0 if γ > 1 + h
(1+h−γ)2

4h
if |1 − γ| ≤ h

1 − γ if γ < 1 − h

(6)

Plugging in this loss function in (3) as a surrogate for ℓ, we therefore end up with an

unconstrained minimization problem2 that is easy to solve.

A nice feature of this formulation is that it allows us to establish a result on the

closeness of the solution wσ of NSVM and the solution w∗ of CSVM (when they both

make use of Lh). In fact, such a result can be also drawn using the usual hinge loss but

its non-differentiability makes it a bit more tedious. We have the following proposition.

Lemma 4

For all distributions D on X × Y , ∀η ∈ [0, 0.5), ∀δ ∈ (0, 1], ∀ε ∈ R
+, for all

random sample S of n examples drawn from D and for all noise vector (of rate η)

σ = {σ1, . . . , σn}, there exists N(η, δ, ε, C) ∈ N such that if n > N then, with

probability at least 1 − δ,

‖wσ − w∗‖2 ≤ 2λ−1
min(K)ε,

where λmin(K) is the lowest strictly positive eigenvalue of the Gram matrix K =
(xi · xj)i,j

Proof. We only give a sketch of the proof as many of its parts borrow from the proof

of previous lemmas (especially the part establishing the precise value of N in order to

take C into account).

We therefore assume that for the choice of N given in the lemma: 0 ≤ F (wσ) −
F (w∗) ≤ ε, where F (w) = 1

2w · w + C
n

∑n
i=1 Lh(γi) is the objective function of

CSVM when making use of Lh.

Let d ∈ X . ∀s ∈ R
+,∃c ∈ R

+ such that:

F (w∗ + sd) = F (w∗) + sd⊤∇F (w∗) +
1

2
s2

d
⊤H(w∗ + cd)d

2The code is available upon request.
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where ∇F is the gradient of F and H its Hessian. Since w∗ is the minimum of F ,

∇F (w∗) = 0 and, a few calculations give that d⊤H(w∗+cd)d ≥ ‖d‖2λmin(K),∀d, c.

Hence, F (w∗+sd)−F (w∗) ≥ 1

2
s2‖d‖2λmin(K) and, since F (w∗+sd)−F (w∗) ≤

ε, we have s2‖d‖2 ≤ 2ελ−1
min(K). �

5 Related Work

Learning from a noisy sample of data implies that the linear problem at hand may not

necessarily be consistent, that is, some underlying linear constraints may contradict

others. In that case, the problem at hand boils down to that of finding an approximate

solution to a linear program such that a minimal number of constraints are violated,

which is know as an NP-hard problem (see, e.g., (Amaldi & Kann, 1996)).

In order to cope with this problem, and adapt the classical perceptron learning rule

to render it tolerant to noise classification, one line of approaches has mainly been ex-

ploited. It relies on exploiting the statistical regularities in the studied distribution by

computing various sample averages; this makes it possible to ‘erase’ the classification

noise. As for Bylander’s algorithms (Bylander, 1994, 1998), the other notable contri-

butions are those of (Blum et al., 1996) and (Cohen, 1997). However, they tackle a

different aspect of the problem of learning noisy distributions and are more focused

on showing that, in finite dimensional spaces, the running time of their algorithms can

be lowered to something that depends logarithmically on the inverse of the margin in-

stead of linearly. For a kernel version of noise tolerant classifier, one can also looks at

(Stempfel & Ralaivola, 2007).

Perceptron-based approaches are not the only ones introduced to handle noisy prob-

lems. (Kalai & Servedio, 2005), derived from a boosting algorithm that proposed (Man-

sour & McAllester, 2000) which can boost with arbitrarily high accuracy in presence of

classification noise has been proposed. The algorithm is tolerant to uniform classifica-

tion noise but also to more complex noise models, such as malicious noise.

Nevertheless, none of this algorithms addresses the problem of learning a maximal

margin classifier.

The maximal margin approach we choose to implement is probably the better known

of all: Soft-margin SVM problem. (Steinwart, 2002), has proved that, under specific

assumptions, CSVM are tolerant to uniform classification noise without modification.

Actually, these noise tolerance results are only true with the use of universal kernels

(such as Gaussian) and CSVM could perform really poorly on some linear problems

(as shown in section 8.1) or with polynomial kernels.

In addition, the proof of the noise tolerance is only valid in the limit, that is to say for

an infinite number of examples in the sample. The behavior of the soft-margin learning

procedure with C varying as n−1+β is still unclear on a given iid finite sample. The

modification of SVM we proposed is not kernel dependent, and the accuracy of the

estimation of the objective function can be easily computed on a finite sample.
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Figure 3: Simulations on a toy problem corrupted by a uniform classification noise rate of 0, 5, 10

and 20 percent. NSVM consistently finds a classifier that makes low error while CSVM is unable

to learn good classifier if the noise rate is above 10 percent.

6 Simulations

In order to support our approach, we provide experiments on a linearly separable toy

problem. This problem is a derivation of the two-margin distribution (section 3): the

sample contains 400 points divided into two clusters separated by a large margin, while

the hyperplane used to label the data passes through one of the clusters.

Experiments have been conducted for levels of noise varying from 0 to 20 percent.

For each noise rate, we tested 25 values (from 0.0025 to 800000 using a geometric

progression) of the parameter C for soft-margin SVM and 5 (from 0.0025 to 25) for our

NSVM. The parameter h of the approximate hinge loss was set to h = 0.1.

The accuracy of the computed classifiers is estimated on a clean sample of 400 points.

Conclusions of the experiments are quite clear: if the noise rate 5 percent, there exists

a parameter C such that CSVM performs well, i.e the classifier output is close to the

optimal classifier in the noise-free context. But, as soon as the noise level goes beyond

10 percent, for all the values of C we have tried, the algorithm produces bad classifiers,

which make at least 20 percent error. These classifiers define hyperplane that separate

the two clusters with the larger margin.

The same experiments made using NSVM exhibit the noise tolerance of our classi-

fier. For noise rates from 0 to 0.20, we obtain, using C = 2.5 a classifier with a low
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generalization error (even if the sample size is rather small) and which is close from

the target classifier. Additional tests have been carried out with NSVM for higher noise

rates (from 0.25 to 0.35). With a sample size of 1500, which seems to be a sufficient

amount of examples, NSVM still performs well.

7 Conclusion and Outlook

In this paper, we have provided an instance of a linearly separable problem which shows

that soft-margin SVM are not naturally tolerant to uniform classification noise. We have

proposed a new optimization program, based on CSVM but with a modified objective

function. This new objective function makes use of an estimator of slack margin vari-

ables in noise-free context. A theoretical analysis proves the noise tolerance of our

algorithm, by showing that the solution of NSVM is close to the optimal classifier.

Numerical simulations on a noisy problem on which CSVM fails, and on which our

algorithm performs well, evidences the good behavior of our learning strategy.

We would like to pursue our research in different directions. First, we will investigate

the possibility of finding an other estimator with a lower variance, in order to improve

the stability of the algorithm for highly noisy problems or small sample sized problems.

In addition, the present estimator is not convex, and this makes more difficult (but still

possible and computationally reasonable) the solving of the NSVM problem; It would

be of great interest to be able to work out a convex version of the proposed estimator.

8 Appendix

8.1 Proof of Proposition 1

With complete access to distribution D, optimization problem (1) comes down to the

minimization of

F (w) =
1

2
w · w + CE(x,y)∼D[ℓ(y(w · x))],

which translates, for the noisy version of D2-margin, as

F (w) =
1

2
w · w + C

∑

i=a,b,c,d

pi [(1 − η)ℓ(γi) + ηℓ(−γi)]

where γi = yiw · xi.

Note that when full knowledge of the distribution is available, one should be in-

terested in minimizing F when C = +∞; our analysis holds for this setting when

C → +∞.

Let us assume that ε < 0.5 and that we are looking for a zero-bias separating hy-

perplane. Note that the maximal margin classifier is of the form w∗ = [0 w∗] with

w∗ ∈ R
+. All zero-error classifiers, i.e classifiers that do not make mistake on the

noise-free distribution D2-margin, are of the form wα = [αw w] with w > 0 and

ε > α ≥ −ε. All other classifiers have error at least min{pa, pb, pc, pd}.
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Figure 4: The three cases investigated to proof the non tolerance of CSVM to classification noise.

wis a vector that classifies correctly all noise-free examples, and its norm varies depending on the

considered case.

The remaining of this proof establishes that if pa = pd = 0.4, pc = pb = 1/2 −
pa = 0.1, ε ∈ (0, 1

24 ] and η = 0.4 then ∀C > 0, ∀w > 0, there is a vector w′ =
[−w′ 0], w′ > 0 such that F (w′) < F (wα), ∀α ∈ [−ε, ε) and wα = [αw w]; w′

makes error at least min{pa, pb, pc, pd}.

Let w′ = [−w′ 0], w′ > 0. Note that, using the definition of the hinge loss function,

∀w′ ∈ (0, 1]:

F (w′) =
w′2

2
+ C(1 + w′) [(2paη + (1 − pa)(1 − η)]

+ C(1 − w′) [2pa(1 − η) + (1 − pa)η] (7)

and that ∀w′ > 1,

F (w′) =
w′2

2
+ C(1 + w′) [2paη + (1 − pa)(1 − η)] (8)

For the proposed values of η, pa, pb, pc, pd, (7) and (8) give F (w′) = w′2

2 + C(1 −
0.12w′) and F (w′) = w′2

2 + C(0.44 + 0.44w′) respectively.

We investigate three cases on the parameters α ∈ [−ε, ε) and w > 0 of a zero-error

classifier wα = [αw w].

First case. Suppose that w ≥ 1
ε+|α| (see Figure 4). By definition of wα, it misclassi-

fies all the noisy points of the distribution, and we have:
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F (wα) ≥ w2(α2 + 1)

2
+ Cη [paℓ(−wα · xa)

+ pbℓ(−wα · xb) + pcℓ(wα · xc) + pdℓ(wα · xd)]

≥ w2

2
+ Cη [pa(1 − (α − ε)w) + (1/2 − pa)(1 + (ε + α)w)

+ (1/2 − pa)(1 + (α + ε)w) + pa(1 − (α − 1)w)]

=
w2

2
+ Cη [1 + (1 − pa)εw + paw + (1 − 4pa))αw]

And it is straightforward to check that for the values of pa, η and ε proposed, if

w′ = [−1 0] then F (w′) < F (wα),∀w ≥ 1
ε+|α| , α ∈ [−ε, ε), C > 0.

Second case. Suppose that 1
1−α

≤ w ≤ 1
ε+|α| . In this case, the classifier errs on

the noisy data while the noise-free data located at xa,xb,xc are correctly classified, but

with a small margin (see Figure 4, middle). Thus

F (wα) ≥ w2(α2 + 1)

2
+ Cη [paℓ(−wα · xa)

+ pbℓ(−wα · xb) + pcℓ(wα · xc) + pdℓ(wα · xd)]

+ C(1 − η) [paℓ(wα · xa) + pbℓ(wα · xb) + pcℓ(−wα · xc)]

≥ w2

2
+ Cη [1 + (1 − pa)εw + paw + (1 − 4pa)αw]

+ C(1 − η) [(1 − pa)(1 − εw) + (3pa − 1)αw]

=
w2

2
+ Cη [1 + (1 − pa)εw + paw + (1 − 4pa)αw]

+ C(1 − η) [(1 − pa)(1 − εw) − (1 − pa)αw]

For the proposed values of the parameters, this gives F (wα) ≥ w2

2 + C(0.76 +
0.15w). If w ≥ 1, F (wα) > F (w′ = [−1 0]) = 1

2 + C(0.88) and F (wα) > F (w′).

If w ≤ 1, F (wα) > F (w′ = [−w 0]) = w2

2 + C(1 − 0.12w) , and, because 23
24 ≥

1
1−α

≥ w, F (wα) > F (w′).

We conclude that ∀ε < 1
24 , ∀α ∈ [−ε, ε[, ∀w such that 1

1−α
≤ w ≤ 1

ε+|α| , ∀C > 0,

there exist w′ such that F (w′) < F (wα).
Third case. Suppose that w ≤ 1

1−α
. In this third case, all the noisy data are misclas-

sified while the clean data are correctly classified but with a small margin (see Figure 4,

right). Thus,

F (wα) ≥ w2

2
+ Cη [1 + (1 − pd)εw + paw + (1 − 2(pa + pd))αw]

+ C(1 − η) [1 − (1 − pd)εw − paw − (1 − 2(pa + pd))αw]

=
w2

2
+ C

− C(1 − 2η) [(1 − pa)εw + paw + (1 − 4pa)αw]
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For the proposed values of the parameters, this gives F (wα) ≥ w2

2 + C(1− 0.09w).

If w ≤ 1, F (wα) > F (w′ = [−w 0]) = w2

2 + C(1 − 0.12w) and F (wα) > F (w′).
If w ≥ 1, F (wα) > F (w′ = [−1 0]) = 1

2 + C(0.88) , and, because 25
24 ≥ 1

1−α
≥ w,

F (wα) > F (w′).
We conclude that ∀ε < 1

24 , ∀α ∈ [−ε, ε[, ∀w such that 1
1−α

≥ w,∀C > 0, there exist

w′ such that F (w′) < F (wα).
It is straightforward, by using Chernoff bounds arguments, to show that, for all δ < 1,

there exists n ∈ N such that for all samples S drawn from D such that |S| > n, the

classifier output by CSVM , with access to Sσ ,is not consistent with S with probability

1 − δ and, thus, to prove that CSVM is not uniform classification noise tolerant.

Of course, there exist many instances of two-margin problems that would also prevent

CSVM classifiers to produce a reliable classifier.

8.2 Bounding 1
n
Eκ |∑n

i=1 κi|
The proof to bound this quantity is straightforward:

1

n
Eκ

˛

˛

˛

˛

˛

n
X

i=1

κi

˛

˛

˛

˛

˛

=
1

n
Eκ

v

u

u

t

n
X

i=1

κi

n
X

j=1

κj ≤ 1

n

v

u

u

tEκ

n
X

i,j=1

κiκj

=
1

n

v

u

u

t

n
X

i=1

1 =
1√
n

.

Where we have used Jensen’s inequality (and the concavity of
√·) in the first line and

the fact that Eκiκj
κiκj = 0 for i 6= j in the last line.
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