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Abstract

The flag curvature of the Numata Finsler structures is shown to admit a non-
trivial prolongation to the one-dimensional case, revealing an unexpected link with the
Schwarzian derivative of the diffeomorphisms associated with these Finsler structures.

Mathematics Subject Classification 2000: 58B20, 53A55

1 Finsler structures in a nutshell
1.1 Finsler metrics

A Finsler structure is a pair (M, F)) where M is a smooth, n-dimensional, manifold
and F' : TM — R* a given function whose restriction to the slit tangent bundle
TM\M = {(z,y) € TM |y € T,M\{0}} is strictly positive, smooth, and positively
homogeneous of degree one, i.e., F(z,\y) = A\F(z,y) for all A > 0; one furthermore
demands that the n x n vertical Hessian matrix with entries g;;(z,y) = (%FQ)ylyj be
positive definite, (g;;) > 0. See [l]. These quantities are (positively) homogeneous of

degree zero, and the fundamental tensor
g = gij(z,y)da’ ® da? (1.1)

defines a sphere’s worth of Riemannian metrics on each T, M parametrized by the

direction of y. See [F].
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The distinguished “vector field”

(=1 0 where (x,y) =

F(z,y)’
actually a section of 7*(T'M) where w7 : TM\ M — M is the natural projection, is
such that g(¢,¢) = 1.

There is a wealth of Finsler structures, apart from the special case of Riemannian
structures (M, g) for which F(z,y) = /g (z)y*y’. For instance, the so-called Randers
metrics

F(z,y) = \/aij(2)yiy? + bz(:c)yl (1.3)

satisfy all previous requirements if a = a;j(x)dz’ ® dz? is a Riemann metric and if the

1-form b = b;(z)dz" is such that a* (z)b;(x)b;(z) < 1 for all x € M.

1.2 Flag curvature

Unlike the Riemannian case, there is no canonical linear Finsler connection on 7*(T'M).
An example, though, is provided by the Chern connection w;» = Fj—k(:n, y)dx® which is
uniquely defined by the following requirements [fl: (i) it is symmetric, r%, =T}, and
(ii) it almost transports the metric tensor, i.e., dg;; — w¥g;, — W;‘ng’k = 2056y, with
Syt = dy' + N;dmj, where the N;f (x,y) = F;kyk are the components of the non linear
connection associated with the Chern connection, and the Cyj,(z,y) = 3 (8ij),x those
of the Cartan tensor, specific to Finsler geometry.

Using the “horizontal covariant derivatives” §/dz* = 8/dx* — N7 /y’, one expres-

ses the (horizontal-horizontal part of the) Chern curvature by

i O ri i pm
Ry = 55T+ Dol — (k<= 1), (1.4)

and the flag curvature (associated with the flag ¢ A v defined by v € T,, M) by
Rikvivk
g(’U, U) - g(f, U)Q ’

One says that a Finsler structure is of scalar curvature if K (x,y,v) does not depend

K(z,y,v) = where R = EjRjikg . (1.5)

on the vector v, i.e., if

R, = K(2,y)hik, (1.6)

with R, = gir — £il), the components of the “angular metric”, where ¢; = g;; 6/ (= F:).

See [EI, E]



2 Numata Finsler structures

2.1 The Numata metric

Numata [f] has proved that metrics of the form F(z,y) = V@i; (¥)yiyd + bi(z)yt, on
TM where M C R", with (g;;) > 0 and db = 0 are, indeed, of scalar curvature. See 2.

Of some interest is the special case g;; = ¢;; and b = df with f € C*>(M), viz.,

F(z,y) = /059"y + furt), (2.1)

where

M:{xeR”

S or< 1}. (2.2)
i=1
The computation of the flag curvature of this particular Randers metric ([.J) can be
found in [f] and yields

K(w,y) = ;71 Faiw¥'y’)” = 5 55 foiwrary'v'y" (2.3)
2.2 Flag curvature & Schwarzian derivative

The expression (.3) of the flag curvature of the Numata metric (.1) holds for n > 2.

Ifn = 1, the left-hand side of ([.§) vanishes along with the curvature ([.4), while its
right-hand vanishes as well since the angular metric has rank zero. For this particular
dimension, Equation (@) trivially holds true, but tells, however, nothing about the
flag curvature K (z,y).

At this stage, it is worth noting that @) indeed admits a prolongation to the
one-dimensional case; it is therefore tempting to specialize its expression for n = 1.

Suppose, thus, that M C S! is a nonempty open subset (E), so that we have
TM\M =Ty M| |T_M, where To M = M x RE. The metric (2.]) then reads

F(z,y) = [yl + f'(x)y, (2.4)

using an affine coordinate, z, on S1, with —1 < f’(z) < +1 (see (£.)); its restrictions

to Ty M are given by Fy (z,y) = ¢/t (x)y > 0, where
ol (z) = f'(z) £1, (2.5)

implying ¢4 € Diff 4 (S1), with |/, (z)| < 2 (all z € M).

The Numata metric (@) on 14 M, say, is thus associated, via (E), to orientation-
preserving diffeomorphisms ¢ of S such that 0 < ¢/(z) < 2 (all z € M). Given such
a ¢ € Diff  (S!), the fundamental tensor ([L.]) retains the form g = ¢/(x)?dz? and is,

naturally, a Riemannian metric on M.



Rewriting Equation (E) for T4 M, and bearing in mind that y = F(x,y)/¢'(2),
we readily find that K(z,y) is actually independent of y, namely

K () = —5 =5 S(0)(a), (26)

where

S(p)(z) =

S(z) 3 (so”(:c) ) ’ (2.7)

¢'(x)  2\¢'(z)
denotes the Schwarzian derivative [@] of the diffeomorphism ¢ of S'. The argument
clearly still holds, mutatis mutandis, for orientation-reversing diffeomorphisms of S*.

We have thus proved the

Theorem 2.1. The Numata Finsler structure (M, F), with metric F given by (@)
where M C S' is defined by (2.3), induces a Riemannian metric, g(p) = ©*(dz?),
where ¢ € Diff(SY) is as in . The flag curvature @) admits a prolongation to

this one-dimensional case and retains the form

k=139 (2.8)

2g(p)’

where S(¢) = S(¢)(x)dx? is the Schwarzian quadratic differential of ¢ € Diff(S?1).

As an illustration, the one-dimensional Numata Finsler structures of constant flag
curvature are associated, through (@), to the solutions ¢ of (E) for K € R, viz.,
¢+ (z) = K~2 arctan(K 2 (az + b) /(cx + d)) where a,b,¢,d € R with ad — be = +1.

Discussions with P. Foulon are warmly acknowledged.
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