
HAL Id: hal-00256386
https://hal.science/hal-00256386v1

Submitted on 15 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bol Processor Grammars
Bernard Bel, James Kippen

To cite this version:
Bernard Bel, James Kippen. Bol Processor Grammars. Mira Balaban. Understanding Music with AI,
AAAI Press, pp.366-400, 1992. �hal-00256386�

https://hal.science/hal-00256386v1
https://hal.archives-ouvertes.fr


groupe
représentation
et traitement
des
connaissances

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
31, chemin Joseph Aiguier
F-13402 MARSEILLE CEDEX 9  (France)

téléphone: (33) 91 22 40 64
telex: CNRSMAR 43 0225 F
télécopie: (33) 91 71 08 08
e-mail: grtc@frmop11.bitnet

Bol Processor grammars

Bernard Bel & Jim Kippen

Abstract

Bol Processor grammars are an extension of unrestricted generative grammars allowing a simple
representation of string “patterns”, here taken to mean repetitions and homomorphic
transformations.  These have been successfully applied to the simulation of improvisatory
techniques in traditional drum music, using a production-rule system called “Bol Processor BP1”.
The basic concepts and parsing techniques of BP1 are presented.

A new version of Bol Processor, namely “BP2”, has been designed to serve as a aid to rule-based
composition in contemporary music.  Extensions of the syntactic model, such as metavariables,
remote contexts, substitutions and programmed grammars, are briefly introduced.

Keywords

Formal grammars, pattern languages, membership test, ethnomusicology.

GRTC / 456 / Janv. 1991

Bernard Bel & Jim Kippen

In M. Balaban, K. Ebcioglu & O. Laske (Eds.) “Understanding  AI with music”

AAAI Press, 1992, pp.366-400



Bol Processor grammars

Bernard Bel1 & Jim Kippen2

Abstract

Bol Processor grammars are an extension of unrestricted generative grammars allowing a
simple representation of string “patterns”, here taken to mean repetitions and homomorphic
transformations.  These have been successfully applied to the simulation of improvisatory
techniques in traditional drum music, using a production-rule system called “Bol Processor
BP1”.  The basic concepts and parsing techniques of BP1 are presented.

A new version of Bol Processor, namely “BP2”, has been designed to serve as a aid to rule-
based composition in contemporary music.  Extensions of the syntactic model, such as
metavariables, remote contexts, substitutions and programmed grammars, are briefly
introduced.

Keywords

Formal grammars, pattern languages, membership test, ethnomusicology.

1 Groupe Représentation et Traitement des Connaissances (GRTC)
Centre National de la Recherche Scientifique
31, chemin Joseph Aiguier, F-13402 Marseille Cedex 9.
E-mail: bel@frmop11.bitnet Fax: (033) 91 71 08 08

2 Faculty of Music
University of Toronto
Edward Johnson Building
Toronto, Ontario, Canada  M5S 1A1.
E-mail: kippenj@utorepas.bitnet Fax: (416) 978 5771



CONTENTS

1. Generative grammars in Bol Processor BP1................................ 2
1.1 The scope of work with the Bol Processor...................... 2
1.2 The hierarchy of generative grammars and formal

languages.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Context-free grammars for qa‘idas.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Generalizing grammars .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Implications of the generalization technique on the

grammatical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Pattern rules in BP grammars................................................ 10
3. Parsing variations with BP grammars .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 BP1 parsing procedure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Canonic rightmost derivation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Templates........................................................... 16

4. Controlling the generation process.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Negative context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Wild cards.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Special structural symbols........................................ 17
4.4 Stochastic production .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5. Bol Processor BP2............................................................ 18
5.1 Metavariables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Remote context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Context-sensitive substitutions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Programmed grammars.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6. Conclusion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Appendix 1 — a BP1 grammar for a qa‘ida .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Appendix 2 — parsing a variation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Appendix 3 — a BP2 grammar.................................................... 29
Index.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Bol Processor grammars

Bernard Bel & Jim Kippen

Although in the field of computer-aided composition considerable time has been devoted to
new sound generation techniques, many studies of structural models have been restricted to
the analysis of Western staff-notated music.  Beyond this domain (particularly in
ethnomusicology) there have been early attempts to borrow concepts from linguistics on the
basis of assumed parallels between language and traditional musical systems.  Some
provocative papers, however, resulted in the virtual rejection of purely abstract speculations
that Feld had termed “the hollow shell of formalism”:

Only Blacking [...] and Lindblom and Sundberg [...] have dealt explicitly with basic theoretical
issues... The rest of the literature ignores issues like the empirical comparison of models, a
metatheory of music, evaluation procedures, and the relation of the models to the phenomena they
supposedly explain.

[Feld 1974:210]

The project which initiated the work presented in this chapter has been an in-depth study
of the music of a group of drummers in North India.  [Kippen 1988]  The oral tradition
encountered differed markedly from the few descriptions of improvisational formulae in the
limited and often unreliable literature.  This meant a shift in focus from purely analytical
models (imbedding a hypothetical description of musicians’ competence) to models of
musical performance.  Analytical models attempt to describe structural regularity in a
particular musical piece (e.g. [Jackendoff & Lerdahl 1982]) or in a set of related variations.
In the first case, the structure that is discovered by the analyst (possibly with the help of a
computer) claims to reflect an underlying musical (or perceptive) system which may be
called the competence of an “ideal listener”.  In the analysis of variations, a model of the
competence of an “ideal musician” is sought.  However, both approaches rely on
epistemological considerations (borrowed from linguistics) that do not take into account
individual “deviations”, i.e. models of performance: the originality of a particular musical
work, or simply the creativity of a musician.   In this respect, music is more comparable to
literature (or poetry) than to language.3

Our experimental work4 on traditional tabla drumming was mainly focussed on
computer simulations of improvisation schemata called qa‘ida5.  A computer program

3 Regarding aesthetic communication, see for instance [Laske 1973b].  Theories of individual
compositions viewed as products of rule-governed artistic creativity are named counter-grammars by Laske
[1973a:359].

4 Initial work was part of a research scheme by the International Society for Traditional Arts Research
(ISTAR, New Delhi) generously funded by the Ford Foundation and the National Centre for the
Performing Arts (NCPA, Bombay).  Kippen’s work was also supported by the Leverhulme Trust and the
Economic and Social Research Council in the UK.

5 Qa‘ida may be thought of as “theme and variations” in which the variations are variously referred to as
palta, vistar, bal, penc, etc.



Bol Processor grammars

—  2  —

called Bol Processor (BP1) was implemented on the Apple™ IIc, i.e. the only computer
(at the time, 1982-85) portable enough to be taken to locations where the interaction with
expert musicians could take place “in context”.  A detailed description of the BP1’s modus
operandi may be found in [Kippen & Bel 1989a].  Results and problems arising from the
BP methodology have been discussed in [Kippen 1987].  The transfer of knowledge from
human informants to machines using automatic rule generation is presented in [Kippen &
Bel 1989b-d] and [Bel 1990a].

This chapter is an introduction to the Bol Processor grammatical model.  We first
demonstrate the scope and limitations of conventional generative grammars on the basis of a
simple musical example borrowed from the qa‘ida repertoire.  In response to these
limitations we introduce a rule format for the representation of “string patterns” (repetitions
and homomorphic transformations).  Then the method for parsing unrestricted BP
grammars is outlined, and additional features allowing a control of derivations are shown.
In the end we describe the main features of a new version of Bol Processor, namely BP2,
meant to be used as a compositional tool dealing with a wider variety of musical systems.

1 . Generative grammars in Bol Processor BP1

It is assumed that, in some musical systems, elementary musical objects (“atoms”) may be
transcribed with the aid of a non-empty finite set of symbols Vt, namely the alphabet of
terminal symbols.  The set of all finite strings over an alphabet A is notated A*.  A
music sequence may therefore be represented as string belonging to Vt*.6  Any properly
defined subset of Vt* is a formal language.

For example, many pieces of tabla music are transliterated with onomatopoeic syllables
representing sounds and strokes on the drums, called bols7.  (Using onomatopoeic
languages for the transmission and occasionally the performance of traditional drum music
is a common practice both in Asia and in Africa.)  A terminal alphabet used in many tabla
compositional types is for instance

Vt = {tr, kt, dhee, tee, dha, ta, ti, ge, ke, na, ra, -}

in which the hyphen indicates a silence (or the prolongation of a resonant stroke).8

Symbols “tr” and “kt” are shorthand for “tira” and “kita”.  In general, any finite set of labels
for sound-objects (e.g. notes) may be used as a terminal alphabet for music.

1 . 1 The scope of work with the Bol Processor

A number of ethnomusicologists have attempted to use generative grammars to represent
sets of “acceptable” variations of a musical theme.  The relevance of a concept like
“acceptability” should of course be understood in relation to the musical system under
study.  Players of the tabla themselves claim that there is a precise system underlying
“correct” variations although its rules are generally not explicit.  The main motivations of
our project, therefore, have been (1) to make rules explicit for some compositional types,

6 A string representation of non-sequential structures is proposed in part B of “Symbolic and sonic
representations of sound-object structures” in this volume.

7 From the verb bolna, “to speak”, in North Indian languages; for this reason the machine was named
“Bol Processor”.

8 A system for transliterating tabla strokes to non-ambiguous symbolic representations has been
proposed by Kippen [1988:xvi-xxiii].



Bol Processor grammars

—  3  —

and (2) to check the consistency of musicians’ assessments of correctness both in both
teaching and performance situations.

The compositional type most fundamental to an understanding of composition and
improvisation in tabla playing is the qa‘ida, the “theme and variations” form par
excellence.  Not only do beginners learn qa‘idas, usually with sets of “fixed variations”
composed by their teachers (thus providing models of the crucial art of improvisation), but
advanced players use them too, particularly in solo performances, to demonstrate their
technical mastery and mental skills.  Furthermore, musicians postulate that unless one can
improvise on qa‘ida themes, one is not adequately equipped to improvise on any of the
other theme and variations forms.

1 . 2 The hierarchy of generative grammars and formal languages

Throughout this chapter we will refer to Chomsky’s hierarchy of generative grammars.
A generative grammar is an ordered fourtuple (Vt, Vn, S, F) in which Vt is an alphabet of
terminal symbols, Vn an alphabet of variables (with Vt ∩ Vn = ∅), S a distinguished
symbol of Vn, and F a finite set of rewriting rules P —> Q such that P and Q are strings
over the alphabet (Vt ∪ Vn) and P contains at least one symbol from Vn.  We call P and Q
the left and right argument of the rule respectively.

We use the notation |X| to designate the length of a string X.  The empty string is notated
λ.  One of many (equivalent) ways of defining the hierarchy of generative grammars is:

Type 0 (phrase-structure): unrestricted

Type 1 (length-increasing or context-sensitive):

|P|  ≤  |Q|  except possibly for the rule S —> λ

Type 2 (context-free): |P| = 1 and |P|  ≤  |Q|  except possibly for the rule S —> λ

Type 3 (regular or finite-state): every rule has form either

X —> a Y

or Z —> b, where X, Y, and Z are variables and a and b terminal symbols.

Every type-n grammar generates a formal language of type n', for some n' ≥ n.  This
yields a proper hierarchy of language classes.  [Révész 1985:7]  For instance, it can be
proved that every finite language is regular, hence context-free, etc., so that it may be
generated by a grammar of any type.

Throughout this chapter small letters are used for terminal symbols, and variables start
with a capital letter.

1 . 3 Context-free grammars for qa‘ idas

As a result of some basic observations about the structure of qa‘idas — the regular
alternation of fixed and variable sections, and the predominance of permutation and
substitution as improvisatory devices — it was thought that formal language models would
be suited to the construction of grammatical models.

Fig.1 is an example of variation on a well-known qa‘ida theme.  A theme may itself be
viewed as one particular variation — here in Fig.1 the kernel of the theme is represented in
the first line with a variation of it in the second.  It should be read from left to right as plain



Bol Processor grammars

—  4  —

text.  The durations of all syllables (including “tr” or “kt” as composites) are identical.
Syllables are grouped into beats, therefore we may say that this piece has a stroke
density of four strokes per beat.  Since each line contains four beats, the total metric
duration of the piece is sixteen beats (anything from eight to twelve seconds in performance
depending on interpretation).

dha ti dha ge na dha tr kt dha ti dha ge dhee na ge na
dha tr kt dha ti dha ge na dha ti dha ge tee na ke na
ta ti ta ke na ta tr kt ta ti ta ke tee na ke na
dha tr kt dha ti dha ge na dha ti dha ge dhee na ge na

 Fig.1  The theme of a qa‘ida

Some strokes on the tabla have a voiced (resonating) and an unvoiced (dampened)
version.  Here, the cadential string “dha ti dha ge dhee na ge na” is repeated at the end of
each line in its voiced as well as partly-voiced (“dha  ti dha ge tee na ke na”) and fully-
unvoiced (“ta ti ta ke tee na ke na”) transformations.  The complete mapping of voiced to
unvoiced strokes in this qa‘ida will be shown in Fig.7.

The piece in Fig.1 belongs to a set of acceptable variations that may be very large
although it is certainly finite since all pieces are bound by the metric cycles, i.e. a duration
of sixteen or thirty-two beats.  A complex variation is given in appendix 2.  However, let us
for a while consider only the first lines of a subset of ten simple variations:

dha tr kt dha tr kt dha ge dha ti dha ge dhee na ge na
dha tr kt dha tr kt dha dha dha ti dha ge dhee na ge na
dha ti dha tr kt dha tr kt dha ti dha ge dhee na ge na
dha tr kt dha ti  - dha ti dha ti dha ge dhee na ge na
dha tr kt dha ti  dha tr kt dha ti dha ge dhee na ge na
ti - dha ti dha dha tr kt dha ti dha ge dhee na ge na
ti dha tr kt dha dha tr kt dha ti dha ge dhee na ge na
tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na
tr kt tr kt dha dha tr kt dha ti dha ge dhee na ge na
tr kt dha tr kt dha ge na dha ti dha ge dhee na ge na

Fig .2 The first lines of ten variations of the qa‘ida

This set can easily be described using a regular/finite-state (type-3) grammar.  A regular
grammar can be represented as a finite acceptor, i.e. a directed graph in which X, Y, and
Z are state labels, and a and b transition labels (see Fig.3).  Using a rule X —> a Y  to
rewrite “X” as “a Y” is equivalent to jumping from state X to state Y following the transition
labelled a.  The second type of rule, Z —> b,  is represented as a transition from state Z to
an accepting state nil (see Fig.3).9

9 We call “finite acceptor” a kind of finite automaton with a univocal mapping of the set of states to the
set {“acceptable”, “unacceptable”}.  This suggests that other mappings can be envisaged, see for instance
[Allouche 1987].



Bol Processor grammars

—  5  —

ba
nilY ZX

Fig .3 Basic transitions in a finite acceptor

The state from which all paths originate is labelled S, the initial symbol in the grammar.  To
analyze a string, each of its component symbols (from left to right) is used as a “road sign”.
The string is grammatically correct if it is possible to move from S to an accepting state
following all the road signs.  For example, a finite-state acceptor recognizing exactly the ten
examples given in Fig.2 could be the one shown in Fig.4.

-
ti

ti

dha

ti

ti
dha

tr
kt

dha
tr

kt

dha

ti

—

tr       kt     dhatr      kt      dha

tr  kt

dha

dha  ti dha ge dhee  na ge  na

XG

ti kt

dha

kt

dha

dha
ge

kt       dha     tr     kt      dha       ge      natr

XH XC XE

XB

XA
XJ

XI

XF

S XD nil

Fig .4 A finite acceptor for the language shown Fig.2

The purpose of this representation is twofold: (1) it serves as a “classifier” telling whether
or not a given string belongs to the set of original examples in Fig.2, and (2) it can be used
to generate any string belonging to the set.  However, it is not unique and its musical
relevance will even be questioned in §1.4.  To simplify the representation, only those states
which are (diverging or converging) nodes of the graph have been labelled.  Other states
appear as small circles.  This suggests an alternate equivalent representation using a “two-
layer acceptor” as in Fig.5.



Bol Processor grammars

—  6  —

TD1

TB2
TA1

TE1

TB1

TC2

XG

nil

XH XC XE

XB

XA
XJ

XI

XF

S

TA1

TB1

TA3 TA3

TE4
TC1

TA1

TF4

TA1
TF1

TF1

TA7 TA8

TB3

XD

ge

ti

dha

kt
tr

kt
dha

tr

tr

kt
kt

tr

dha

ti
dha

ti

ti

-

ti
dha tr kt

dha   ti   dha   ge  dhee  na   ge  na

dha

TA8

TA3

TB3

TC1

TE4

TB2

TD1
TF4

TF1

TE1

TC2

TA7

TA1

TB1

nil

-

dha

tr

kt

ge

na

dha

kt

Fig.5  An equivalent “two-layer finite acceptor”

This new acceptor is equivalent to the generative grammar of Fig.6.  The mapping of
transitions to grammar rules is self-explanatory.



Bol Processor grammars

—  7  —

S —> TE1  XI
XI —> TA7  XD
XD —> TA8
XI —> TF1  XJ
XJ —> TC2  XA
XA —> TA1  XB
XB —> TB3  XD
XI —> TF1  XG
XG —> TB2  XA
S —> TA1  XH
XH —> TF4  XB
XH —> TA3  XC
XC —> TE4  XD
XC —> TA3  XE
XE —> TA1  XD
XE —> TC1  XD
XC —> TB1  XB
S —> TB1  XF
XF —> TA1  XJ
XF —> TD1  XG

TA7 —> kt dha tr kt dha ge na
TC2 —> tr kt
TE1 —> tr
TF1 —> kt
TF4 —> ti dha tr kt
TD1 —> -
TB2 —> dha ti
TE4 —> ti - dha ti
TC1 —> ge
TB3 —> dha tr kt
TA8 —> dha ti dha ge dhee na ge na
TA3 —> tr kt dha
TB1 —> ti
TA1 —> dha

Fig.6  A grammar equivalent to the two-layer acceptor

Some variable labels have numbers indicating the metrical values of terminal strings which
are derived therefrom.   Thus, “TA7” denotes a string of seven strokes.  Although this
information is not used by the Bol Processor, it facilitates checks of the grammar when
variations are of fixed length; here for instance the sum of metrical values along each path of
the upper acceptor is 16 (meaning four beats in stroke density 4).

This grammar is context-free (type-2) although it generates a finite (type-3) language.
Rules shown on the right side of Fig.6 are called lexical rules.  Their right arguments are
chunks of strokes that have been repeated several times in the examples of Fig.2,
presumably “words” of the language although they do not bear any semantic value.

The segmentation of musical pieces into “significant chunks” has been discussed in great
detail by musicologists, e.g. Ruwet [1972] and Nattiez [1976].  In brief, lexical rules define
the vocabulary of the piece as presumably perceived by musicians, a task that requires some
presupposed knowledge about what is “meaningful” and what is not [Kippen & Bel
1989b:203].  In fact, the vocabulary displayed by the grammar Fig.6 was not assessed as
correct, therefore another grammar was constructed on the basis of musicians’ comments
that eventually yielded a correct segmentation of the variations.  (See [Kippen & Bel
1989b:210])

A context-free grammar in the format of Fig.6 may be viewed as a combination of two
“transformational subgrammars” corresponding to the two automata shown Fig.5.
The term “transformational” is borrowed from formal language theory [Kain 1981:24], not
linguistics.  To generate a variation, the first subgrammar (rules on the left side) is used
until no further derivation is possible, for instance:

S
TE1 XI
TE1 TA7 XD
TE1 TA7 TA8



Bol Processor grammars

—  8  —

Then rules of the second subgrammar (right side of Fig.6) are applied in an arbitrary order:

TE1 TA7 TA8
TE1 kt dha tr kt dha ge na TA8
tr kt dha tr kt dha ge na TA8
tr kt dha tr kt dha ge na dha ti dha ge dhee na ge na

The module that takes care of (enumeratively or randomly) selecting rules in order to
generate variations is part of the inference engine of the Bol Processor.  The other part
of the inference engine is the parsing module that will be described in §3.

1 . 4 Generalizing grammars

Despite some musicians’ claims that they follow systematic procedures in constructing
sets of variations, it is difficult to discover what that system may be as they rarely create
more than six to eight variations in any given situation.  Furthermore, few players are able
or willing to describe in words what procedures they follow, and even then we have
observed that there is a considerable discrepancy between what is said and what is actually
done.

Therefore, the main problem in formalizing improvisation schemata as found in qa‘ida is
the inference of a grammar recognizing large sets of correct variations on the basis of a
small set of typical examples.  This problem belongs to structural pattern1 0

recognition (see for instance [Fu 1982], [Miclet 1984]), where a pattern classifier is
inferred from a relatively small set of training examples.  The classifier is expected to assign
correct class numbers to a (possibly infinite) number of new patterns.  Finite acceptors
(equivalently, regular grammars) are sorts of string classifiers working with only two
classes: “acceptable” and “unacceptable”.11  In addition, they can also generate any string
belonging to the “acceptable” class.

Given a sample set of correct and incorrect variations, i.e. positive and negative
instances of the language, a learner (human or mechanical) should be able to construct a
grammar that eventually accepts/generates all possible correct variations and rejects the
incorrect ones.  We can imagine that this learning process is strictly incremental: each
time a new (positive or negative) instance is supplied, the learner is expected to adjust the
currently guessed grammar accordingly.  This inference process belongs to inductive
general izat ion  because the new grammar may become smart enough to
recognize/generate variations that have not yet been supplied as examples.12

Take for instance the finite acceptor of Fig.4 and suppose that the eleventh example
supplied by the musician were:

ti dha dha ti dha dha tr kt dha ti dha ge dhee na ge na

10 The word “pattern” is used here in a less restrictive sense than in §2.
11 These can also be adapted to deal with more than two classes.  Probabilistic grammars, for instance,

may be viewed as pattern classifiers on an arbitrary number of classes.  See [Booth & Thompson 1973].
12 See [Case & Lynes 1982] for a formal introduction.



Bol Processor grammars

—  9  —

A new acceptor recognizing this example could be obtained by merging states XJ and XG.
This would yield an acceptor recognizing/generating one more variation that has not yet
been assessed by the musician:

ti - tr kt dha dha tr kt dha ti dha ge dhee na ge na

If this variation is incorrect, then other inferences may be tried, for example constructing a
path of two transitions labelled “dha” and “ti” connecting XJ to XA.

Any inference, therefore, requires an assessment of newly generated variations.  When
training a pattern classifier, negative instances are supplied so that incorrect inferences may
eventually be detected.  In music teaching or performance situations this is generally not the
case.  Therefore the validity of generalizations is assessed by instructing the Bol Processor
to generate variations that are submitted to informants: any variation which they reject is
then considered as a negative instance.

1 . 5 Implications of the generalization technique on the grammatical
model

Regular grammars (equivalently, finite acceptors) have been used extensively in syntactic
pattern recognition.  (See for instance [Fu 1982].)  A major reason is that there exist
relatively efficient inductive inference methods for the identification of regular (type-3)
languages.  Identification in the limit means that, once a finite number of positive and
negative instances of an unknown language have been supplied to the learner, the currently
guessed grammar no longer requires modification, and this grammar recognizes exactly the
target language.13  Gold’s theorem [1967] says that (1) any enumerable class of decidable
languages (see §3) can be identified in the limit using positive and negative instances of the
language, and (2) no class of formal languages containing all finite languages and at least
one infinite language may be identified in the limit using exclusively positive instances.

An implication of Gold’s theorem is that there is little scope for identifying languages in
the absence of negative instances.  Angluin [1980a] has given useful characteristic
properties of languages that can be identified from exclusively positive sample sets.

An algorithm for inferring context-free grammars (in the format shown in §1.3) has been
designed [Bel 1990a] and successfully tried in support to the analytical work with the Bol
Processor.  (See the QAVAID14 system in [Kippen & Bel 1989b].)  This approach
provides interesting results insofar as variations may be considered sequences of words
taken from an unknown vocabulary: the algorithm yields the vocabulary and a grammar
determining the segmentation and deep structure of any variation.

There are human limits as to the number of examples that can be supplied to the machine,
let alone problems of time/space complexity in the grammatical inferencer.  Therefore, even
though the identification of finite languages like qa‘ida could be performed mechanically,
part of the generalization process is still left to human experts for the sake of heuristic
efficiency.  In the absence of a music theory able to account formally for the scores of
several hundreds of qa‘idas performed by a group of musicians, the major part of the work
is being accomplished by a human analyst.  This has obvious implications for the
grammatical model used for representing music.  It is difficult, for instance, to reconcile
one’s musical intuitions with a context-free grammar in the restrictive format shown in

13 More flexible learning criteria have been defined, among others, by Case & Lynes [1982].
14 “Question-Answer-Validated Analytical Inference Device”.  This acronym is also a word meaning

“grammar” in Arabic/Urdu — Qava‘id is the plural of qa‘ida



Bol Processor grammars

—  10  —

§1.3, all the more so if the number of rules is bound to exceed a few hundred.  This reflects
an obvious discrepancy between machine- and human-oriented representations.

For this reason, we developed a grammatical model that is general and inclusive of
representations aimed at limiting the number of rules needed to account for significant
musical ideas.  Only now that many qa‘idas have been identified could we envisage
looking for a unified restrictive grammar format encompassing this whole musical system.
Meanwhile, Bol Processor BP1 supports generative grammars in unrestricted (type-0)
format.  It is the task of the analyst to stick to rule formats enabling the machine to generate
and recognize the same language.  As indicated in §3, parsing variations is generally not
possible with arbitrary grammar formats.

2 . Pattern rules in BP grammars

So far we have dealt only with permutations of “words”.  In order to find an appropriate
representation of periodic structures (systematic repetitions, etc.) we developed the idea of
pattern rules.

We call a string pattern any element of (Vn ∪ Vt)*, i.e. a string containing variables
and terminal symbols.  Every variable in a string pattern may in turn be replaced with
another arbitrary string pattern.  Replacing all occurrences of a variable with the same non-
empty string is called a substitution.

Consider for example the alphabets

Vt = {a, b, c, d, …, z}    Vn = {A, B, C, …, Z}

and a string pattern “A a b A B c B”.  Substitutions of this pattern may be:

A a b A B c B Original string pattern
C e C a b C e C c d c c d Substitute “A” with “C e C” and “B” with “c d”.
f g h e f g h a b f g h e f g h c d c c d Substitute “C” with “f g h”.
etc…

If p is a string pattern and s a substitution, then s(p) is a derivation of p.  A string
pattern containing no variable is called a terminal derivation.  The set of all terminal
derivations of p is called the pattern language generated by p.  [Angluin 1980b]

We felt it would be interesting to combine the representational power of pattern
languages (in terms of periodicity) with the versatility of generative grammars.  Generative
grammars are rather counterintuitive for the representation of string-patterns.15  Consider
for instance the following grammar (proposed by [Salomaa 1973:12]) generating the
language derived from string pattern “X X” over terminal alphabet Vt = {a,b}.

15 The class of pattern languages is properly included in the class of unrestricted (type 0) languages, but
it is not comparable with any other class.



Bol Processor grammars

—  11  —

S —> A B C
A B —> a A D
A B —> b A E
D a —> a D
D b —> b D
E a —> a E
E b —> b E
D C —> B a C
E C —> B b C
a B —> B a
b B —> B b
A B —> λ
C —> λ

This grammar is non-restricted (type-0).  In addition, most derivations of the starting
symbol “S” halt on a string that still contains variables; therefore it is difficult to control the
generative process so that only terminal strings are produced.

To overcome these limitations we developed an extension of the rule format that we call
pattern rules.  [Bel 1990c:41-43]

Informally, a pattern rule generating the “X X” pattern language (on any terminal
alphabet) would be the following:

S  —> (= X) (: X)

in which brackets indicate that all derivations of the occurrences of “X” must be identical.
The leftmost expression “(= X)” is the reference and “(: X)” its copy.  We call brackets
containing “=” or “:” pattern delimiters.  There may be several copies of the same
reference, e.g.:

S  —> (= A) (= B) (: A) (: B) (: A)

Repetitions may not always be strict.  In many musical systems a number of
transformations affecting terminal symbols have been proposed.  In §1.3, for instance, we
suggested that strokes on the tabla may be either voiced or unvoiced.  Fig.7 shows the
mapping of the corresponding voiced/unvoiced transformation, which stands for all qa‘idas
using these strokes.

dha

dhee

ge

ta

tee

ke

ti

na

tr

kt

—

Fig.7  A “voiced/unvoiced” mapping in tabla music

This mapping may be extended to any string over the terminal alphabet Vt (yielding a λ-free
homomorphism, see [Révész 1985:10]).  For instance, the unvoiced image of “dha ge na”
is “ta ke na”.  To indicate a homomorphic transformation we insert a special symbol (a
homomorphic marker) before the pattern delimiter, indicating the part of the string in
which the transformation must be performed.  The marker used for the voiced/unvoiced
transformation is an asterisk.  For instance, the grammar



Bol Processor grammars

—  12  —

S —>  (= D) * (: D)
D —> dha ge dhee na ge na

yields the terminal derivation

(= dha ge dhee na ge na) * (: ta ke tee na ke na)

which is internally represented with the help of a master-slave assignment pointer.
(See Fig.8)

( dha ge dhee na ge na ) * (   )

Fig.8  Master-slave assignment pointer

This internal representation is economical in terms of memory space.  The algorithm for
rewriting assignment pointers in string patterns is presented in [Bel 1990c:43-45].  It
applies to multilayered representations as well.

The variation given in Fig.1 may be represented:

(= dha ti dha ge na dha tr kt dha ti dha ge dhee na ge na)
(= dha tr kt dha ti dha ge na) (= dha ti dha ge tee na ke na)
* (: ta ti ta ke na ta tr kt ta ti ta ke tee na ke na)
(: dha tr kt dha ti dha ge na) (= dha ti dha ge dhee na ge na)

This variation is produced by the grammar shown in Fig.9, using rules 1, 4, 7, 8, etc.

[1] S —> (=A16) (=V8) A'8 *(:A16) (:V8) A8
[2] S —> (=V16) A'16 *(:V16) A16
[3] S —> (=V24) A'8 *(:V24) A8
[4] A16 —> dha ti dha ge na dha tr kt dha ti dha ge dhee na ge na
[5] A'16 —> dha ti dha ge na dha tr kt dha ti dha ge tee na ke na
[6] A8 —> dha ti dha ge dhee na ge na
[7] A'8 —> dha ti dha ge tee na ke na
[8] V8 —> ... define permutations of eight strokes
[9] V16 —> ... define permutations of sixteen strokes
etc…

Fig.9  A grammar with three pattern rules

Rules defining V8, V16 and V24 may be context-free as shown in §1.3.  An elaborated
version of the grammar of this qa‘ida is given in appendix 1.

 We call a Bol Processor grammar any type-0 grammar containing pattern rules.

3 . Parsing variations with BP grammars

When designing Bol Processor BP1 we wanted a machine that could not only generate
variations which would be submitted to musicians, but also one that could evaluate musical
pieces proposed by musicians as correct examples.  In this process (called a membership
test), the inference engine verifies that a given variation is well-formed according to the
rules of the grammar.  The membership test is performed by the parsing module of the
inference engine.  Only when a grammar agrees with the expert after both generating and



Bol Processor grammars

—  13  —

parsing variations can one then suggest that it reflects the musician’s knowledge of the
“language”.

One of the major reasons why the BP could be used successfully for modelling part of
the musical behaviour of traditional musicians was its ability to display compositional and
analytical processes in two different ways.  Information on how correct variations can be
composed is generally supplied higgledy-piggledy.  This fits well with a grammatical
representation in which the order of rules is arbitrary.  On the other hand, if a
musician/musicologist is prompted to describe how a variation is analyzed, he/she is likely
to come up with an ordered set of instructions such as:

In the analytical process, the first significant chunks to be recognized are those appearing in fixed
positions (e.g. the cadential part “dha ti dha ge dhee na ge na”, see §1.3).  Then variable parts are
analyzed.  Large chunks or “words” are recognized first.

This type of description indicates a human preference for a data-driven (i.e. bottom-up)
procedure that starts from the string under analysis and rewrites it until a “success/failure”
flag is obtained (see appendix 2).

The main problem with the membership test arises when there is disagreement between a
human expert and the machine regarding the acceptability of a variation.  Usually the
variation is a correct one, and yet the machine rejects it thereby pointing to a defect in the
grammar.  In order to understand why the variation has been rejected, the analyst should be
able to repeat the procedure step by step.  This may lead to a clue provided that the trace
reflects an intuitive analytical process.  (See for instance appendix 2.)  For instance, tracing
a parsing procedure is difficult if the procedure is non-deterministic, i.e. if it backtracks on
failures.  Therefore we opted for a deterministic parsing procedure.

Another problem is purely theoretical.  The class of languages for which there exist
membership tests (i.e. decidable languages) contains the class of context-sensitive (type-
1) languages, but there are also unrestricted (type-0) languages that are undecidable.  In
addition, membership tests for classes of languages properly containing the class of
context-free (type-2) languages often lead to inefficient parsing procedures.  (See [Loeckx
1970], [Révész 1970].)  The design of an efficient procedure, therefore, implies restrictions
on the grammar format.16

3 . 1 BP1 parsing procedure

The procedure which we implemented in Bol Processor BP1 is data-driven,
deterministic, and quite efficient in terms of time/space complexity.17  Informally, the
algorithm is the following:

1) If G is a transformational grammar, its dual is obtained by swapping the left and
right argument in every rule.
2) Given G1, ..., Gn, the subgrammars of the language, and their respective duals
G'1, ..., G'n, the membership test is the result of the context-sensitive canonic
rightmost derivation of the string under analysis by  G'n, ..., G'1 in this order.
3) If the membership test has yielded S, the starting symbol, the input string is
“accepted”.  It is rejected in any other case.

16 Restrictions on BP grammars are not described here.  See [Bel 1987a-b].
17 The number of derivation steps needed for parsing a string is smaller than its length; space

complexity is linear.



Bol Processor grammars

—  14  —

Informally, the grammar is turned “upside down” and rules in each subgrammar are applied
in reverse.  If for instance a string “dha tr kt dha ti dha ge na” is generated using the
subgrammar

(1) V3 —> dha ge na
(2) V2 —> tr kt
(3) V1 —> dha

then during its analysis by BP1 the dual subgrammar

(1') dha ge na —> V3
(2') tr kt —> V2
(3') dha —> V1

should be used.  This introduces ambiguity because, if rule (3') is used first, then the string
is rewritten “V1 tr kt V1 ti V1 ge na” so that no further rule is applicable.  Indeed this goes
against the intuitive reasoning that suggests “large chunks should be recognized first”.
Therefore the parsing procedure is expected to impose a (partial) ordering of rules and set
preferences for the position of derivations.  This is accomplished by the canonic rightmost
derivation.

3 . 2 Canonic rightmost derivation

The concept of context-sensitive canonic (leftmost) derivation was defined by Hart
[1980:82] for strictly context-sensitive grammars, i.e. grammars in which all the left
arguments of rules contain no more than one variable.  We first extended this definition to
all length-increasing grammars.  Then we adapted it to the dual grammars in which rules are
always length-decreasing, i.e. their right arguments are shorter than their left ones.

Let Wi be the string under derivation after the i-th derivation step.  (Each step
corresponds to the application of a rule of the grammar.)  The context-sensitive rule used
for the i-th derivation may be written

LiCiRi —> LiDiRi

in which Li and Ri are the left and right contexts respectively.  Ci is the part of the string Wi
that will be rewritten as Di.  Since the rule is length-decreasing, |Di| ≤ |Ci| .

Context-sensitive rightmost derivation

Let G be a length-decreasing grammar.  The derivation in G:
W0 => W1 => ... => Wn
is context-sensitive rightmost iff:
∀i ∈ [0, n-1], Wi  =  XiLiCiRiYi ,
W i+1  =  XiL iD iR iY i  after having applied rule fi:   LiC iR i —> LiD iR i ,
the next rule to be applied will be fi+1:   Li+1C i+1R i+1 —> Li+1D i+1R i + 1

such that Wi+1  =  Xi+1Li+1Di+1Ri+1Yi+1 ,
and at least one of the two following conditions is satisfied:
(C1) |Ci+1Ri+1Yi+1| > |Yi|
(C2) |Li+1Ci+1Ri+1Yi+1| > |RiYi|

The diagram and commentary of Fig.10 illustrate conditions C1 and C2.



Bol Processor grammars

—  15  —

Yi+1Ri+1Ci+1

Li+1

Xi L i Di

Xi+1

Xi+1 Li+1

Ci+1 Ri+1 Yi+1

YiRi

Ri YiCiL iXi

CCCC1111

CCCC2222

Fig.10  Context-sensitive rightmost derivation

Suppose that neither conditions C1 nor C2 are satisfied.  Since C2 is not true, rule fi+1 could have
been applied before fi as Li+1Ci+1Ri+1 would be a substring of RiYi.  Besides, since C1 is not true,
applying rule fi+1 would only modify Yi without changing the context Ri.  In such a case the order
of application of fi and fi+1 might have been inverted.  This change in the order would have been
justified since all symbols rewritten by fi+1 are to the right of those rewritten by fi.

This derivation is canonic because if C1 or C2 is satisfied for all derivations then the
possible choice of every fi was unique.

An indication of how the context-sensitive rightmost derivation is used to handle
ambiguity in the parsing procedure is given below.  Let Wi be the string under derivation.
Candidate rules are those whose left arguments18 are substrings of Wi.  Consider two
candidate rules:

f i LiCiR1 —>  LiDiRi
f'i L'iC'iR'i —>  L'iD'iR'i

given XiLiCiRiYi = X'iL'iC'iR'iY'i = Wi

The selection criterion is: fi will have priority over f'i if one of the following conditions
(in this order) is satisfied:

(D1) |XiLiCi|  > |X'iL'iC'i|
(D2) |XiLiCiRi|  > |X'iL'iC'iR'i|
(D3) |LiCiRi|  > |L'iC'iR'i|
(D4) i > i'

It can be proved that, if D1 is not satisfied (i.e. |XiLiCi| = |X'iL'iC'i|), D2 is no longer
relevant and the ambiguity between fi and f'i may therefore be handled by D3 and D4.
[Bel 1987a:8]   D3 makes a decision on the basis of the length of the left arguments of the
two rules, and D4 is a final arbitrary decision that takes into account the order in which the
rules appear in the grammar.  In the BP membership test, rules are tried from the bottom to
the top of the grammar.

To save computation time, D3 is not evaluated by the inference engine, so that the
following partial ordering of rules is imposed on the grammar:

18 Since we are considering the dual grammar, these are the right arguments of original rules.



Bol Processor grammars

—  16  —

“Chunk” rule

In a BP subgrammar, the right argument of rule fi may not be a substring of the right
argument of fj such that j < i.

This conforms to the intuitive statement that “large chunks should be recognized first”.
Rules in the subgrammar shown in §3.1 should therefore be arranged in either way:

(1) V1 —> dha
(2) V3 —> dha ge na
(3) V2 —> tr kt

(1) V1 —> dha
(2) V2 —> tr kt
(3) V3 —> dha ge na

(1) V2 —> tr kt
(2) V1 —> dha
(3) V3 —> dha ge na

In a practical implementation, this partial ordering of rules may be computed by the machine
when exiting the rule editor.

3 . 3 Templates

Variations can only be parsed when represented along with their pattern delimiters,
homomorphic markers, etc.  However, the Bol Processor is meant to perform membership
tests on large amounts of data comprising examples to which it is not always easy to assign
a structure, as for instance the variation analyzed in appendix 2.  Understandably, one could
expect the machine to complete the missing information on the basis of structural
knowledge contained in pattern rules of the grammar.  To this effect, the inference engine of
the Bol Processor has been given the ability to generate templates from a grammar, i.e. a
list of possible structures in which dots are used to represent the locations of imaginary
unitary terminal symbols.  For instance, the templates generated by the first three rules of
the grammar Fig.9 are shown in Fig.11.  It may be noticed that each template contains
exactly sixty-four dots since all variations have a metric duration of sixteen beats in stroke
density 4.

[1]  (=................)(=........)........*(:................)(:........)........

[2]  (=................)................*(:................)................

[3]  (=........................)........*(:............................)........

Fig.11   Templates

Templates are stored along with the grammar file.  When analyzing a variation the Bol
Processor attempts to superimpose it on each template in turn.  The membership test is tried
whenever the variation matches a template.  (See appendix 2)  Several templates may lead to
successful membership tests, thereby pointing at structural ambiguity.

4 . Controlling the generation process

We present a few additional features of Bol Processor grammars that were introduced to
help the musicologist formalize certain musical ideas in a straightforward and intuitive
manner.  These are meant to control the selection of candidate rules in generation, although
this selection is also taken into consideration by the parsing module.



Bol Processor grammars

—  17  —

Other features allowing a control of the position of derivation have been discussed at
length in  [Kippen & Bel 1989a].

4 . 1 Negative context

Negative context is a practical way of writing a rule when all but one variable/terminal
symbol are allowed as context.  See for instance rule [28] in subgrammar 5, appendix 1:

[28]    #ti  V  V  V  V  —>  #ti ti dha tr kt

This rule means that “V V V V” may be rewritten as “ti dha tr kt” only if it is not preceded
by “ti”.  This reflects the idea that it is not acceptable to duplicate “ti” in a sequence (both for
technical and aesthetic reasons).  Procedures for matching and rewriting expressions with
(possibly several) negative context(s) are described in detail in [Bel 1990c:55-60].

4 . 2 Wild cards

Wild cards are metavariables notated “?” in BP syntax.  These are used by the inference
engine when it looks for candidate rules in the generation or parsing process.  A wild card
may be matched with any variable or terminal symbol.  In subgrammar 6, appendix 1, wild
cards are used to define the locations of “fixed chunks”.

4 . 3 Special structural symbols

Special symbols like “+” and “;” are used as position markers in variations.  For
instance, in the grammar of appendix 1, “;” indicates the end of a variation while “+” is the
end of a line of four beats.  These symbols appear are used as contexts for controlling the
selection of candidate rules, see for instance subgrammar 3.  Special symbols also appear in
templates.  It may be noticed that templates [16] and [20] are identical except that [16]
contains a “+” marker after forty-eight dots, i.e. at the end of the third line of the variation.
(Each line represents four beats of the metric cycle, see §1.3.)  When parsing a variation,
therefore, template [16] assumes that the thirteenth beat should fall on the beginning of a
word, which is not the case with template [20].

4 . 4 Stochastic production

Since the actual sets of correct variations of a qa‘ida are very large, the only realistic
way of checking the generative precision of a grammar is to instruct the Bol Processor to
produce randomly chosen variations.  If the variation is assessed as correct by the expert,
the procedure is invoked again and another variation (sometimes the same one) is generated.
The grammar is considered “correct” if it has been in full agreement with the expert over a
sufficient number of work sessions.

Since the correctness of a grammar can never be fully assessed in this way — indeed,
like musicians themselves, machines may be allowed casual mistakes — it is important to
enable the stochastic production process to generate variations from a wide and
representative subset of the language.  This can be achieved by weighting the decisions of
the inference engine.  Weights (and their associated probabilities) are used to direct the Bol
Processor’s production along paths more likely to be followed by musicians.  The use of
weighted rules resulted in a marked improvement in the quality of the generated music.
This went a long way towards solving the problem of musical credibility encountered in
earlier experiments with BP1, a problem that arose from the complete randomness of the
generative process.

The stochastic model in Bol Processor is inspired from probabilistic grammars/automata,
[Booth & Thompson 1973] the difference being that a weight rather than a probability is



Bol Processor grammars

—  18  —

attached to every rule.  The probability of a rule is computed each time it is a candidate in a
generation process. (Candidate rules are those whose left argument matches a substring of
the string under derivation.)  Before any derivation, the inference engine calculates the sum
W of weights of all candidate rules.  If the weight of a candidate rule is 0 then its probability
remains 0; in any other case its probability is the ratio of its weight to the sum W.   Consider
for example the set of rules

[1] <100> V3 —> dhagena
[2] <100> V3 —> dhatrkt
[3] <50> V3 —> dha--
[4] <5> V3 —> dhati-

in which the sum of weights is W = 100+100+50+5 = 255.  The probability of choosing
candidate rule [4] in the derivation of a string containing “V3” is therefore

5
255

= 0.0196

In some context-free grammars — those that fulfil a “consistency” condition defined by
Booth & Thompson [1973:442-447] — weights may also be used for computing the
probability of occurrence of each variation generated by the grammar.  Grammars in the
format shown in Fig.6 are consistent for any weight assignment.  This probability is
displayed by Bol Processor BP1 for each variation which has been generated or parsed,
thereby yielding a graduation of its acceptability.  Another remarkable feature of consistent
grammars is that rule probabilities can be inferred from a subset of the language.
[Maryanski & Booth 1977:525]  This leads to an interesting method for weighting the rules
— even in inconsistent grammars as demonstrated in [Kippen & Bel 1989a] with the qa‘ida
of appendix 1.  The method is the following: a grammar is given along with a sample set of
the language that it recognizes (for instance variations taken from a performance of an
expert musician).  Let all rule weights be set to 0; then analyze every variation of the sample
set, incrementing by one unit the weights of all rules used in the parse.19  Rules that have
not been used in the parse of the sample set may then be scrutinized to check whether they
are incorrect or whether they point to unexplored parts of the language.  To this effect, their
weights are set to a high value so that the Bol Processor is likely to select them and generate
variations that may then be assessed.

5 . Bol Processor BP2

We now introduce the syntactic model of the new version of Bol Processor (BP2).20  Other
important features, such as polymetric structures and the representation of sound-objects,
are presented in another chapter of this volume.

Since BP2 is meant to be part of a computer environment for rule-based composition, the
grammar format has been (and is still being) extended on the basis of requests formulated
by composers.  These may be based on well-defined compositional ideas, or simply
exploratory.

19 Unlike the algorithm by Maryanski and Booth [1977], this method works on arbitrary sample sets
even if some rules are not used in the parse.

20 A prototype version of BP2 for Macintosh computers is available as shareware from authors.



Bol Processor grammars

—  19  —

Under such conditions, the correctness of a grammar is assessed exclusively on the basis
of the music it generates.  The composer may instruct the machine to generate many
variations and then select those he/she wants to keep.  Selected item may even be edited
further using a music sequencer.  Only in improvisational situations is a grammar expected
to generate only “good” variations.  For this reason we did not feel it necessary to
implement a parsing module in BP2.  This allows the user complete freedom as to the
grammar format that will best reflect his/her intuitions, even if the grammar is undecidable.

5 . 1 Metavariables

Metavariables are a set of ordered tokens notated “?1”, “?2”, etc.  Each may match a
variable or a terminal symbol.  If a rule like

?1 ?1 ?2 ?3 —> ?1 ?3 ?2 ?1

is applied, BP2 scans the string under derivation looking for a sequence of four variables or
terminal symbols in which the first two occurrences are identical, e.g. “A A B C”; it then
rewrites it swapping the second and fourth occurrences, i.e. “A C B A”.  Metavariables are
local to the rule in which they appear.  A typical application is proposed in appendix 3.

5 . 2 Remote context

Formal (e.g. Chomsky-type) grammars make it difficult (although theoretically possible)
to control productions on the basis of a “remote context”, i.e. the occurrence of a string
located anywhere to the left or right side of the derivation position.  Therefore a special
syntax of remote contexts is available in BP2.

Remote contexts are represented between ordinary brackets in the left argument of a
rule.21  For instance, a rule like

(a b c)  X Y (c d)  —>  X e f

means that “X Y” may be rewritten as “X e f” only if “a b c” is found somewhere before
“X Y” in the string under derivation, and “c d” somewhere after “X Y”.  Note that “X”
itself is a left context in the sense of conventional generative grammars.

A remote context may contain any string in BP syntax, including string patterns and
metavariables.  (See for instance appendix 3)  It may also be negative.  For instance,

#(a b c) X —> c d e

means that “X” may be rewritten as “c d e” only if not preceded by “a b c” in the string
under derivation.

21 These brackets are distinct from pattern delimiters that contain either “=” or “:”.



Bol Processor grammars

—  20  —

5 . 3 Context-sensitive substitutions

Substitutions may be viewed as a “parallel rewriting” of the string under derivation: in a
single step, each symbol of the string is replaced with another string of symbols (defined by
a rule).  All occurrences of the same symbol are replaced likewise.  Constant-length
substitutions, in which all replacement strings have identical lengths, yield (infinite)
sequences whose structure is intermediary between periodicity and chaos.  [Allouche 1987]
This property is useful for the design of rhythmic structures, as shown by Allouche &
Mouret [1988].  A less restrictive formalism that we call “context-sensitive substitution” has
been implemented in BP2.  Substitution rules can also be weighted, use remote contexts,
etc.

For instance, the substitution grammar

Substitution
S —> A B B A B B A
A B —>  a B
B A —> B b
A A —> c c
A B A —> A d A
B B A —> B e A
B B —> f B

produces “a f e a f e b” in two derivation steps.  The first derivation yields
“A B B A B B A”, which is then derived as illustrated in Fig.12.

A B B A B B A

a f e a f e b

.

.

Fig.12   A context-sensitive substitution

In appendix 3, subgrammar 4 uses a context-sensitive substitution to realize the
sonological interpretation22 of strings of “A”, “B”, “C”, “D”.

22 See §1 of “Symbolic and sonic representations of sound-object structures” in this volume.



Bol Processor grammars

—  21  —

5 . 4 Programmed grammars

When a generative grammar is used to derive a string, rule order is intrinsically
predetermined by the availability of variables in the string under derivation.  This process is
generally non-deterministic because there may be several candidate rules.  The idea of a
programmed grammar, as suggested by Laske [1973a:365], is to impose an extrinsic
ordering of rules reflecting a certain manner in which the generation process is envisaged by
the composer.  Programmed grammars in BP2 use flags taking positive integer values.
Suppose we need to generate random variations of length 12 containing “a” and “b”, yet
with approximately two times more “a” than “b”.  We may write:

[1] S —> X X X X X X X X X X X X   /flag1/   /flag1/   /flag2/
[2] /flag1/  X —> a /flag2/
[3] /flag2/  X —> b /flag1/  /flag1/

The first rule generates “X X X X X X X X X X X X” and three flags.  More precisely,
“flag1”, being generated twice, is set to integer value 2, while “flag2” is set to 1.  These are
used as conditions for the application of rules [2] and [3]: a rule may be applied only if the
value of its condition flag is strictly positive.  Each time the rule is applied the value of its
condition flag is decremented.  For example, rule [2] generates “a” while it decrements
“flag1” and increments “flag2” with the effect of validating [3] as a candidate rule.  Rule [3]
decrements “flag2”, generates “b” and increments “flag1” by 2 units, which will make it
possible to apply rule [2] twice.

6 . Conclusion

Work with the Bol Processor has been beneficial in finding a workable compromise
between general formal language models whose mathematical properties are well
established (although they often bear little musical relevance) and ad hoc representations
fulfilling the requirements of only particular musical tasks.  Our problem is not so much
finding a universal abstract representation of music but identifying certain forms of musical
“thinking” that may be rendered operative in the design of tools for computer-aided music
creation, performance, and analysis.

Bol Processor grammars lend themselves to descriptions of music that may be
normative when dealing with highly constrained systems (e.g. improvisation in traditional
music) or empirical when applied to the modelling of compositional processes.

We are currently engaged in two projects that originated from this field of investigation.
The first is a study of the inference of formal languages under the control of human experts
(see [Kippen & Bel 1989b], [Bel 1990a]).  The second one is the design of software tools
for rule-based music composition/improvisation (see [Bel 1990d]).

References

Allouche, J.P.  1987

Automates finis en théorie des nombres. Expositiones Mathematicae 5:239-66.



Bol Processor grammars

—  22  —

Allouche, J.P. and Mouret, A.  1988

Libertés non anarchiques, automates finis et champs matriciels. Colloque International “Structures

Musicales et Assistance Informatique”, Marseille:45-50.

Angluin, D.  1980a

Inductive inference of formal languages from positive data.  Information & Control, 45, 2:117-35.

1980b

Finding patterns common to a set of strings.  Journal of Computer and System Sciences 21:46-62.

Bel, B.  1990a

Inférence de langages réguliers.  In Proceedings of “Journées Françaises de l’Apprentissage” (JFA), 5-

27.  Lannion: CNET.

1990b

Grammaires BP pour des airs de sonneurs de cloches.  Technical Report, Laboratoire Musique et

Informatique de Marseille.

1990c

Acquisition et Représentation de Connaissances en Musique.  Thèse de Doctorat en Sciences, Faculté

des Sciences de St-Jérôme, Université Aix-Marseille III, Marseille.

1990d

Bol Processor BP2: reference manual.  ISTAR France, Marseille.

1987a

Les grammaires et le moteur d’inférences du Bol Processor, Internal Report n°237, GRTC, Centre

National de la Recherche Scientifique, Marseille.

1987b

Grammaires de génération et de reconnaissance de phrases rythmiques.  In Proceedings of “6ème

Congrès AFCET: Reconnaissance des Formes et Intelligence Artificielle”, 353-366.  Paris: Dunod

Informatique.

Booth, T.L. and Thompson, R.A.  1973

Applying Probability Measures to Abstract Languages.  IEEE Transactions on Computers, C-22, 5:442-

450.

Case, J. and Lynes, C.  1982

Machine Inductive Inference and Language Identification.  In Proceedings of the International

Colloquium on Algorithms, Languages and Programming (ICALP).  Springer Verlag:107-115.

Feld, S.  1974

Linguistic Models in Ethnomusicology. Ethnomusicology, 18,2:197-217.

Fu, K.S.  1982

Syntactic Pattern Recognition and Applications.  Englewood Cliffs: Prentice Hall.

Gold, E.M.  1967

Language Identification in the Limit.  Information and Control, 10:447-74.

Hart, J.M.  1980

Derivation Structures for Strictly Context-Sensitive Grammars.  Information and Control, 45:68-89.

Jackendoff, R. and Lerdahl, F.  1982

A Grammatical Parallel between Music and Language.  In Music, Mind and Brain: the

Neuropsychology of Music, ed. M. Clynes, 83-117.  New York: Plenum Press.

Jaulin, B.  1980

L’art de sonner les cloches.  In Sons et Musique.  Paris: Belin:100-111.



Bol Processor grammars

—  23  —

Kain, R.Y.  1981

Automata Theory: Machines and Languages.  Malabar: Krieger.

Kippen, J.  1988

The Tabla of Lucknow: a Cultural Analysis of a Musical Tradition.  Cambridge: Cambridge University

Press.

1 9 8 7

An ethnomusicological approach to the analysis of musical cognition.  Music Perception, 5:173-95.

Kippen, J. and Bel, B.  1989a

Modelling music with grammars: formal language representation in the Bol Processor.  In Computer

Representations and Models in Music, eds. A. Marsden and A. Pople.  London:Academic Press.

Forthcoming.

1989b

The identification and modelling of a percussion “language”, and the emergence of musical concepts in a
machine-learning experimental set-up.  Computers and Humanities 23, 3:199-214

1989c

Can a computer help resolve the problem of ethnographic description?  Anthropological Quarterly, 62,

3:131-144.

1989d

From word-processing to automatic knowledge acquisition: a pragmatic application for computers in
experimental ethnomusicology.  ALLC/ICCH Conference, Toronto, 6-10 June.  Forthcoming.

Laske, O.  1973a

In Search of a Generative Grammar for Music.  Perspectives of New Music, Fall-Winter 1973, Spring-

Summer 1974:351-378.

1973b

On the Understanding and Design of Aesthetic Artifacts.  In Musik und Verstehen, eds. P. Faltin and

H.P. Reinecke, 189-216.   Köln: Arno Volk.

Loeckx, J.  1970

The Parsing for General Phrase-Structure Grammars.  Information and Control, 16:443-464.

Maryanski, F.J. and Booth, T.L.  1977

Inference of Finite-State Probabilistic Grammars.  IEEE Transactions on Computers, C-26, 6:521-536

[Some anomalies of this paper are corrected in B.R. Gaine’s paper “Maryanski’s Grammatical Inferencer”,
IEEE Transactions on Computers, C-27, 1, 1979:62-64]

Miclet, L.  1984

Méthodes structurelles pour la reconnaissance des formes.  Paris: Eyrolles.

Nattiez, J.J.  1976

Fondements d’une sémiologie de la musique.  Paris: Union Générale d’Editions 10-18.

Révész, G.  1985

Introduction to Formal Languages.  New York: McGraw-Hill.

1 9 7 1

Unilateral Context Sensitive Grammars and Left-to-right Parsing.  Journal of Computer and System

Sciences, 5:337-352.

Ruwet, N.  1972

Langage, musique, poésie.  Paris: Seuil.



Bol Processor grammars

—  24  —

Salomaa, A.  1973

Formal Languages.  New York: Academic Press.

Appendix 1 — a BP1 grammar for a qa‘ida

Below is the grammar of a qa‘ida taught by the late Afaq Husain Khan of Lucknow.  It
was elaborated in many work sessions and later revised on the basis of the musician’s
actual performance.  An interesting feature of this improvisation schemata is the possible
change of tempo within a single variation.  Tempi are notated by way of integer numbers
following slashes.  For instance, “/4” indicates a stroke density of 4 strokes per beat.23  A
variation with a change of tempo may be found in appendix 2.  Rules [18] to [20] in
subgrammar 2 indicate a change to density 6 followed with a change back to density 4.

Subgrammar 1
[1]    S  —>  /4 (= + S64 ;) Default stroke density is 4
[2]    S  —>  ...   Other possible structures
-----------------------------------------------------------------------------------------------------------------------
Subgrammar 2
[1]    S64  —>  L16 + S48
[2]    S64  —>  L14  S50
[3]    S64  —>  L12  S52
[4]    S64  —>  L24  S40
[5]    S48  —>  M16 + S32
[6]    S48  —>  M14  S34
[7]    S48  —>  M40  O8
[8]    S50  —>  M18 + S32
[9]    S50  —>  M34 + S16
[10]    S50  —>  M18 + * (= + N14 )  O18
[11]    S16  —>  O16
[12]    S50  —>  V10  A'8T  * (= N18 +) + O16
[13]    S50  —>  M20  * (= N14 +) + O16
[14]    S52  —>  V28  A8T  O18
[15]    S52  —>  M20 + S32
[16]    S40  —>  M8 + S32
[17]    S32  —>  * (= + N16 +) + S16
[18]    S32  —>  * (= /6 + V12 /4 A8 +) + O16
[19]    S32  —>  * (= /6 + A16  V8 + /4) + O16
[20]    S32  —>  * (= /6 + V24 + /4) + O16
[21]    S32  —>  * (= /8 + N'16 + A16 + /4) + O16
[22]    S32  —>  * (= + N14 )  O18
[23]    S34  —>  O34
[24]    S34  —>  * (= N18 +) + S16
[25]    S16  —> /8 + A16  O16 ; /4
-----------------------------------------------------------------------------------------------------------------------
Subgrammar 3
[1]    M16  —>  V16
[2]    N18  —>  V18
[3]    (= + L16  —>  (= + A16
[4]    (= + L16  —>  (= + V16
[5]    (= + L14  —>  (= + V10  A'6T
[6]    M14  —>  A'16T
[7]    (= + L14  —>  (= + A16T
[8]    (= + L14  —>  (= + A'16T
[9]    (= + L12  —>  (= + A16TT
[10]    (= + L24  —>  (= + V24
[11]    + M16 + * —> + V10  A'6 + *

23 This notation of tempo is elaborated in §6.1 of “Symbolic and sonic representations of sound-object
structures” in this volume.



Bol Processor grammars

—  25  —

[12]    + M16  —> + A'16
[13]    M8 + * —>  A'8 + *
[14]    M16 + * —>  V8  A'8 + *
[15]    M14  —>  V8  A'8T
[16]    M18 + * —>  V10  A'8 + *
[17]    M18 + * —>  V18 + *
[18]    M34 + * —>  V28  A'6 + *
[19]    M34 + * —>  V26  A'8 + *
[20]    M20 + * —>  V12  A'8 + *
[21]    M20  —>  V20
[22]    M40  —>  V8  A'8T  V26
[23]    * (= /8 + N'16  —>  * (= /8 + V16
[24]    * (= /8 + N'16  —>  * (= /8 + N16
[25]    N16 + —>  V12  A4 +
[26]    N16 + —>  V8  A8 +
[27]    N16 + —>  V10  A6 +
[28]    * (= + N16  —>  * (= + A16
[29]    M14  —>  V8  A8T
[30]    * (= + N14  —>  * (= + V8  A8T
[31]    * (= + N14  —>  * (= + A16T
[32]    N14 + —>  V6  A8 +
[33]    O8 ; —>  A8 ;
[34]    O34 ; —>  V26  A8 ;
[35]    O18 ; —>  V10  A8 ;
[36]    O16 ; —>  V8  A8 ;
[37]    + O16 ; —> + A16 ;
-----------------------------------------------------------------------------------------------------------------------
Subgrammar 4
[1]    V30  —>  V  V  V28
[2]    V28  —>  V  V  V26
[3]    V26  —>  V  V  V24
[4]    V24  —>  V  V  V  V  V20
[5]    V20  —>  V  V  V18
[6]    V18  —>  V  V  V16
[7]    V16  —>  V  V  V  V  V12
[8]    V12  —>  V  V  V10
[9]    V10  —>  V  V  V8
[10]    V8  —>  V  V  V6
[11]    V6  —>  V  V  V  V  V  V
----------------------------------------------------------------------------------------------------------------------
Subgrammar 5
[1]    ? V  —>  ? -
[2]    V  —> dha
[3]    V  V  —> trkt
[4]    V  V  —> dheena
[5]    V  V  —> teena
[6]    V  V  —> dhati
[7]    V  V  —> gena
[8]    V  V  —> dhage
[9]   + V  V  —> +tidha
[10]   - V  V  —> -tidha
[11]   kt V  V  —> kttidha
[12]   na V  V  —> natidha
[13]   ge V  V  —> getidha
[14]   - V  V  —> -ti-
[15]   kt V  V  —> ktti-
[16]   ge V  V  —> geti-
[17]   na V  V  —> nati-
[18]    V  V  V  —> dhagena
[19]    V  V  V  —> teenake
[20]    V  V  V  —> dheenage
[21]    V  V  V  —> dhatrkt
[22]    V  V  V  —> trktdha
[25]    V  V  V  V  —> tidhagena



Bol Processor grammars

—  26  —

[26]    V  V  V  V  —> dhagedheena
[27]    V  V  V  V  —> teena-ta
[28]    #ti  V  V  V  V  —>  #ti tidhatrkt
[29]    V  V  V  V  —> dheenagena
[30]    V  V  V  V  —> teenakena
[31]    V  V  V  V  V  —> dhagenadheena
[32]    V  V  V  V  V  —> dhagenateena
[33]    V  V  V  V  V  —> dhagenadhati
[34]    V  V  V  V  V  —> dhatrktdhati
[35]    V  V  V  V  V  —> dhatidhatrkt
[36]    V  V  V  V  V  —> dhatidhagena
[37]    V  V  V  V  V  V  —> dheenagedhatrkt
[38]    V  V  V  V  V  V  —> genagedhatrkt
[39]    V  V  V  V  V  V  —> dhagedheenagena
[40]    V  V  V  V  V  V  —> dhageteenakena
[41]    #ti  V  V  V  V  V  V  —>  #ti tidhagedheenage
[42]    V  V  V  V  V  V  —> teenakegenage
[43]    V  V  V  V  V  V  V  V  —> dhagenagenanagena
[44]    V  V  V  V  V  V  V  V  —> dhatidhagedheenagena
[45]    V  V  V  V  V  V  V  V  —> dhatidhageteenakena
[46]    V  V  V  V  V  V  V  V  A8  —> dhatrktdhatidhatrkt A8
[47]    V  V  V  V  V  V  V  V  A'8  —> dhatrktdhatidhatrkt A'8
-----------------------------------------------------------------------------------------------------------------------
Subgrammar 6
[1]  + ? ? ? ? ? ? ? ? ? ? A'6T  —> + ? ? ? ? ? ? ? ? ? ? dhageteena
[2]  + ? ? ? ? ? ? ? ? ? ? A6T  —> + ? ? ? ? ? ? ? ? ? ? dhagedheena
[3]  + ? ? ? ? ? ? ? ? ? ? A'6T  —> + ? ? ? ? ? ? ? ? ? ? dhageteena
[4]  + ? ? ? ? ? ? ? ? A8T  —> + ? ? ? ? ? ? ? ? dhatidhagedheena
[5]  A8T  ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ; —> dhatidhagedheena ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ;
[6]  + ? ? ? ? ? ? ? ? A'8T  —> + ? ? ? ? ? ? ? ? dhatidhageteena
[7]  + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? A'8T  —> + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

dhatidhageteena
[8]  A'6 + —> dhageteenakena +
[9]  A'8 + —> dhatidhageteenakena +
[10]  A4 + —> dheenagena +
[11]  A6 + —> dhagedheenagena +
[12]  A8 + —> dhatidhagedheenagena +
[13]  A8 ; —> dhatidhagedheenagena ;
[16]  + A16TT  —> + dhatidhagenadhatrktdhatidhage
[17]  + A16T  #ge —>+ dhatidhagenadhatrktdhatidhagedheena #ge
[18]  + A'16T  #ke  —>+ dhatidhagenadhatrktdhatidhageteena #ke
[19]  + A16  —> + dhatidhagenadhatrktdhatidhagedheenagena
[20]  + A'16  —> + dhatidhagenadhatrktdhatidhageteenakena
-----------------------------------------------------------------------------------------------------------------------
Templates generated by this grammar:
  [1]   /4 (= +................+................+ * (= +................+) +................;)
  [2]   /4 (= +................+................+ * (= +................+) + /8 +................................; /4 ;)
  [3]   /4 (= +................+................+ * (= /6 +............ /4........+) +................;)
  [4]   /4 (= +................+................+ * (= /6 +........................+ /4) +................;)
  [5]   /4 (= +................+................+ * (= /8 +................+................+ /4) +................;)
  [6]   /4 (= +................+................+ * (= +..............) ..................;)
  [7]   /4 (= +................+................................................;)
  [8]   /4 (= +................+.............. * (=..................+) +................;)
  [9]   /4 (= +................+.............. * (=..................+) + /8 +................................; /4 ;)
  [10]   /4 (= +................................+ * (= +................+) +................;)
  [11]   /4 (= +................................+ * (= +................+) + /8 +................................; /4 ;)
  [12]   /4 (= +................................+ * (= /6 +............ /4........+) +................;)
  [13]   /4 (= +................................+ * (= /6 +........................+ /4) +................;)
  [14]   /4 (= +................................+ * (= /8 +................+................+ /4) +................;)
  [15]   /4 (= +................................+ * (= +..............) ..................;)
  [16]   /4 (= +................................................+................;)
  [17]   /4 (= +................................................+ /8 +................................; /4 ;)
  [18]   /4 (= +.............................. * (=..................+) +................;)
  [19]   /4 (= +.................................. * (=..............+) +................;)



Bol Processor grammars

—  27  —

  [20]   /4 (= +................................................................;)

Appendix 2 — parsing a variation

The following is part of the trace showing the parsing of a variation by the grammar above.
This demonstrates template matching (see §3.3) and the canonic rightmost derivation (see
§3.1).  The complete process took less than 2 minutes on an Apple IIc.  The variation is:

/4 dhatidhage nadhatrkt dhatidhage dheenatrkt

dhadhatrkt dhatidha- dhatidhage teena-ta

teena-ta titakena tatitake teenakena

 /8 dhatidhagenadhatrkt dhatidhagedheenagena gena-dhatidhagena dhatidhagedheenagena

Trying templates:

[1] /4 (=+dhatidhagenadhatrktdhatidhagedheenatrkt+dhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tati
takenatatitaketeenakena+)+dhatidhagenadhatrktdhatidhagedheenagena;)
Incomplete template: failed…

[2] /4 (=+dhatidhagenadhatrktdhatidhagedheenatrkt+dhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-
tatitakenatatitaketeenakena+)+ /8 +dhatidhagenadhatrktdhatidhagedheenagenagena-
dhatidhagenadhatidhagedheenagena ; /4  ;) Acceptable template…

Trying a membership test on this template:

/4 (=+dhatidhagenadhatrktdhatidhagedheenatrkt+dhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-
tatitakenatatitaketeenakena+)+ /8 +A16 gena-dhatidhagenadhatidhagedheenagena; /4  ;)

/4 (=+ A16T trkt+dhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakenatatitaketeenakena+)+ /8 +
A16 gena-dhatidhagenadhatidhagedheenagena; /4  ;)

/4 (=+ A16T trkt+dhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakenatatitaketeenakena+)+ /8 +
A16 gena-dhatidhagena A8 ; /4  ;)

/4 (=   + A16T trkt+dhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakena A8+)+ /8 +A16 gena-
dhatidhagena A8 ; /4  ;)

/4 (=   + A16T trkt+dhadhatrktdhatidha- A'8T -ta+*(=+teena-tatitakena A8+)+ /8 +A16 gena-
dhatidhagena A8 ; /4  ;)

/4 (=  +A16T trkt+dhadhatrktdhatidha- A'8T -ta+*(=+teena-tatitakena A8+)+ /8 +A16 gena- VVVVV A8
; /4  ;)

/4 (=  +A16T trkt+dhadhatrktdhatidha- A'8T -ta+*(=+teena-tatitakena A8+)+ /8 +A16 gena VVVVVV
A8 ; /4  ;)

/4 (=  +A16T trkt+dhadhatrktdhatidha- A'8T -ta+*(=+teena-tatitakena A8+)+ /8 +A16 VVVVVVVV A8
; /4  ;)

/4 (=  +A16T trkt+dhadhatrktdhatidha- A'8T -ta+*(=+teena- VVVVV A8+)+ /8 +A16 VVVVVVVV A8
; /4  ;)

/4 (=  +A16T trkt+dhadhatrktdhatidha- A'8T -ta+*(=+teena VVVVVV A8+)+ /8 +A16 VVVVVVVV A8
; /4  ;)

/4 (=  +A16T trkt+dhadhatrktdhatidha- A'8T -ta+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV A8 ;
/4  ;)

/4 (=  +A16T trkt+dhadhatrktdhatidha- A'8T V ta+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV A8
; /4  ;)

/4 (=  +A16T trkt+dhadhatrktdhatidha V A'8T V ta+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV
A8 ; /4  ;)

/4 (=  +A16T trkt+dhadhatrktdhati VV A'8T V ta+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV A8
; /4  ;)

/4 (=  +A16T trkt+dha VVVVVVV A'8T V ta+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV A8 ;
/4  ;)

/4 (=  +A16T trkt+VVVVVVVV A'8T V ta+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV A8 ; /4
;)

/4 (=  +A16T VV+VVVVVVVV A'8T V ta+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV A8 ; /4
;)

/4 (=  +A16T VV+VVVVVVVV A'8T V ta+*(=+VVVVVVVV A8+)+ /8 +A16 VVV6 A8 ; /4  ;)
/4 (=  +A16T VV+VVVVVVVV A'8T V ta+*(=+VVVVVVVV A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T VV+VVVVVVVV A'8T V ta+*(=+VV V6 A8+)+ /8 +A16 V8 A8 ; /4  ;)



Bol Processor grammars

—  28  —

/4 (=  +A16T VV+VVVVVVVV A'8T V ta+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T VV+VVV6 A'8T V ta+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T VV+V8 A'8T V ta+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T VV+V8 A'8T V ta+*(=+V8 A8+)+ /8 +A16 O16 ; /4  ;)
/4 (=  +A16T VV+V8 A'8T V ta+*(=+N16+)+ /8 +A16 O16 ; /4  ;)
/4 (=  +A16T VV+M14 V ta+*(=+N16+)+ /8 +A16 O16 ; /4  ;)
/4 (=  +L14 VV+M14 V ta+*(=+N16+)+ /8 +A16 O16 ; /4  ;)
/4 (=  +L14 VV+M14 V ta+*(=+N16+)+S16 ;)
/4 (=  +L14 VV+M14 V ta+S32 ;) Membership test failed…

Trying more templates:

...
[5] (=+dhatidhagenadhatrktdhatidhagedheenatrkt+dhadhatrktdhatidha-dhatidhageteena-ta+*(= /8

+teenatatitakenatatitaketeenakena+dhatidhagenadhatrktdhatidhagedheenagena+ /4  )+gena-
dhatidhagenadhatidhagedheenagena;) Acceptable template…

Trying membership test on this template: failed…

Trying more templates:

...
[11] (=+dhatidhagenadhatrktdhatidhagedheenatrktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-

tatitakenatatitaketeenakena+)+ /8 +dhatidhagenadhatrkt dhatidhagedheenagena gena-dhatidhagena
dhatidhagedheenagena ; /4  ;) Acceptable template…

Trying membership test on this template:

/4 (=  +dhatidhagenadhatrktdhatidhagedheenatrktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-
tatitakenatatitaketeenakena+)+ /8 +A16 gena-dhatidhagenadhatidhagedheenagena; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakenatatitaketeenakena+)+ /8
+A16 gena-dhatidhagenadhatidhagedheenagena; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakenatatitaketeenakena+)+ /8
+A16 gena-dhatidhagena A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakena A8+)+ /8 +A16 gena-
dhatidhagena A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakena A8+)+ /8 +A16 gena-
VVVVV A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakena A8+)+ /8 +A16 gena
VVVVVV A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena-tatitakena A8+)+ /8 +A16
VVVVVVVV A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena- VVVVV A8+)+ /8 +A16
VVVVVVVV A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+teena VVVVVV A8+)+ /8 +A16
VVVVVVVV A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhageteena-ta+*(=+VVVVVVVV A8+)+ /8 +A16
VVVVVVVV A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhatidhage VVVV+*(=+VVVVVVVV A8+)+ /8 +A16
VVVVVVVV A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha-dhati VVVVVV+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV
A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha- VVVVVVVV+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV
A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhatidha VVVVVVVVV+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV
A8 ; /4  ;)

/4 (=  +A16T  trktdhadhatrktdhati VVVVVVVVVV+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV
A8 ; /4  ;)

/4 (=  +A16T  trktdha VVVVVVVVVVVVVVV+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV A8
; /4  ;)

/4 (=  +A16T  VVVVVVVVVVVVVVVVVV+*(=+VVVVVVVV A8+)+ /8 +A16 VVVVVVVV A8 ;
/4  ;)

/4 (=  +A16T  VVVVVVVVVVVVVVVVVV+*(=+VVVVVVVV A8+)+ /8 +A16 VVV6 A8 ; /4  ;)
/4 (=  +A16T  VVVVVVVVVVVVVVVVVV+*(=+VVVVVVVV A8+)+ /8 +A16 V8 A8 ; /4  ;)



Bol Processor grammars

—  29  —

/4 (=  +A16T  VVVVVVVVVVVVVVVVVV+*(=+VV V6 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T  VVVVVVVVVVVVVVVVVV+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T  VVVVVVVVVVVV V6+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T  VVVVVVVVVV V8+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T  VVVVVVVV V10+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T  VVVVVV V12+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T  VV V16+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T  V18+*(=+V8 A8+)+ /8 +A16 V8 A8 ; /4  ;)
/4 (=  +A16T  V18+*(=+V8 A8+)+ /8 +A16 O16 ; /4  ;)
/4 (=  +A16T  V18+*(=+N16+)+ /8 +A16 O16 ; /4  ;)
/4 (=  +A16T  M18+*(=+N16+)+ /8 +A16 O16 ; /4  ;)
/4 (=  +L14 M18+*(=+N16+)+ /8 +A16 O16 ; /4  ;)
/4 (=  +L14 M18+*(=+N16+)+S16 ;)
/4 (=  +L14 M18+S32 ;)
/4 (=  +L14 S50 ;)
/4 (=  +S64 ;)
 S Membership test successful…

Trying more templates, etc…

Appendix 3 — a BP2 grammar

This grammar is inspired by tintinnabulation, the art of ordering peals of church bells in
England [Jaulin 1980].  The grammar is expected to build a sequence chaining distinct
permutations of four sounds: “A”, “B”, “C” and “D”.  All acceptable changes from one
permutation to the next are listed in subgrammar 2: these rules restrict changes of positions
of a given sound yielding a structure in which an average periodicity of 4 is suggested but
never clearly shown.  Negative remote contexts make sure that the permutation newly
generated is occurring for the first time.  Variable “Cut” is used to separate permutations.
When no further rule in subgrammar 2 is applicable, the inference engine jumps to
subgrammar 3 in which all remaining variables (except of course “A”, “B”, “C”, “D”) are
erased.  Subgrammar 4 uses a context-sensitive substitution to replace variables with notes.
Following standard solfège, “re4” stands for “D octave 4”.  Notes proposed here are
arbitrary pitches unrelated to the traditional tuning of bells.

A detailed presentation of this grammar and its variants is available in [Bel 1990b].



Bol Processor grammars

—  30  —

Subgrammar 1
S —> A B C D   Cut   B A C D   X12
S —> A B C D   Cut   A C B D   X23
S —> A B C D   Cut   A B D C   X34
S —> A B C D   Cut   B A D C   X1234
----------------------------------------------------------
Subgrammar 2
 #(?1 ?2 ?4 ?3) ?1 ?2 ?3 ?4  X12 —> ?1 ?2 ?3 ?4   Cut   ?1 ?2 ?4 ?3 X34
 #(?2 ?1 ?4 ?3) ?1 ?2 ?3 ?4  X12 —> ?1 ?2 ?3 ?4   Cut   ?2 ?1 ?4 ?3 X1234
 #(?2 ?1 ?4 ?3) ?1 ?2 ?3 ?4  X34 —> ?1 ?2 ?3 ?4   Cut   ?2 ?1 ?4 ?3 X1234
 #(?2 ?1 ?3 ?4) ?1 ?2 ?3 ?4  X34 —> ?1 ?2 ?3 ?4   Cut   ?2 ?1 ?3 ?4 X12
 #(?2 ?1 ?4 ?3) ?1 ?2 ?3 ?4  X23 —> ?1 ?2 ?3 ?4   Cut   ?2 ?1 ?4 ?3 X1234
 #(?2 ?1 ?3 ?4) ?1 ?2 ?3 ?4  X1234 —> ?1 ?2 ?3 ?4   Cut   ?2 ?1 ?3 ?4 X12
 #(?1 ?3 ?2 ?4) ?1 ?2 ?3 ?4  X1234 —> ?1 ?2 ?3 ?4   Cut   ?1 ?3 ?2 ?4 X23
 #(?1 ?2 ?4 ?3) ?1 ?2 ?3 ?4  X1234 —> ?1 ?2 ?3 ?4   Cut   ?1 ?2 ?4 ?3 X34
-----------------------------------------------------------
Subgrammar 3
Cut —> λ
X12 —> λ
X23 —> λ
X34 —> λ
X1234 —> λ
-----------------------------------------------------------
Subgrammar 4: sonological interpretation
(Context-sensitive substitutions)
A B —> do3 B
A #B —> do4 #B
B —> sol4
C —> re5
D A —> mi4 A
D #A —> mi5 #A

A sequence generated by this grammar is:

do3 sol4 re5 mi5 sol4 do4 mi5 re5 sol4 mi4 do4 re5 mi5 sol4 re5 do4
mi5 re5 sol4 do4 re5 mi4 do4 sol4 re5 do4 mi5 sol4 do4 re5 sol4 mi5

The pseudo-periodicity of all occurrences of “do”, “sol”, “re” and “mi” is clearly visible
in this sequence.  Tabulations delimit permutations.



—  31  —

Index

accepting state 5
artistic creativity 1
automatic rule generation 2
Bol Processor 1; 2; 12; 18
Bol Processor grammar 12; 16
canonic derivation 13; 14; 27
competence vs. performance 1
consistent grammar 18
context-free (type-2) grammar 3; 7
context-sensitive (type-1) grammar 3; 14
context-sensitive (type-1) language 13
context-sensitive substitution 20; 29
counter-grammar 1
decidable language 13
drum music 1; 2
dual grammar 13
ethnomusicology 1
finite acceptor 4
finite-state (type-3) grammar 3
formal language 2
formalizing improvisation schemata 8
generative grammar 2; 3; 10
Gold’s theorem 9
hierarchy of generative grammars 3
ideal listener 1
ideal musician 1
identification in the limit 9
improvisation schemata 1; 24
inductive generalization 8
inductive inference 9
inference engine 8
inferring rule probabilities 18
length-decreasing grammar 14
length-increasing (type-1) grammar 3; 14
lexical rule 7
membership test 12; 13; 16
metatheory of music 1
metrical value 7
music improvisation 3
music segmentation 7; 9
music teaching 2
negative context 17
onomatopoeic language 2
oral tradition 1
parsing procedure 13
pattern classifier 8; 9
pattern language 10
pattern rule 10; 11; 12

phrase-structure (type-0) grammar 3
probabilistic grammar 18
programmed grammar 20
qa‘ida 1; 2; 3; 4; 8; 24
regular (type-3) grammar 3; 4; 9
regular (type-3) language 9
regular grammar 4
remote context 19
rule-based composition 18
sonological interpretation 20
sound-object 2
stochastic production 17
string pattern 2; 10
stroke density 4; 16; 24
structural pattern recognition 8
syntactic pattern recognition 9
tabla drumming 1
template matching 16; 27
theme and variations 3
tintinnabulation 29
transformational subgrammar 7
unrestricted (type-0) language 13
voiced/unvoiced transformation 11
wild card 17


