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Abstract. An aperiodic tile set was first constructed by R. Berger while
proving the undecidability of the domino problem. It turned out that ape-
riodic tile sets appear in many topics ranging from logic (the Entschei-
dungsproblem) to physics (quasicrystals).

We present a new construction of an aperiodic tile set that is based on
Kleene’s fixed-point construction instead of geometric arguments. This
construction is similar to J. von Neumann self-reproducing automata;
similar ideas were also used by P. Gács in the context of error-correcting
computations.

The flexibility of this construction allows us to construct a “robust”
aperiodic tile set that does not have periodic (or close to periodic) tilings
even if we allow some (sparse enough) tiling errors. This property was
not known for any of the existing aperiodic tile sets.

1 Introduction

In this paper4, tiles are unit squares with colored sides. Tiles are considered as
prototypes: we may place translated copies of the same tile into different cells of

4 The first version of this preprint was published in arxiv and hal on 18 Feb 2008.
Later this paper was published in proceedings of the DLT conference:

[DLT08] B.Durand, A.Romashchenko, A.Shen. Fixed Point and Aperiodic
Tilings. Proc. 12th international conference on Developments in Language

Theory. Kyoto, Japan, September 2008, pp. 537–548.

A short journal version of this work was presented in:

[EATCS] B.Durand, A.Romashchenko, A.Shen. Fixed point theorem and ape-
riodic tilings. Bulletin of the EATCS (The Logic in Computer Science Column

by Yuri Gurevich). no 97 (2009) pp. 126–136.

Also this article became a part of a long paper on a fixed-point technique in tilings:

[DRS09] B.Durand, A.Romashchenko, A.Shen. Fixed-point tile sets and their
applications. 2009, hal:00424024 and arxiv:0910.2415 (50 pages).

Since the present paper is only a preliminary preprint, we encourage the reader to
refer directly to [EATCS] or [DRS09] (this footnote is added on Jan 13, 2010).



a cell paper (rotations are not allowed). Tiles in the neighbor cells should match
(common side should have the same color in both).

Formally speaking, we consider a finite set C of colors. A tile is a quadruple
of colors (left, right, top and bottom ones), i.e., an element of C4. A tile set is
a subset τ ⊂ C4. A tiling of the plane with tiles from τ (τ-tiling) is a mapping
U : Z2 → τ that respects the color matching condition. A tiling U is periodic if
it has a period, i.e., a non-zero vector T ∈ Z

2 such that U(x + T ) = U(x) for
all x ∈ Z

2. Otherwise the tiling is aperiodic. The following classical result was
proved by Berger in a paper [2] where he used this construction as a main tool
to prove Berger’s theorem: the domino problem (to find out whether a given tile
set has tilings or not) is undecidable.

Theorem 1. There exists a tile set τ such that τ-tilings exist and all of them

are aperiodic. [2]

The first tile set of Berger was rather complicated. Later many other con-
structions were suggested. Some of them are simplified versions of the Berger’s
construction ([17], see also the expositions in [1,5,13]). Some others are based on
polygonal tilings (including famous Penrose and Ammann tilings, see [10]). An
ingenious construction suggested in [11] is based on the multiplication in a kind
of positional number system and gives a small aperiodic set of 14 tiles (in [3] an
improved version with 13 tiles is presented). Another nice construction with a
short and simple proof (based explicitly on ideas of self-similarity) was recently
proposed by N. Ollinger [16].

In this paper we present yet another construction of aperiodic tile set. It does
not provide a small tile set; however, we find it interesting because:

• The existence of an aperiodic tile set becomes a simple application of a
classical construction used in Kleene’s fixed point (recursion) theorem, in von
Neumann’s self-reproducing automata [15] and, more recently, in Gács’ reliable
cellular automata [7,8]; we do not use any geometric tricks. The construction
of an aperiodic tile set is not only an interesting result but an important tool
(recall that it was invented to prove that domino problem is undecidable); our
construction makes this tool easier to use (see Theorem 3).

• The construction is rather general, so it is flexible enough to achieve some
additional properties of the tile set. Our main result is Theorem 6: there exists
a “robust” aperiodic tile set that does not have periodic (or close to periodic)
tilings even if we allow some (sparse enough) tiling errors. It is not clear whether
this can be achieved for previously known aperiodic tile sets; however, the math-
ematical model for a processes like quasicrystals’ growth or DNA-computation
should take errors into account. Note that our model (independent choice of
place where errors are allowed) has no direct physical meaning; it is just a sim-
ple mathematical model that can be used as a playground to develop tools for
estimating the consequences of tiling errors.

The paper is organized as follows. In Section 2 we define the notion of a
self-similar tile set (a tile set that simulates itself). In Section 3 we explain how
a tile set can be simulated by a computation implemented by another tile set.
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Section 4 shows how to achieve a fixed point (a tile set that simulates itself).
Then we provide several applications of this construction: we use it to implement
substitution rules (Section 5) and to obtain tile sets that are aperiodic in a
strong sense (Section 6) and robust to tiling errors (Sections 7 and 8). Section 9
provides probability estimates that show that tiling errors are correctable with
probability 1 (with respect to Bernoulli distribution). Finally, we show some
other applications of the fixed point construction that simplify the proof of the
undecidability of the domino problem and related results.

2 Macro-tiles

Fix a tile set τ and an integer N > 1. A macro-tile is an N ×N square tiled by
matching τ -tiles. Every side of a macro-tile carries a sequence of N colors called
a macro-color.

Let ρ be a set of τ -macro-tiles. We say that τ simulates ρ if (a) τ -tilings exist,
and (b) for every τ -tiling there exists a unique grid of vertical and horizontal
lines that cuts this tiling into N ×N macro-tiles from ρ.

(i+ 1, j)(i, j)

(i, j)

(i, j + 1)

Fig. 1.

Example 1. Assume that we have only one (‘white’)
color and τ consists of a single tile with 4 white sides. Fix
some N . There exists a single macro-tile of size N × N .
Let ρ be a singleton that contains this macro-tile. Then
every τ -tiling can be cut into macro-tiles from ρ. However,
τ does not simulate ρ, since the placement of cutting lines
is not unique.

Example 2. In this example a set ρ that consists of exactly one macro-tile
(that has the same macro-colors on all four sides) is simulated by some tile set
τ . The tile set τ consists of N2 tiles indexed by pairs (i, j) of integers modulo N .
A tile from τ has colors on its sides as shown on Fig. 1. The macro-tile in ρ has
colors (0, 0), . . . , (0, N − 1) and (0, 0), . . . , (N − 1, 0) on its borders (Fig. 2).

(0, 0)

(0, 0)

(0, N − 1)

(0, 0)

(N − 1, 0)

(0, 0)

(0, N − 1)

(N − 1, 0)

N

Fig. 2.

If a tile set τ simulates some set ρ of τ -macro-
tiles with zoom factor N > 1 and ρ is isomorphic
to τ , the set τ is called self-similar. Here an isomor-

phism between τ and ρ is a bijection that respects
the relations “one tile can be placed on the right of
another one” and “one tile can be placed on the top
of another one”. (An isomorphism induces two bi-
jections between horizontal/vertical colors of τ and
horizontal/vertical macro-colors of ρ.)

The idea of self-similarity is used (more or less
explicitly) in most constructions of aperiodic tile sets
([11,3] are exceptions); we find the following explicit formulation useful.

Theorem 2. A self-similar tile set τ has only aperiodic tilings.

Proof. Every τ -tiling U can be uniquely cut into N ×N -macro-tiles from ρ.
So every period T of U is a multiple of N (since the T -shift of a cut is also a

3



cut). Then T/N is a period of ρ-tiling, which is isomorphic to a τ -tiling, so T/N
is again a multiple of N . Iterating this argument, we conclude that T is divisible
by Nk for every k, so T = 0. �

So to prove the existence of aperiodic tile sets it is enough to construct a self-
similar tile set, and we construct it using the fixed-point idea. To achieve this,
we first explain how to simulate a given tile set by embedding computations.

3 Simulating a tile set

For brevity we say that a tile set τ simulates a tile set ρ when τ simulates some
set of macro tiles ρ̃ isomorphic to ρ (e.g., a self-similar tile set simulates itself).

Let us start with some informal discussion. Assume that we have a tile set ρ
whose colors are k-bit strings (C = B

k) and the set of tiles ρ ⊂ C4 is presented
as a predicate R(c1, c2, c3, c4). Assume that we have some Turing machine R
that computes R. Let us show how to simulate ρ using some other tile set τ .

This construction extends Example 2, but simulates a tile set ρ that con-
tains not a single tile but many tiles. We keep the coordinate system modulo N
embedded into tiles of τ ; these coordinates guarantee that all τ -tilings can be
uniquely cut into blocks of size N ×N and every tile “knows” its position in the
block (as in Example 2). In addition to the coordinate system, now each tile in τ
carries supplementary colors (from a finite set specified below) on its sides. On
the border of a macro-tile (i.e., when one of the coordinates is zero) only two
supplementary colors (say, 0 and 1) are allowed. So the macro-color encodes a
string of N bits (where N is the size of macro-tiles). We assume that N ≥ k and
let k bits in the middle of macro-tile sides represent colors from C. All other bits
on the sides are zeros (this is a restriction on tiles: each tile knows its coordinates
so it also knows whether non-zero supplementary colors are allowed).

Now we need additional restrictions on tiles in τ that guarantee that the
macro-colors on sides of each macro-tile satisfy the relation R. To achieve this,
we ensure that bits from the macro-tile sides are transferred to the central part
of the tile where the checking computation of R is simulated (Fig. 3).

Turing
machine

Fig. 3.

For that we need to fix which tiles in a macro-tile form
“wires” (this can be done in any reasonable way; let us assume
that wires do not cross each other) and then require that each
of these tiles carries equal bits on two sides; again it is easy
since each tile knows its coordinates.

Then we check R by a local rule that guarantees that the
central part of a macro-tile represents a time-space diagram
of R’s computation (the tape is horizontal, time goes up).
This is done in a standard way. We require that computation

terminates in an accepting state: if not, the tiling cannot be formed.

To make this construction work, the size of macro-tile (N) should be large
enough: we need enough space for k bits to propagate and enough time and
space (=height and width) for all accepting computations of R to terminate.
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In this construction the number of supplementary colors depends on the
machine R (the more states it has, the more colors are needed in the com-
putation zone). To avoid this dependency, we replace R by a fixed univer-
sal Turing machine U that runs a program simulating R. Let us agree that
the tape has an additional read-only layer. Each cell carries a bit that is not

Universal
Turing
machine
program

Fig. 4.

changed during the computation; these bits are used as a pro-
gram for the universal machine (Fig. 4). So in the computation
zone the columns carry unchanged bits, and the tile set restric-
tions guarantee that these bits form the program for U , and
the central zone represents the protocol of an accepting com-
putation for that program. In this way we get a tile set τ that
simulates ρ with zoom factor N using O(N2) tiles. (Again we
need N to be large enough.)

4 Simulating itself

We know how to simulate a given tile set ρ (represented as a program for the
universal TM) by another tile set τ with a large enough zoom factor N . Now
we want τ to be isomorphic to ρ (then Theorem 2 guarantees aperiodicity). For
this we use a construction that follows Kleene’s recursion (fixed-point) theorem5

[12].

Note that most rules of τ do not depend on the program for R, dealing with
information transfer along the wires, the vertical propagation of unchanged pro-
gram bits, and the space-time diagram for the universal TM in the computation
zone. Making these rules a part of ρ’s definition (we let k = 2 logN +O(1) and
encode O(N2) colors by 2 logN +O(1) bits), we get a program that checks that
macro-tiles behave like τ -tiles in this respect.

The only remaining part of the rules for τ is the hardwired program. We need
to ensure that macro-tiles carry the same program as τ -tiles do. For that our
program (for the universal TM) needs to access the bits of its own text. (This
self-referential action is in fact quite legal: the program is written on the tape,
and the machine can read it.) The program checks that if a macro-tile belongs
to the first line of the computation zone, this macro-tile carries the correct bit
of the program.

How should we choose N (hardwired in the program)? We need it to be large
enough so the computation described (which deals with O(logN) bits) can fit

5 A reminder: Kleene’s theorem says that for every transformation π of programs one
can find a program p such that p and π(p) produce the same output. Proof sketch:
since the statement is language-independent (use translations in both directions
before and after π), we may assume that the programming language has a function
GetText() that returns the text of the program and a function Exec(string s)

that replaces the current process by execution of a program s. (Think about an
interpreter: surely it has an access to the program text; it can also recursively call
itself with another program.) Then the fixed point is Exec(π(GetText())).
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in the computation zone. The computation is rather simple (polynomial in the
input size, i.e., O(logN)), so for large N it easily fits in Ω(N) available time.

This finishes the construction of a self-similar aperiodic tile set.

5 Substitution system and tilings

The construction of self-similar tiling is rather flexible and can be easily aug-
mented to get a self-similar tiling with additional properties. Our first illustration
is the simulation of substitution rules.

Let A be some finite alphabet and m > 1 be an integer. A substitution rule is
a mapping s : A → Am×m. By A-configuration we mean an integer lattice filled
with letters from A, i.e., a mapping Z

2 → A considered modulo translations.
A substitution rule s applied to a configuration X produces another config-

uration s(X) where each letter a ∈ A is replaced by an m×m matrix s(a).
A configuration X is compatible with substitution rule s if there exists an

infinite sequence . . .
s→ X3

s→ X2
s→ X1

s→ X, where Xi are some configurations.
Example 3. Let A = {0, 1}, s(0) = ( 0 1

1 0 ), s(1) = ( 0 1
1 0 ). It is easy to see that

the only configuration compatible with s is the chess-board coloring.
Example 4. Let A = {0, 1}, s(0) = ( 0 1

1 0 ), s(1) = ( 1 0
0 1 ). One can check that

all configurations that are compatible with this substitution rule (called Thue –

Morse configurations in the sequel) are aperiodic.
The following theorem goes back to [14]. It says that every substitution rule

can be enforced by a tile set.

Theorem 3 (Mozes). Let A be an alphabet and let s be a substitution rule

over A. Then there exists a tile set τ and a mapping e : τ → A such that

(a) s-image of any τ-tiling is an A-configuration compatible with s;
(b) every A-configuration compatible with s can be obtained in this way.

Proof. We modify the construction of the tile set τ (with zoom factor N)
taking s into account. Let us first consider the very special case when

• the substitution rule maps eachA-letter into anN×N -matrix (i.e.,m = N).
• the substitution rule is easy to compute: given a letter u ∈ A and (i, j), we

can compute the (i, j)-th letter of s(u) in time poly(log |A|) ≪ N .
In this case we proceed as follows. In our basic construction every tile knows

its coordinates in the macro-tile and some additional information needed to
arrange ‘wires’ and simulate calculations of the universal TM. Now in addition
to this basic structure each tile keeps two letters of A: the first is the label of a tile
itself, and the second is the label of the N×N -tile it belongs to. This means that
we keep additional 2 log |A| bits in each tile, i.e., multiply the number of tiles by
|A|2. It remains to explain how the local rules work. We add two requirements:

(a) the second letter is the same for neighbor tiles (unless they are separated
by a border of some N ×N macro-tile);

(b) the first letter in a tile is determined by the second letter and the coor-
dinates of the tile inside the macro-tile, according to the substitution rule.
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Both requirements are easy to integrate in our construction. The requirement
(a) is rather trivial; to achieve (b) we need to embed in a macro-tile a calculation
of s([label on this macro-tile]). It is possible when s is easy to compute.

The requirements (a) and (b) ensure that configuration is an s-image of some
other configuration. Also (due the self-similarity) we have the same at the level
of macro-tiles. But this is not all: we need to guarantee that the first letter on
the level of macro-tiles is identical to the second letter on the level of tiles. This
is also achievable: the first letter of a macro-tile is encoded by bits on its border,
and we can require that these bits match the second letter of the tiles at that
place (recall that second letter is the same across the macro-tile). It is easy to see
that now τ has the required properties (each tiling projects into a configuration
compatible with τ and vice versa).

However, this construction assumes that N (the zoom factor) is equal to the
matrix size in the substitution rule, which is usually not the case (m is given,
and N we have to choose, and it needs to be large enough). The solution is to
let N be equal to mk for some k, and use the substitution rule sk, i.e., the k-th
iteration of s (a configuration is compatible with sk if and only if it is compatible
with s). Now we do not need s to be easily computed: for large k the computation
of sk will fit into the space available (exponential in k). �

6 Strong version of aperiodicity

Let α > 0 be a real number. A configuration U : Z2 → A is α-aperiodic if for
every nonzero vector T ∈ Z

2 there exists N such that in every square whose side
is at least N the fraction of points x such that U(x) 6= U(x+ T ) exceeds α.

Remark 1. If U is α-aperiodic, then Besicovitch distance between U and
any periodic pattern is at least α/2. (The Besicovitch distance is defined as
lim supN dN where dN is the fraction of points where two patterns differ in the
N ×N centered square.)

Theorem 4. There exists a tile set τ such that τ-tilings exist and every τ-tiling
is α-aperiodic for every α < 1/3.

Proof. This tile set is obtained by applying Theorem 3 to Thue–Morse sub-
stitution rule T (Example 4). Note that any configuration C = {cij} compatible
with T is a xor-combination cij = ai ⊕ bj of two one-dimensional Thue-Morse
sequences a and b, and for a and b a similar result (every shift changes between
1/3 and 2/3 of positions in a large block) is well known (see, e.g., [18]). �

7 Filling holes

The second application of our flexible fixed-point construction is an aperiodic
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n
c1nc2n

Fig. 5.

tile set where isolated defects can be healed.
Let c1 < c2 be positive integers. We say that a tile set

τ is (c1, c2)-robust if the following holds: For every n and
for every τ -tiling U of the c2n-neighborhood of a square
n × n excluding the square itself there exists a tiling V
of the entire c2n-neighborhood of the square (including
the square itself) that coincides with U outside of the
c1n-neighborhood of the square (see Fig. 5).

Theorem 5. There exists a self-similar tile set that is

(c1, c2)-robust for some c1 and c2.

Proof. For every tile set µ it is easy to construct a “robustified” version µ′ of
µ, i.e., a tile set µ′ and a mapping δ : µ′ → µ such that: (a) δ-images of µ′-tilings
are exactly µ-tilings; (b) µ′ is “5-robust”: every µ′-tiling of a 5× 5 square minus
3× 3 hole can be uniquely extended to the tiling of the entire 5× 5 square.

Fig. 6.

Indeed, it is enough to keep in one µ′-tile the information about,
say, 5×5 square in µ-tiling and use the colors on the borders to ensure
that this information is consistent in neighbor tiles.

This robustification can be easily combined with the fixed-point
construction. In this way we can get a 5-robust self-similar tile set τ
if the zoom factors N is large enough. Let us show that this set is

also (c1, c2)-robust for some c1 and c2 (that depend on N , but N is fixed.)
Indeed, let us have a tiling of a large enough neighborhood around an n× n

hole. Denote by k the minimal integer such that Nk ≥ n (so the k-level macro-
tiles are greater than the hole under consideration). Note that the size of k-level
macro-tiles is linear in n since Nk ≤ N · n.

In the tiling around the hole, an N × N block structure is correct except
for the N -neighborhood of the central n× n hole. For similar reasons N2 ×N2-
structure is correct except for the N +N2-neighborhood, etc. So for the chosen
k we get a k-level structure that is correct except for (at most) 9 = 3×3 squares
of level k, and such a hole can be filled (due to 5-robustness) with Nk × Nk

squares, and these squares can be then detalized back.
To implement this procedure (and fill the hole), we need a correct tiling only

in the O(Nk)-neighborhood of the hole (technically, we need to have a correct
tiling in (3Nk)-neighborhood of the hole; as 3Nk ≤ 3Nn, we let c2 = 3N). The
correction procedure involves changes in another O(Nk)-neighborhood of the
hole (technically, changes touch (2Nk)-neighborhood of the hole; 2Nk ≤ 2Nn,
so we let c1 = 2N). �

8 Tilings with errors

Now we combine our tools to prove that there exists a tile set τ that is aperiodic
in rather strong sense: this set does not have periodic tilings or tilings that
are close to periodic. Moreover, this remains true if we allow the tiling to have
some “sparse enough” set of errors. Tiling with errors is no more a tiling (as
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defined above): in some places the neighbor colors do not match. Technically
it is more convenient to consider tilings with “holes” (where some cells are not
tiled) instead of errors but this does not matter: we can convert a tiling error
into a hole just by deleting one of two non-matching tiles.

Let τ be a tile set and let H ⊂ Z
2 be some set (H for “holes”). We consider

(τ,H)-tilings, i.e., mappings U : Z2 \H → τ such that every two neighbor tiles
from Z

2 \H match (i.e., have the same color on the common side).
We claim that there exists a tile set τ such that (1) τ -tilings of the entire

plane exist and (2) for every “sparse enough” set H every (τ,H)-tiling is far
from every periodic mapping Z

2 → τ .
To make this claim true, we need a proper definition of a “sparse” set. The

following trivial counterexample shows that a requirement of small density is
not enough for such a definition: if H is a grid made of vertical and horizontal
lines at large distance N , the density of H is small but for any τ there exist
(τ,H)-tilings with periods that are multiples of N .

The definition of sparsity we use (see below) is rather technical; however, it
guarantees that for small enough ε a random set where every point appears with
probability ε independently of other points, is sparse with probability 1. More
precisely, for every ε ∈ (0, 1) consider a Bernoulli probability distribution Bε on
subsets of Z2 where each point is included in the random subset with probability
ε and different points are independent.

Theorem 6. There exists a tile set τ with the following properties: (1) τ-tilings
of Z2 exist; (2) for all sufficiently small ε for almost every (with respect to Bε)
subset H ⊂ Z

2 every (τ,H)-tiling is at least 1/10 Besicovitch-apart from every

periodic mapping Z
2 → τ .

Remark 2. Since the tiling contains holes, we need to specify how we treat
the holes when defining Besicovitch distance. We do not count points in H as
points where two mappings differ; this makes our statement stronger.

Remark 3. The constant 1/10 is not optimal and can be improved by a
more accurate estimate.

Proof. Consider a tile set τ such that (a) all τ -tilings are α-aperiodic for every
α < 1/3; (b) τ is (c1, c2)-robust for some c1 and c2. Such a tile set can be easily
constructed by combining the arguments used for Theorem 5 and Theorem 4.

Then we show (this is the most technical part postponed until Section 9)
that for small ε a Bε-random set H with probability 1 has the following “error-
correction” property: every (τ,H)-tiling is Besicovitch-close to some τ -tiling of
the entire plane. The latter one is α-aperiodic, therefore (if Besicovitch distance
is small compared to α) the initial (τ,H)-tiling is far from any periodic mapping.

For simple tile sets that allow only periodic tilings this error-correction prop-
erty can be derived from basic results in percolation theory (the complement
of H has large connected component etc.) However, for aperiodic tile sets this
argument does not work and we need more complicated notion of “sparse” set
based on “islands of errors”. We employ the technique suggested in [7] (see also
applications of “islands of errors” in [9], [6]).

9



9 Islands of errors

Let E ⊂ Z
2 be a set of points; points in E are called dirty; other points are

clean. Let β ≥ α > 0 be integers. A set X ⊂ E is an (α, β)-island in E if:

(1) the diameter of X does not exceed α;

(2) in the β-neighborhood of X there is no other points from E.

(Diameter of a set is a maximal distance between its elements; the distance d
is defined as the maximum of distances along both coordinates; β-neighborhood
of X is a set of all points y such that d(y, x) ≤ β for some x ∈ X .)

It is easy to see that two (different) islands are disjoint (and the distance
between their points is greater than β).

Let (α1, β1), (α2, β2),. . . be a sequence of pairs of integers and αi ≤ βi for all i.
Consider the iterative “cleaning” procedure. At the first step we find all (α1, β1)-
islands (rank 1 islands) and remove all their elements from E (thus getting a
smaller set E1). Then we find all (α2, β2)-islands in E1 (rank 2 islands); removing
them, we get E2 ⊂ E1, etc. Cleaning process is successful if every dirty point is
removed at some stage.

At the ith step we also keep track of the βi-neighborhoods of islands deleted
during this step. A point x ∈ Z

2 is affected during a step i if x belongs to one
of these neighborhoods.

The set E is called sparse (for given sequence αi, βi) if the cleaning process
is successful, and, moreover, every point x ∈ Z

2 is affected at finitely many steps
only (i.e., x is far from islands of large ranks).

The values of αi and βi should be chosen in such a way that:

(1) for sufficiently small ε > 0 a Bε-random set is sparse with probability 1
(Lemma 1 below);

(2) if a tile set τ is (c1, c2)-robust and H is sparse, then any (τ,H)-tiling is
Besicovitch close to some τ -tiling of the entire plane (Lemmas 2 and 3).

Lemma 1. Assume that 8
∑

k<n βk < αn ≤ βn for every n and
∑

i
log βi

2i <
∞. Then for all sufficiently small ε > 0 a Bε-random set is sparse with proba-
bility 1.

En

En−1

En−2

x

x0 x1

x00 x01 x10 x11

. . .

Fig. 7. Explanation tree; ver-
tical lines connect different
names for the same points.

Proof of Lemma 1. Let us estimate the
probability of the event “x is not cleaned af-
ter n steps” for a given point x (this probabil-
ity does not depend on x). If x ∈ En, then x
belongs to En−1 and is not cleaned during the
nth step (when (αn, βn)-islands in En−1 are re-
moved). Then x ∈ En−1 and, moreover, there
exists some other point x1 ∈ En−1 such that
d(x, x1) is greater than αn/2 but not greater
than βn + αn/2 < 2βn. Indeed, if there were
no such x1 in En−1, then αn/2-neighborhood of

x in En−1 is an (αn, βn)-island in En−1 and x would be removed.

Each of the points x1 and x (that we denote also x0 to make the notation
uniform) belongs to En−1 because it belongs to En−2 together with some other
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point (at the distance greater than αn−1/2 but not exceeding βn−1 + αn−1/2).
In this way we get a tree (Figure 7) that explains why x belongs to En.

The distance between x0 and x1 in this tree is at least αn/2 while the diameter
of the subtrees starting at x0 and x1 does not exceed

∑
i<n 2βi. Therefore,

the Lemma’s assumption guarantees that these subtrees cannot intersect and,
moreover, that all the leaves of the tree are different. Note that all 2n leaves of
the tree belong to E = E0. As every point appears in E independently from
other points, such an “explanation tree” is valid with probability ε2

n

. It remains
to estimate the number of possible explanation trees for a given point x.

To specify x1 we need to specify horizontal and vertical distance between x0

and x1. Both distances do not exceed 2βn, therefore we need about 2 log(4βn) bits
to specify them (including the sign bits). Then we need to specify the distances
between x00 and x01 as well as distances between x10 and x11; this requires at
most 4 log(4βn−1) bits. To specify the entire tree we therefore need

2 log(4βn) + 4 log(4βn−1) + 8 log(4βn−2) + . . .+ 2n log(4β1),

that is (reversing the sum and taking out the factor 2n) equal to 2n(log(4β1) +
log(4β2)/2 + . . .). Since the series

∑
log βn/2

n converges by assumption, the
total number of explanation trees for a given point (and given n) does not exceed
2O(2n), so the probability for a given point x to be in En for a Bε-random E does
not exceed ε2

n

2O(2n), which tends to 0 (even super-exponentially fast) as n → ∞.
We conclude that the event “x is not cleaned” (for a given point x) has

zero probability; the countable additivity guarantees that with probability 1 all
points in Z

2 are cleaned.
It remains to show that every point with probability 1 is affected by finitely

many steps only. Indeed, if x is affected by step n, then some point in its
βn-neighborhood belongs to En, and the probability of this event is at most
O(β2

n)ε
2n2O(2n) = 22 log βn+O(2n)−log(1/ε)2n ; the convergence conditions guaran-

tees that log βn = o(2n), so the first term is negligible compared to others,
the probability series converges and the Borel–Cantelli lemma gives the desired
result. �

The following (almost evident) Lemma describes the error correction process.
Lemma 2. Assume that a tile set τ is (c1, c2)-robust, βk > 4c2αk for every

k and a set H ⊂ Z
2 is sparse (with respect to αi, βi). Then every (τ,H)-tiling

can be transformed into a τ -tiling of the entire plane by changing it in the union
of 2c1αk-neighborhoods of rank k islands (for all islands of all ranks).

Proof of Lemma 2. Note that βk/2-neighborhoods of rank k islands are
disjoint and large enough to perform the error correction of rank k islands, since
βk > 4c2αk. �

It remains to estimate the Besicovitch size of the part of the plane changed
during error correction.

Lemma 3. The Besicovitch distance between the original and corrected
tilings (in Lemma 2) does not exceed O(

∑
k(αk/βk)

2). (Note that the constant
in O-notation depends on c1.)
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Proof of Lemma 3. We need to estimate the fraction of changed points in
large centered squares. By assumption, the center is affected only by a finite
number of islands. For every larger rank k, the fraction of points affected at the
stage k in any centered square does not exceed O((αk/βk)

2): if the square inter-
sects with the changed part, it includes a significant portion of the unchanged
part. For smaller ranks the same is true for all large enough squares that cover
completely the island affecting the center point). �

It remains to chose αk and βk. We have to satisfy all the inequalities in
Lemmas 1–3 at the same time. To satisfy Lemma 2 and Lemma 3, we may
let βk = ckαk for large enough c. To satisfy Lemma 1, we may let αk+1 =
8(β1 + . . . + βk) + 1. Then αk and βk grow faster that any geometric sequence
(like factorial multiplied by a geometric sequence), but still log βi is bounded by
a polynomial in i and the series in Lemma 1 converges.

With these parameters (taking c large enough) we may guarantee that Besi-
covitch distance between the original (τ,H)-tiling and the corrected τ -tiling
does not exceed, say 1/100. Since the corrected tiling is 1/5-aperiodic and
1/10 + 2 · (1/100) < 1/5, we get the desired result (Theorem 6). �

10 Other applications of fixed point self-similar tilings

The fixed point construction of aperiodic tile set is flexible enough and can be
used in other contexts. For example, the “zoom factor”N can depend on the level
k (number of grouping steps). For this each macro-tile should have k encoded
at its sides; this labeling should be consistent when switching to the next level.
For a tile of level k its coordinates inside a macro-tile are integers modulo Nk+1,
so in total log k+O(logNk+1) bits are required and Nk steps should be enough
to perform addition modulo Nk+1. This means that Nk should not increase too
fast or too slow (say, Nk = log k is too slow and Nk+1 = 2Nk is too fast). Also
we need to compute Nk when k is known, so we assume that this can be done
in polynomial time in the length of k (i.e., log k). These restrictions still allow

many possibilities, say, Nk =
√
k, Nk = k, Nk = 2(2

k), Nk = k! etc.
This “self-similar” structure with variable zoom factor can be useful in some

cases. Though it is not a self-similar according to our definition, one can still
easily prove that any tiling is aperiodic. Note that now the computation time
for the TM simulated in the central part increases with level, and this can be
used for a simple proof of undecidability of domino problem (in the standard
proof [2,1] one needs to organize the “computation zone” with some simple
geometric tricks). With our new construction it is enough (for a given TM M)
to add in the program the parallel computation of M on the empty tape; if it
terminates, this destroys the tiling. This construction can be used to replace the
constant 1/10 in Theorem 6 by any number less that 1; to provide a new proof for
the results of [4] (a tileset whose tilings have maximal Kolmogorov complexity)
and extend them to tilings with sparse errors; it can be also used in some other
applications of tilings. Here is another application of this construction. We say
that a tile set τ is m-periodic if τ -tilings exist and for each of them the set of
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periods is the set of all multiples of m (this is equivalent to the fact that both
vectors (0,m) and (m, 0) are periods). Let E [resp. O] be all m-periodic tile sets
for all even m [resp. odd m].

Theorem 7. The sets E and O are inseparable enumerable sets.
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