
HAL Id: hal-00256260
https://hal.science/hal-00256260

Submitted on 15 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

(Non) Gauge Invariance of Wilsonian Effective Actions
in (Supersymmetric) Gauge Theories : A Critical

Discussion
Adel Bilal

To cite this version:
Adel Bilal. (Non) Gauge Invariance of Wilsonian Effective Actions in (Supersymmetric) Gauge The-
ories : A Critical Discussion. Annals of Physics, 2008, 323, pp.2311. �10.1016/j.aop.2008.01.002�.
�hal-00256260�

https://hal.science/hal-00256260
https://hal.archives-ouvertes.fr


LPTENS-07/18
April 2007

(Non) Gauge Invariance of Wilsonian Effective Actions

in (Supersymmetric) Gauge Theories :

A Critical Discussion

Adel Bilal

Laboratoire de Physique Théorique, École Normale Supérieure - CNRS∗
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Abstract

We give a detailed critical discussion of the properties of Wilsonian effective actions Γµ,
defined by integrating out all modes above a given scale µ. In particular, we provide a
precise and relatively convenient prescription how to implement the infrared cutoff µ
in any loop integral that is manifestly Lorentz invariant and also preserves global linear
symmetries such as e.g. supersymmetry. We discuss the issue of gauge invariance of
effective actions in general and in particular when using background field gauge. Our
prescription for the IR cutoff (as any such prescription) breaks the gauge symmetry.
Using our prescription, we have explicitly computed, at one loop, many terms of the
Wilsonian effective action for general gauge theories, involving bosonic and fermionic
matter fields of arbitrary masses and in arbitrary representations, exhibiting the non-
gauge invariant (as well as the gauge invariant) terms. However, for supersymmetric
gauge theories all non-gauge invariant terms cancel within each supermultiplet. This
is strong evidence that in supersymmetric gauge theories this indeed defines a Lorentz,
susy and gauge invariant Wilsonian effective action. As a byproduct, we obtain the
explicit one-loop Wilsonian couplings for all higher-derivative terms ∼ FD2nF in the
effective action of arbitrary supersymmetric gauge theories.
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1 Introduction

The notion of an effective action plays a most important role in modern quantum field theory.

While it had long been believed that a basic criterion for any quantum field theory is its renormal-

izability, over the years it has become increasingly clear that our preferred renormalizable theories

are just to be considered as the infrared limits of some more fundamental theories. At any finite

energy scale one should actually include higher dimension operators in the action and view these

theories as effective field theories described by some effective action.

There are many quite different objects going under the name of effective action. The common

feature is that they somehow describe the effective behavior of certain fields at low energy without

having to worry in detail about the high energy physics that already has been ”integrated out”.

Specifically, one may distinguish a set of heavy and a set of light fields and completely integrate

out the heavy ones, obtaining an effective action Seff for the light ones only. Another notion of

effective action is that of the generating functional Γ of one-particle irreducible (1PI) diagrams

(proper vertices) where one already has computed all the loop-diagrams. A somewhat intermediate
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notion is that of Wilsonian effective action Γµ where for all fields one only integrates out the high

momentum/high energy modes above some scale µ. For loop diagrams this means that all loop-

momenta are only integrated down to some infrared cutoff µ. When this Wilsonian effective action

is used to compute correlation functions one only needs to do the remaining integrations over the

low momentum/energy modes, i.e. perform loop integrals now with a UV cutoff Λ equal to µ. This

last property is used to define the Wilsonian action in the context of the exact renormalization

group (ERG) [1], where it is an effective action with a UV cutoff Λ obeying a certain flow equation

that guarantees that the correlation functions do not depend on the UV cutoff Λ. A somewhat

more general setting for studying the flows of the effective actions is the functional renormalization

group approach (see [2] for a nice recent review).

In the presence of massless fields, the 1PI effective action has infrared singularities, i.e. is

non-analytic at zero momentum. On the other hand, the Wilsonian effective action allows an

expansion in powers of the momenta divided by µ and thus is an (infinite) sum of local terms. It

is this locality of the Wilsonian effective action that plays an important role in many places.

In supersymmetric theories there are important non-renormalization theorems for the super-

potenial, or more generally for the F -terms of the action. This has been shown in perturbation

theory using the powerful supergraph techniques [3]. An alternative very elegant proof of these

non-renormalization theorems was given by Seiberg [4] just based on the symmetries and holomor-

phy of the F-terms in the Wilsonian effective action. The proof deals with the Wilsonian action

since locality is crucial in order to separate D and F -terms.1 The same symmetry arguments ac-

tually also constrain the non-perturbative corrections to the F -terms. It is most important for the

proof, and usually assumed to be true, that the Wilsonian effective action is supersymmetric and

Lorentz invariant. In a supersymmetric gauge theory it should also be gauge invariant. However,

these properties are by no means obvious.

With this motivation in mind, in this note we would like to discuss these questions in some

detail: how exactly do we define the Wilsonian effective action with the infrared cutoff µ? how

do we make sure this definition and the introduction of µ is Lorentz invariant and does not break

gauge invariance or supersymmetry?

In section 2, after recalling some important issues about 1PI effective actions, we will provide

a detailed discussion of Wilsonian effective actions Γµ. In this note, we will define the Wilsonian

action by starting from a “microscopic” theory and really integrate out all modes above a given

scale µ. In particular, we will give a precise (and relatively convenient) prescription how to

implement the finite infrared cutoff µ for any loop diagram that is Lorentz invariant and respects

the various linear global symmetries, like e.g. supersymmetry. We will not use the flow equations

of the ERG which are different in spirit. We discuss a simple one-loop example in scalar ϕ4 theory,

as well as a two-dimensional example of chiral fermions coupled to an abelian gauge field, where

1Similarly, the proof of non-renormalization using supergraphs could in principle be invalidated by infrared
divergences.
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one can explicitly see the transition in the Wilsonian effective action Γµ from a sum of local terms

to a non-local expression as the ratio of momentum p and µ is varied from p
µ
≪ 1 to p

µ
≫ 1. The

remainder of this section deals with the issue of gauge invariance of the effective actions. Here,

we also discuss various approaches in the existing literature that are mainly concerned with the

possibility to introduce invariant ultraviolet regularizations in the exact renormalization group

and the corresponding flow equations. We further discuss the role of using background field gauge

and the manifestation in the Wilsonian action of possible anomalies.

In section 3, using our prescription for the IR cutoff, we explicitly compute many one-loop terms

of the Wilsonian effective action for general gauge theories involving bosonic and fermionic matter

fields of arbitrary masses and in arbitrary representations. We find that the presence of the finite

infrared cutoff µ explicitly breaks gauge invariance, as expected, and the Wilsonian effective action

for a generic gauge theory contains infinitely many non-gauge invariant terms. (Nevertheless, it will

be evident that the physical correlation functions computed from this Wilsonian effective action

do satisfy the Ward identities.) However, we will also show, at least for those (infinitely many)

terms of the Wilsonian effective action we explicitly computed, that in a supersymmetric gauge

theory, when adding the contributions of all fields within any N = 1 supermultiplet, the non-gauge

invariant terms precisely cancel. We argue that this is strong evidence that in a supersymmetric

gauge theory one can indeed introduce the infrared cutoff µ and still have a Lorentz, susy and

gauge invariant Wilsonian effective action at any finite scale µ. We use our results to explicitly

give the one-loop Wilsonian couplings for all higher-derivative terms ∼ FD2nF in the Wilsonian

effective action for arbitrary supersymmetric gauge theories.

In the appendix, we discuss in more detail how to implement the infrared cutoff µ for arbitrary

L-loop diagrams. To illustrate the procedure, we present a complete two-loop calculation in scalar

ϕ4 theory of the Wilsonian Γ
(2)
µ . Although there are a few subtleties not present at one loop, in

the end we will obtain a very explicit result.

2 The Wilsonian effective action

2.1 The 1PI effective action

To compute correlation functions in any quantum field theory it is most convenient to first ob-

tain the effective action Γ[ϕ] which is the generating functional of one-particle irreducible (1PI)

diagrams (proper vertices). As is well-known, within perturbation theory one can then obtain

all diagrams contributing to a given correlation function by summing all tree diagrams made up

with the effective vertices (which are 1PI) and full propagators as given by Γ. In this sense, Γ

already contains all effects from loops, and actually also includes contributions beyond perturba-

tion theory. In particular, the whole issue of renormalization must be settled when computing the

effective action Γ. Also, all symmetries of the quantum theory are coded in Γ. In particular, if the

regulated functional integral measure does preserve any linear symmetry of the classical action
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(including possible gauge fixing terms), i.e. if these symmetries are non-anomalous, then Γ also

is invariant under these same symmetries. This is usually expressed by Ward or Slavnov-Taylor

identities.

The issue of (non-abelian) gauge symmetries is more complicated since one has to add to the

classical Lagrangian Lcl a gauge fixing term Lgf and a corresponding ghosts term Lgh which of

course break the gauge symmetry. The gauge symmetry then is replaced by the BRST symmetry

of the complete Lagrangian L which is the sum of the three terms. The BRST symmetry acts

nonlinearly and hence the effective action has no reason to be BRST invariant, and much less

gauge invariant. Instead, one can show that the effective action obeys the Zinn-Justin equation

[5] or in more modern terms the Batalin-Vilkoviski (quantum) master equation [6], which severely

constrains the possible counterterms to be BRST invariant.

An alternative approach consists in employing the so-called background field method which

explicitly introduces a background gauge field and computes Γ[A] from
∫

L[A + A′] by treating

A as a gauge field and A′ as transforming as a matter field in the adjoint representation. One

can then introduce a gauge fixing for A′ such that the effective action Γ[A] still is manifestly

invariant under the gauge transformations of A. Technically, integrating over A′ necessitates the

knowledge of the A′ propagators and vertices in the presence of the A background fields. They can

be expanded in powers of A reproducing the usual diagrammatic expansion with internal A′-lines

and external A-lines (without propagators). It clearly provides a method, at least in principle, to

define a gauge invariant 1PI effective action Γ[A].

In supersymmetric gauge theories one can use a somewhat modified version of the background

field method directly in superspace. The necessary modification is due to the fact that the vector

superfield V which contains the gauge and gaugino fields transforms in a complicated way under

the gauge symmetry and a linear split of the form V + V ′ is not appropriate. This is a slight

complication only and this superspace background field method is well-known [3] (see also [7]).

It guarantees manifest gauge and susy invariance of the effective action. Note that for N = 2

extended supersymmetry the appropriate superspace is harmonic superspace and in this case there

exists also a specific background field method which is even somewhat simpler [8]. In any case,

we can define a susy and gauge-invariant 1PI effective action using these methods.

In general, the 1PI effective action Γ[ϕ] is a complicated non-local functional of the fields ϕ.

These non-localities are due to the momentum flow through the propagators in the loops. As

long as no massless fields are present one can always expand these non-local terms in powers of

(external) momenta over masses, resulting in a sum of local terms, although with arbitrarily many

derivatives. If the theory contains massless fields the proper vertices exhibit singularities at zero

momenta and such an expansion is not possible. One can trace the origin of these singularities

as coming from the region of small loop momenta. To illustrate this, consider the one-loop

contribution to Γ in scalar ϕ4-theory with mass m. At one-loop, the two-point function only gets
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a momentum-independent constant contribution, while the four-point vertex function2 Γ(4) gets

three contributions

Γ
(4)
1−loop(pi) = −

g2

2

[

J (4)(−s) + J (4)(−t) + J (4)(−u)
]

, (2.1)

where (cf. the left part of Fig. 1)

J (4)(P 2) =
1

(4π)2

(

c+

∫ 1

0

dx log[m2 + x(1 − x)P 2]

)

. (2.2)

Here s, t and u are the usual squares of sums of two external momenta s = −(p1 + p2)
2, etc, x is

a Feynman parameter and c is constant3 (in dimensional regularization e.g. with d = 4 − ǫ one

has c = −2
ǫ
+ γ − log 4π). The function J (4)(P 2) exhibits the usual unitary cuts for −P 2 ≥ 4m2.

Nevertheless, in a massive theory, for |P 2| < 4m2 we can expand this in powers of P 2/m2. After

Fourier transforming, the corresponding contribution to Γ then is an (infinite) sum of terms that

are local, i.e. involving a single integral over space-time
∫

d4x . . ., each one containing more and

more derivatives. Of course, the effective action does not only contain 4-point vertices, but - a

priori - all interactions that are consistent with the symmetries. For example, there is a six-point

vertex function Γ(6) which gets contributions from a one-loop triangle diagram

Γ
(6)
1−loop(pi) ∼

∑

permutations

∫ 1

0

dx

∫ 1−x

0

dy [m2 + x(1 − x)P 2
1 + y(1 − y)P 2

2 + 2xyP1 · P2]
−1 , (2.3)

where each Pi is the sum of the two external momenta flowing into the triangle diagram at the

ith vertex. Again, one can expand in Pi · Pj/m
2 for small enough Pi obtaining a sum of local

contributions to Γ. Obviously, this is no longer true if m = 0: typically in a theory containing

massless fields, the Γ(n)(pi) have branch cut singularities starting at zero momenta.

2.2 Defining the Wilsonian effective action

Since the singularities of Γ[ϕ] in the presence of massless fields are due to the regions of small

loop momenta, one way of avoiding them is to impose an IR cutoff in loop diagrams. This is

exactly what one does when computing the Wilsonian effective action Γµ[ϕ]. It is computed just

like Γ but with the restriction that all loop momenta are only integrated down to some (large)

“IR-cutoff” µ. This implies that, even for m = 0, the Wilsonian effective action is local in the

2Our conventions are as follows: Our signature is (−,+,+,+). We let ϕ(x) =
∫

d4q
(2π)4 e−iqxϕ̃(q) and then Γ =

∑

n
1
n!

∫

d4p1
(2π)4 . . .

∫

d4pn

(2π)4 (2π)4δ(4)(
∑

pi) Γ(n)(pi) ϕ̃(p1) . . . ϕ̃(pn). In particular, we have Γ(2)|tree(p) = −(p2 + m2)

and Γ(4)|tree(pi) = −g.
3We consider the J (4) to be the one-loop expressions to which one still must add the contributions from the

counterterms to make them finite. Also note that in dimensional regularization the coupling constant is not
dimensionless and one usually writes it as mǫg or µǫ0 g with some scale µ0, so that the argument of the logarithm in
(2.2) becomes dimensionless. However, for the purpose of comparing with the corresponding Wilsonian expression
below (which involves an adjustable scale µ) it is preferable not to do so.
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following sense: As long as all external momenta are well below the scale µ one can safely expand

Γµ[ϕ] in powers of momenta divided by µ obtaining an effective action that is an (infinite) sum

of local terms. This is a most important difference with the 1PI effective action and one of the

main reasons certain statements can be made about the Wilsonian action and not about the 1PI

action. Note that the whole issue of UV-divergences and renomalization has to be dealt with when

computing the Wilsonian effective action - just as for the 1PI action.

More generally, one may want to “integrate out” all high energy or high momentum modes.

In particular in situations with a hierarchy of masses where heavy particles have masses Mi ≫ µ

and light particles have masses ma ≪ µ, one could as well completely integrate out the heavy

fields4 and apply the IR cutoff µ only to loops with light fields. In practice though, this can

be cumbersome as a loop could involve both light and heavy particles, and we will stick to the

prescription that µ is an IR cutoff for all loops. For loops involving heavy particles the difference

between both prescriptions clearly is suppressed by a factor µ2/M2, as one can also check on our

explicit examples below.

+P P PP

P−k

k

Figure 1: Two O(g2) contributions to a four-point function for scalars with a quartic interaction
when using the Wilsonian effective action Γµ. The loop diagram on the left involves two O(g)
vertices and is to be computed with a UV cutoff µ, while the tree diagram on the right involves
the O(g2) vertex of Γµ.

The Wilsonian Γµ is to be used as an effective action to compute correlation functions. Since

Γµ[ϕ] only takes into account loop momenta above µ, one must now add tree diagrams and loop

diagrams using the vertices and propagators from Γµ[ϕ] and integrate the loop momenta from 0

to µ which then serves as the UV-cutoff.5, see Fig. 1. This reconstitutes the full integration range

for the loop momenta. It is this additional integration over the “low momenta” that reproduces

the IR singularities of the 1PI action Γ. In this two-step procedure - first compute Γµ and then

use it to compute correlation functions - µ is only an arbitrary intermediate scale (it is a priori

not the scale at which renomalization conditions are imposed), which should not affect the final

answer for the correlation functions and drop out.

This cancellation of the µ dependence in the correlation functions is an important point. It is

obviously true if one is only concerned with the one-loop approximation where there is a single

loop momentum to be integrated, provided one uses the same implementation for the UV-cutoff

4A recent review of effective actions obtained by integrating out heavy fields is e.g. [9].
5For this reason, the authors of ref. [10] refer to the 1PI action Γ as a c-number expression and to the Wilsonian

effective action Γµ as an operator expression.
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as one used for the IR cutoff when computing Γµ. However, for multi-loop diagrams with two

(or more) loops sharing a common momentum, this can become quite tricky. (The problem is

somewhat similar to the usual difficulty associated with overlapping UV divergences.) At any

rate, in order for the µ dependence to cancel one must have a precise universal prescription of

how to implement the IR cutoff µ when computing Γµ[ϕ] and then use the same prescription for

the UV cutoff µ when using Γµ[ϕ] as the action to compute correlators. Before turning to this

issue, let us mention, however, that one can turn this argument around and define the Wilsonian

effective action as containing all possible local interactions with µ-dependent coupling constants

gn(µ) (and field normalization factors) such that

• when computing correlation functions with a UV-cutoff µ all µ-dependence drops out,

• when µ equals the UV-cutoff Λ0 (in which case there are no loop integrals left) the couplings

gn(µ) equal the bare coupling constants of the classical action (typically with only finitely

many being non-zero).

Defining Γµ this way one does not really have to worry about complicated overlapping loops: they

are still troublesome to evaluate in practice, but we don’t have to worry about them in principle.

Also, this way of defining Γµ obviously is not restricted to perturbation theory or a diagrammatic

expansion. It is the basis for the so-called exact renormalization group (ERG) [1], where the

µ-independence of the correlators is the content of the flow equations. Of course, in many theories

and in particular in gauge theories, we do not want to use an explicit UV cutoff Λ0, and then it is

not so clear how to implement the second requirement.6 Also, this way of defining Γµ is somewhat

less intuitive. For these reasons, we will not define Γµ this way, but instead keep with the first

definition of explicitly integrating out all loop momenta above µ.

2.3 Explicit realization of the infrared cutoff

Let us now turn to the question of giving a precise explicit prescription how to implement the

infrared cutoff µ on the loop momenta. A basic criterion is that it should not break Lorentz

invariance. It also must be independent of the way we label the loop momenta, i.e. it should be

insensitive to shifts of the loop momenta. Of course, it should also, as much as possible, preserve

all other symmetries of the classical action.

First note that the problem is more complicated than the usual one of UV-regulating divergent

diagrams. Indeed, many Lorentz-invariant ways are known to UV regulate diagrams with an

explicit cutoff Λ (e.g. by working with modified propagators). One does not have to be too

specific since, in the end, one takes Λ → ∞. Concerning the IR cutoff µ, however, we want to

6There exist gauge invariant UV “cutoffs” based on covariant higher derivative terms ∼
(

D2

Λ2
0

)n

added to the

action [11]. We will discuss them further in section 2.6 below.
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keep µ finite and make sure that one can implement the same prescription for the UV cutoff µ

when using the action Γµ to compute correlators so that one reconstitutes the full momentum

integrations (see Fig. 1) and the µ dependence really cancels. The required cancellation of the

µ dependence excludes simple modifications of the propagators (like adding a mass term µ2) to

implement the IR cutoff.7 We will now discuss two different ways how to separate the low and

high momentum modes. They will provide explicit IR, resp. UV cutoffs which are manifestly

Lorentz (and also susy) invariant.

One explicit way to separate high and low momentum modes (see e.g. ref.[13]) is to separate the

Fourier expansion of each field ϕ (bosonic or fermionic) into two parts ϕ+(p) + ϕ−(p) with ϕ−(p)

vanishing for p2
E > µ2 and ϕ+(p) vanishing for p2

E ≤ µ2, pE being the Euclidean momentum.

Since the free action is diagonal in momenta the propagators do not mix ϕ− and ϕ+. This

splitting obviously is Lorentz invariant and also respects the global linear symmetries like e.g.

supersymmetry: the off-shell algebra for global supersymmetry is linear in the fields and their

derivatives and does not involve any explicit functions of space-time. Hence it commutes with the

action of the projectors on low or high momentum modes, and the decomposition is susy invariant.

Clearly, the same applies to any other global linear symmetry. One may then explicitly do the

functional integral over the high momentum modes ϕ+:

eiΓµ[ϕ−] =

∫

[Dϕ+]eiS[ϕ−,ϕ+] . (2.4)

This can be evaluated, at least in principle, order by order in an expansion in ϕ+-loops. Indeed, the

ϕ− play the role of external sources and only ϕ+ propagators ever appear in the expansion. Note

that the expansion can also contain tree diagrams with ϕ+ propagators, see Fig. 2. Obviously,

such tree diagrams arise if several low momenta of the external ϕ− meeting at a vertex add up to

produce a high momentum of a ϕ+.

Obviously, for gauge theories, this separation into low and high momentum modes does not

respect the gauge symmetry which is a local symmetry and hence non-diagonal in momentum:

any (non-constant) gauge transformation like δφ(x) = i[ǫ(x), φ(x)] will mix φ+ and φ−. Also, for

practical calculations, this separation of modes quickly becomes very cumbersome.

Let us now describe an alternative method that (although not respecting gauge symmetry

either) is more convenient for practical computations. It does not involve as sharp a momentum

separation for each field as the method above, but instead separates loop momenta into two

regions: larger and smaller than µ. Since one can always shift the loop-momenta one needs to

give a specific prescription to avoid any ambiguities. To simplify the discussion, here we will

only give the prescription for one-loop integrals. The generalization to any L-loop integral is

7Note however, that for the purpose of studying the renormalization group flow one is essentially only concerned
with infinitesimal changes of the IR cutoff to establish the flow equations. This allows for more flexibility in the
choice of IR cutoff, like adding a term ∼

∫

d4q ϕ̃(q)Rµ(q)ϕ̃(−q) to the classical action [12] with e.g. Rµ(q) =

q2(eq
2/µ2

− 1)−1 that modifies the propagators by a momentum dependent term giving effectively a mass to the
low momentum modes q2 . µ2 and not modifying the high momentum modes q2 ≫ µ2.
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Figure 2: Shown are a few contributions to Γµ[ϕ−] generated when integrating out ϕ+ in a
theory with quartic interactions. The solid lines represent ϕ+ propagators, while the dashed ones
represent external ϕ−.

relatively straightforward and will be given in the appendix, where we also do an explicit two-loop

computation to illustrate this prescription.

One proceeds in the following way: First evaluate all tensor and gamma matrix algebra and

introduce Feynman parameters xa, a = 1, . . . r. Then any one-loop diagram depending on n

external momenta ps and having r propagators takes the form

I(ps) = (r − 1)!
(

r
∏

a=1

∫ 1

0

dxa

)

δ
(

r
∑

a=1

xa − 1
)

∫

d4k

(2π)4
I , (2.5)

where the integrand is

I = Q(k, ps)
[

k2 + 2k · P(xa, ps) + C(xa, ps,ma)
]−r

. (2.6)

Here Q is some polynomial in the momenta resulting from doing all the relevant spinor and

tensor algebra, and it transforms in the appropriate representation of the Lorentz group. The

bracket [. . .] is a Lorentz scalar provided we also transform the loop momentum kν . Then to

regulate any UV divergences we use dimensional regularization. Actually we have two options:

Usually, in dimensional regularization, one starts with fully d-dimensional Feynman rules and

then the polynomial Q(k, ps) results from doing the tensor and γ-matrix algebra in d dimensions.

Alternatively, as is standard in supersymmetric theories, one can first do all tensor and γ-matrix

algebra in four dimensions and only then do the dimensional regularization of the integrals. This

latter procedure is known as dimensional reduction [14]. For the purpose of implementing the IR

cutoff µ one can use either version, as long as one does so coherently throughout.

The loop integral then is convergent and we can shift the loop momentum from k to k′ =

k + P(xa, ps). This allows us to put the one-loop integral into the following standard form:
∫

ddk

(2π)d
I =

∫

ddk′

(2π)d
Q(k′ − P, ps)

[

k′
2
+ C − P2

]−r

. (2.7)

It is on this standard form, after the usual Wick rotation, that we impose the IR cutoff:
[
∫

ddk

(2π)d
I

]

IR−cutoff µ

= i

∫

k2
E≥µ2

ddkE
(2π)d

Q(kE − PE, ps)
[

k2
E + C − P2

E

]−r
. (2.8)
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Note that the cutoff is applied on kE which is the Euclidean version of the shifted loop momentum

k′ = k+P(xa, ps). The shift, and hence the actual cutoff, depend on the Feynman parameters xa

and the external ps, but there is no arbitrariness and after integrating the xa we get a “standard”

result, i.e. independent of the arbitrariness in assigning momenta to the internal lines.8

It should be perfectly clear that one can use exactly the same prescription to impose a UV

cutoff Λ on this standard form of any one-loop integral. Thus when using Γµ to compute correlation

functions one just has to impose the UV cutoff µ with this same prescription and is is obvious that

one exactly obtains the part of the momentum integral that was left out when computing Γµ. Let

us mention that instead of Feynman parameters one could have used parametric representation

of the propagators, with a very similar result.

For later reference, let us note that the relevant one-loop integrals with the IR cutoff µ,

IN(R) = i

∫

k2
E≥µ2

ddkE
(2π)d

1

(k2
E +R)N

, Iλ...ρN (R) = i

∫

k2
E≥µ2

ddkE
(2π)d

kλE . . . k
ρ
E

(k2
E +R)N

, (2.9)

are given by (see appendix A.1)

I1(R) =
i

(4π)d/2Γ(d
2
)

(

−
2

ǫ
R− µ2 +R log(µ2 +R) + O(ǫ)

)

,

I2(R) =
i

(4π)d/2Γ(d
2
)

(

2

ǫ
−

R

µ2 +R
− log(µ2 +R) + O(ǫ)

)

,

IN(R) =
i

(4π)d/2Γ(d
2
)

( 1

N − 2

1

(µ2 +R)N−2
−

1

N − 1

R

(µ2 +R)N−1
+ O(ǫ)

)

, N ≥ 3 , (2.10)

where ǫ = 4 − d and 1
(4π)d/2Γ( d

2
)

= 1
(4π)2

[

1 + ǫ 1−γ+log 4π
2

+ O(ǫ2)
]

, as well as

IλρN (R) =
1

d
δλρ (IN−1(R) −RIN(R)) ,

IνλρσN (R) =
1

d(d+ 2)

(

δνλδρσ + δνρδλσ + δνσδλρ
) (

IN−2(R) − 2RIN−1(R) +R2IN(R)
)

. (2.11)

Of course, as already noted, the whole issue of UV-divergences and renormalization has to be

addressed when computing the Wilsonian effective action Γµ just in the same way it had to be

discussed when computing the 1PI effective action Γ.

8There is another point one might worry about: when summing different diagrams that contribute to a given

Γ
(n)
µ one might want to simplify expressions by combining terms involving different numbers of propagators before

doing the loop-integral. Typically this occurs in theories that have at the same time cubic and quartic vertices like

non-abelian gauge theories (see e.g. eq. (3.3)). For example, one might want to rewrite 1
k2+m2 as (q−k)2+m2

[k2+m2][(q−k)2+m2] .

Applying our prescription for IR regularization to the integral of the second expression yields a complicated-looking
integral over the Feynman parameter. One may nevertheless check explicitly that this exactly reduces to the IR
regularized integral of the first expression. It is not completely clear to us whether such rewritings always yield the
same result for the IR cutoff integrals in the end. To remove any ambiguity, the rule for a given diagram with r

propagators is to apply the IR cutoff directly on the corresponding expression with the denominator [k′2 + ...]−r.
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2.4 Examples

2.4.1 Scalar ϕ4 theory in 4 dimensions

As an explicit example, we apply this procedure to the one-loop diagram on the left of Fig. 1.

Here we have two propagators, so that we just have a single Feynman parameter x. Furthermore

Q(k, P ) = 1, P(x, P ) = −xP and C(x, P,m) = xP 2 +m2. Then R ≡ C −P2 = m2 + x(1− x)P 2.

We are left with

J (4)
µ (P 2) = i

[
∫ 1

0

dx i

∫

ddkE
(2π)d

I
∣

∣

∣

Fig.1

]

IR−cutoff µ

= i

∫ 1

0

dx I2(m
2 + x(1 − x)P 2) . (2.12)

Inserting (2.10) and d = 4 − ǫ yields

J (4)
µ (P 2) =

1

(4π)2

{

c+

∫ 1

0

dx

[

log(µ2 +m2 + x(1 − x)P 2) −
µ2

µ2 +m2 + x(1 − x)P 2

]

+ O(ǫ)

}

,

(2.13)

where c = −2
ǫ

+ γ − log 4π. Note that in the µ → 0 limit, J
(4)
µ (P 2) reproduces the standard

one-loop contribution J (4)(P 2) to the 1PI four-point vertex, cf. (2.2), as it obviously should.

To remove the 2
ǫ

pole and make Γ
(4)
µ finite at this order one has to add the (µ-independent)

counterterm
∫

d4x
(

− 1
4!

)

3g2

2(4π)2

(

2
ǫ
+ c0

)

ϕ4, where the value of the finite constant c0 depends on

the renormalization condition. Then, up to order g2 we have

Γ
(4)
µ,tree(pi)+Γ

(4)
µ,1−loop(pi) = −g−

g2

2

[

J (4)
µ ((p1 + p2)

2) + J (4)
µ ((p1 + p3)

2) + J (4)
µ ((p2 + p3)

2)
]

, (2.14)

where J
(4)
µ is still given by (2.13) but now with c = c0 + γ − log 4π. This example clearly shows

several of the general features discussed above:

• In a massless theory µ is not just a fictitious mass: J
(4)
µ for m = 0 is not the same as J (4)

with m simply replaced by µ.

• It is obvious from (2.13) that the corresponding contribution to the Wilsonian effective

action is indeed local, even for m = 0. Explicitly, for m = 0, one has J
(4)
µ (P 2)|m=0 =

1
(4π)2

{

c+ log µ2 + j(4)
(

p2

µ2

)}

with

j(4)(z) = −2 +
2 + z

√

z(4 + z)
log

(

1 +
√

z
4+z

1 −
√

z
4+z

)

= −1 +
z

3
−
z2

20
+ O(z3) , (2.15)

which is free of singularities as long as |z| < 4.

• As discussed below eq. (2.8), when computing correlation functions from the propagators

and vertices given by the Wilsonian action Γµ (cf (2.14)) one has to implement the ultra-

violet cutoff µ using exactly the same prescription. For the example of the 4-point vertex

function at order g2 one has to add the two contributions shown in Fig. 1 (for each of the
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s, t and u-“channels”). The tree-level contribution corresponding to the vertex ∼ g2 from

Γµ,1−loop (right part of Fig. 1) is just −g2

2
J

(4)
µ (P 2), while the contribution corresponding to

the left part of Fig. 1 is the loop-diagram, now with a UV cutoff µ, involving two vertices

(−g) from Γµ,tree . Hence, the latter contribution is finite and can be computed directly in

d = 4 giving −1
2
(−g)2 times

i

∫ 1

0

dx i

∫

k2
E≤µ2

d4kE
(2π)4

1

[k2
E +m2 + x(1 − x)P 2]2

=
1

(4π)2

∫ 1

0

dx
[

log
m2 + x(1 − x)P 2

µ2 +m2 + x(1 − x)P 2

+
µ2

µ2 +m2 + x(1 − x)P 2

]

. (2.16)

This contribution (2.16) and J
(4)
µ (P 2) as given in (2.13) precisely add up to produce the

order g2 contribution J (4)(P 2) to the 1PI four-point vertex given in (2.2), as promised.

Let us also note that, up to one loop, Γ
(2)
µ is given by

Γ
(2)
µ,tree + Γ

(2)
µ,1−loop = −(p2 +m2) +

g

2(4π)2

(

µ2 + c2 m
2 −m2 log(µ2 +m2)

)

, (2.17)

where the value of the finite constant c2 depends on the renormalization conditions. In minimal

subtraction e.g. c2 = 1 − γ + log 4π. Note that, even for m = 0, there is a non-vanishing

Γ
(2)
µ,1−loop = g

2(4π)2
µ2. One can now compute the 1PI Γ(2) up to order g, starting from the Wilsonian

action Γµ = Γ
(2)
µ |g0 + Γ

(2)
µ |g + Γ

(4)
µ |g + . . .. It receives two contributions, a tree-level contribution

with the 2-point vertex as given in (2.17) and a one-loop contribution with UV cutoff µ, involving

the 4-point vertex Γ
(4)
µ |g = −g. The latter gives

−
g

2

∫

k2
E≤µ2

d4kE
(2π)4

1

k2
E +m2

= −
g

2(4π)2

(

µ2 −m2 log
µ2 +m2

m2

)

. (2.18)

When added to the former, the µ-dependence disappears and one reproduces the one-particle

irreducible Γ(2) = −(p2 +m2) + g
2(4π)2

m2 (c2 − logm2) + O(g2).

In the appendix we compute the two-loop contributions to Γ
(2)
µ . This will turn out to be quite

a non-trivial example.

2.4.2 Chiral fermions in 2 dimensions

It is instructive to look at another example: consider a massless chiral fermion coupled to a U(1)

gauge field in two dimensions. At one loop, its contribution to the vacuum-polarization Γ(2) of the

gauge field is given by the (anomalous) current two-point function 〈j+(p)j+(−p)〉. Its computation

is straightforward and parallels e.g. the nice discussion of the two-point function of the energy-

momentum tensor T++ in ref. [15]. Here we want to implement the IR-cutoff µ on the momentum

integral in the same way as we did above. The relevant momentum integral then is
∫

µ2

ddk

(2π)d
k+

k2

p+ + k+

(p+ k)2
= i

∫ 1

0

dx

∫

k2
E≥µ2

ddkE
(2π)d

k+
Ek

+
E − x(1 − x)p2

+

[k2
E + x(1 − x)p2]2

, (2.19)
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where p± = p1 ± p0 (so that p2 = p+p−) and k+
E = ikE,0 + kE,1. The integral of k+

Ek
+
E vanishes by

symmetry and the remaining integral is convergent for d = 2. One gets

Γ(2)
µ ∼ 〈j+(p)j+(−p)〉µ = ĉ

p+

p−
J

(

µ2

p2

)

, (2.20)

where

J (ξ) =

∫ 1

0

dx
x(1 − x)

ξ + x(1 − x)
. (2.21)

Setting µ = 0 gives back the corresponding part of the 1PI effective action. Since J (0) = 1

this is

Γ(2) ∼ 〈j+(p)j+(−p)〉µ=0
= ĉ

p+

p−
. (2.22)

This clearly shows the non-local character of the corresponding contribution to the 1PI action Γ

and also exhibits the usual anomaly p−〈j+(p)j+(−p)〉 = ĉ p+ 6= 0 (which in turn, as always, is

local). For non-vanishing ξ, the integral J (ξ) is elementary (and similar to j(4)(1
ξ
) given above)

and can be easily evaluated in the different regions ξ < −1/4 , −1/4 < ξ < 0 and ξ > 0. However,

it is immediately obvious that for large |ξ| it has a series expansion J (ξ) ∼ 1
6ξ

+ O( 1
ξ2

). Thus

for µ2 ≫ p2 ≡ p+p− we get 〈j+(p)j+(−p)〉µ ∼ ĉ p+
p−

p2

6µ2

(

1 + O( p
2

µ2 )
)

= ĉ
p2
+

6µ2

(

1 + O( p
2

µ2 )
)

which

clearly is local. It is also obvious that, as a function of the real variable ξ, J (ξ) is everywhere

decreasing since J ′(ξ) < 0, and hence (since J (−∞) = J (∞) = 0) it must be singular somewhere.

Indeed, J (ξ) is singular at ξ = −1
4

: the expansion in inverse powers of µ2 ceases to converge at

µ2 = −p2/4 and one could say that it is at this point where Γ
(2)
µ undergoes the transition from an

infinite sum of local terms to a non-local expression.

2.5 Symmetries of the Wilsonian action and (non)renomalization

As we have discussed at length, to compute Γµ[ϕ] we need to impose a UV regularization and to

specify the IR cutoff µ. Just as for the 1PI effective action, any linear classical symmetry will be a

symmetry also of the Wilsonian effective action if both, UV regularization and IR cutoff, preserve

these symmetries. In particular, we have displayed cutoffs that preserve Lorentz invariance and,

if present, supersymmetry. Consider first a non-gauge theory. The question of gauge invariance

will be discussed below. The Wilsonian effective action can be expanded in a series of terms

with increasing numbers of derivatives, each of them being local and invariant under the non-

anomalous symmetries. The µ-dependent coefficients of these terms are the Wilsonian coupling

constants gn(µ). Accordingly, the Wilsonian β-functions are defined as

βn(gm(µ)) = µ
d

dµ
gn(µ) . (2.23)

If one can show, using the symmetries of Γµ, that certain couplings gn(µ) actually do not depend

on µ at all, then these couplings equal their bare values. This means that the corresponding
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proper vertices do not receive any contributions from loop diagrams (with infrared cutoff µ) or

even non-perturbatively, i.e. they are not renormalized. This is typically the argument used in

supersymmetric theories in [4] for the proof of the non-renormalization theorem for the F -terms.

It is very important to realize that the Wilsonian couplings gn(µ) are different from the cor-

responding effective couplings gn(0) in the 1PI action and that the corresponding β-functions9

also are not the same. In theories involving massless fields, going from the Wilsonian couplings

to the 1PI couplings one typically has to include terms that potentially receive infrared divergent

contributions. These questions have been extensively discussed in ref. [10].

2.6 Gauge invariance of the Wilsonian effective action

2.6.1 Slavnov-Talor identities

Obviously, if we are dealing with a gauge theory and if the gauge symmetry is not anomalous, the

1PI effective action must reflect the gauge invariance. As already discussed above, this is encoded

in the Zinn-Justin equations which are a reflection of the BRST invariance of the gauge-fixed

action. We also noted that if one uses a background field gauge the 1PI effective action really is

gauge invariant.

The gauge invariance of the Wilsonian effective action turns out to be a more complicated

question. The basic point is that the introduction of the infrared scale µ a priori breaks gauge,

resp. BRST invariance. For example, it is well-known from the one-loop computations of the

vacuum polarization in gauge theories that the introduction of an explicit momentum UV-cutoff

generates quadratic divergences that lead to non-gauge invariant mass terms for the gauge fields.

Clearly the same happens with an explicit infrared momentum cutoff µ. Alternatively, consider a

BRST transformation like s ψ ∼ ηψ. It is non-linear and hence is not diagonal in the momenta

and the explicit introduction of the cutoff µ is not manifestly BRST invariant. Thus one cannot

automatically conclude that the Wilsonian effective action satisfies the Zinn-Justin equation, or

equivalently that the appropriate Slavnov-Taylor identities are satisfied.

The question of gauge invariance was much studied in the framework of the exact renormaliza-

tion group (ERG) [1] using the flow equations. As already mentioned, in this context one computes

with a UV cutoff Λ and deals with effective actions that have Λ-dependent interactions. The basic

point then is how to guarantee that the physical correlation functions obey the Ward identities

and that the S-matrix is unitary. Probably the first gauge invariant UV regularization scheme in-

volving an explicit scale Λ was constructed 10 by Warr [11] by adding ingeniously arranged higher

covariant derivative terms ∼
(

D2

Λ2

)n

to the action. This allowed him to obtain regularized Ward

identities for the regularized correlation functions which reduce to the standard Ward identities

for the (finite) correlation functions in the limit Λ → ∞, thereby guaranteeing unitarity of the

9Recall that the 1PI couplings gn(0) instead depend on the scale λ used to define the renormalisation conditions
and their β-functions are defined as βn = λ d

dλgn(0).
10I am grateful to Bruce Campbell for bringing this reference to my attention.
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S-matrix. Although very interesting, this scheme is designed to study only physics at scales well

below Λ where one effectively can consider the Λ → ∞ limit. A somewhat different treatment

was given by Bechi [16] who used a UV cutoff that breaks the gauge symmetry but showed that

one can add appropriately fine-tuned non-invariant (Λ-dependent) counterterms to the effective

action in order to recover the Ward identities. A more modern treatment following the same idea

can be found in [17]. These questions were also studied in detail in [18, 19] where it was shown

that by exploiting the freedom in the choice of appropriate renormalization conditions, the Ward

identities are recovered at the end of the renormalization group flow. Said differently, the Ward

identities receive Λ-dependent corrections which flow to zero. Similarly, ref. [20] showed that the

effective action with IR cutoff µ obtained from the flow equations satisfies modified Slavnov-Taylor

identities that reduce to the ordinary Slavnov-Taylor identities in the limit µ→ 0. Interesting as

they are, these approaches only guarantee gauge invariance at the end point of the RG flow while

we really would like to argue for gauge invariance at any finite scale µ. A variant involves the

introduction of extra gauge fields, somewhat similar to background gauge fields ensuring invari-

ance at any µ under combined gauge transformations of both sets of gauge fields (see e.g. [21]).

This however results in further flow equations with respect to the additional gauge fields and

somewhat obscures the physical interpretation. Nice discussions of the different issues connected

with the gauge invariance within the ERG flow can also be found in refs. [2, 22]. The ERG flow

equations have also been applied to supersymmetric gauge theories using superspace techniques

in refs. [23] and [24] where again modified Ward identities are obtained and shown to flow to the

standard ones in the end. More recently, refs. [25] have formulated ERG flow equations for gauge

theories in a manifestly gauge invariant way by realizing the cutoff Λ via a spontaneously broken

larger gauge invariance. Finally, we should mention that it is also possible to introduce explicit

momentum cutoffs by using a lattice formulation even for chiral gauge theories without breaking

gauge invariance [26] but, of course, the lattice breaks explicit Lorentz invariance. Also, in thermal

gauge theories, the flow for the thermal fluctuations can be formulated in a gauge invariant way

[27].

As explained above, in this note we do not use the flow equations of the ERG and instead

define the Wilsonian effective action Γµ, starting from ordinary microscopic Yang Mills theory, by

explicitly integrating out all the modes above the scale µ. We want to see whether in some cases

this could still lead to a gauge invariant Γµ for any finite µ.

2.6.2 Background field gauge

Again, in order to be able to argue for gauge invariance of Γµ, it is more convenient to work in

background field gauge. This is the procedure adopted throughout refs. [10] for their study of

supersymmetric gauge theories. As far as the UV regularization is concerned, these references

use a combination of Pauli-Villars for the chiral multiplets and higher-derivative regularization

for the vector multiplets. They do not, however, explicitly specify the way they implement the

15



IR-cutoff µ. Note also that the above-mentioned gauge invariant regularization by Warr has been

extended to background field gauge in ref. [28], and that a gauge-invariant UV regularization for

supersymmetric chiral gauge theories using background field method was proposed in ref. [29].

Here, we will use the explicit IR-cutoff µ introduced above which has the advantage of having

a clear and intuitive interpretation, and which can take any finite value: Γµ has a well-defined

meaning whether the external momenta satisfy p2 . µ2 or not. As already mentioned, this IR

cutoff explicitly breaks gauge invariance by generating e.g. mass terms ∼ µ2 for the gauge fields.

In the next section, we will proceed to an explicit one-loop computation of several terms in the

Wilsonian effective action Γµ for general gauge theories. We will see that not only these mass terms

are indeed present, but actually there are (infinitely) many other non-gauge invariant terms in

the effective action for a generic gauge theory.11 We will give a complete one-loop computation of

these terms that are bilinear in the gauge fields and involve arbitrarily many derivatives. However,

we will also show that in a supersymmetric theory all these non-gauge-invariant terms in Γµ cancel

within each supermultiplet. We take this as strong evidence that the same cancellation of the

non-gauge invariant terms due to supersymmetry occurs for the full Wilsonian effective action

which then is indeed Lorentz, susy and gauge-invariant for all µ, and can be expanded, as long as

p2 . µ2, as an (infinite) sum of local terms.

2.6.3 Anomalies

One more point we should discuss here concerns possible anomalies. In general we will be interested

in theories that contain chiral fermions, potentially leading to gauge or global anomalies. A simple

explicit example was discussed in section 2.4.2. Of course, gauge anomalies render the theory

inconsistent and (as usual) we will suppose that the matter content is arranged in such a way that

they cancel. However, anomalies in global symmetries often play an important role. An anomaly

is a non-invariance of the effective action that cannot be removed by adding local counterterms

to the classical action. As we have seen in the two-dimensional example above, the non-invariant

terms in Γ must be non-local since if they were local one could just subtract these terms from the

classical action as local counterterms, and the new effective action would be invariant. At first

sight it then seems as if no anomaly could manifest itself in the Wilsonian effective action (at least

for large enough µ) , and that it is only produced as an IR effect when going from Γµ to Γ. This is

not true, however, since although Γµ is a sum of local terms, even the non-invariant part a priori

is an infinite sum, and so one would have to add infinitely many counterterms to the classical

action. More important, these counterterms all have coefficients that depend on µ. For a fixed

value of µ they would lead to an invariant new Γ̃µ, but if we compute Γ̃µ′ at another scale µ′ 6= µ

the non-invariant terms would no longer cancel. Thus there is no way to cancel the anomaly in

Γµ for arbitrary µ by adding (µ-independent) local counterterms to the classical action, and it

11Let us insist that, although in a general gauge theory Γµ,1−loop is not gauge invariant, the one-loop correlation
functions computed from this Γµ,1−loop are the µ-independent 1PI correlation functions that do satisfy the Ward
identities.
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makes perfectly sense to discuss global (or gauge) anomalies at the level of the Wilsonian effective

action.

3 One-loop Wilsonian action for gauge theories, non-gauge
invariant terms and their cancellation in susy theories

We will now explicitly compute, at one loop, various terms of the Wilsonian effective action for

general gauge theories. As discussed above, we will do this in background field gauge. It is

by now a standard textbook computation using background field gauge to obtain the coefficient

of the FµνF
µν term in the 1PI effective action of gauge theories coupled to spin 1

2
Dirac fields

transforming in some representation R of the gauge group, thereby deriving the celebrated β-

function. Here we will follow the presentation and computation of [30], and adapt it by introducing

the explicit IR cutoff µ according to our prescription explained in section 2.3. We will first compute

terms quadratic and quartic in a constant background gauge field and then quadratic terms in

an arbitrary background gauge field. In all cases we will find many terms that are not gauge

invariant. However, we will also see that, in supersymmetric gauge theories, these non-invariant

terms cancel when adding the contributions of all fields in any supermultiplet. Using our results,

we will give explicit formulae for the one-loop Wilsonian couplings for all higher-derivative terms

∼ FD2nF in the Wilsonian effective action in arbitrary supersymmetric gauge theories.

3.1 Quadratic and quartic terms for constant background gauge fields

We will first compute the one-loop Wilsonian effective action up to quartic order in the (back-

ground) gauge fields at zero momentum, i.e. for constant fields A, and at vanishing ghost and

fermion field background. Then Fµν = −i[Aµ, Aν ] and trFµνF
µν = 2 tr (AµA

µAνA
ν−AµAνA

µAν).

After going through the background gauge fixing procedure, the one-loop effective action is given

by the logarithm of the product of determinants of the propagators, in the presence of the back-

ground fields, of the gauge (A′), ghost (ω′) and fermionic matter (ψ′) fields.12 Since the latter are

taken to be constant, the determinants are easily evaluated. Explicitly one has

Γ1−loop[A] =

∫

d4x γ1−loop[A] ,

iγ1−loop[A] =

∫

d4p

(2π)4

[

−
1

2
tr logMA′

(p) + tr logMω′

(p) + tr logMψ′

(p)

]

, (3.1)

12In susy gauge theories one also has scalars. Their contributions are similar to those of the ghost fields and will
be given later on.
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where in Feynman gauge (ξ = 1) [30]

MA′

µν(p) = ηµνp
2 − 2ηµνpλA

λ + ηµνAλA
λ + 2iFµν ,

Mω′

(p) = p2 − 2pλA
λ + AλA

λ ,

Mψ′

(p) = ip/ +m− iA/ . (3.2)

Note that the traces in (3.1) are traces over Lorentz indices, Dirac matrices and Lie algebra

generators. As usual, Aν = Aaνta with the generators ta in the adjoint for the gauge and ghost

fields and in some matter representation R for the fermions. To compute the logarithms in (3.1),

we split each M as M = M0 + M1 + M2 where M−1
0 is the free propagator and M1, resp.

M2 are linear, resp. bilinear in the background gauge field A. Using the formula tr logM =

tr logM0 −
∑∞

n=1
(−)n

n
tr
(

M−1
0 (M1 + M2)

)n
it is easy to pick out the contributions to the terms

in the effective action involving a given number13 of gauge fields A.

3.1.1 Quadratic terms

General gauge theories

First, any terms involving odd powers of A obviously will vanish by Lorentz invariance (as we

indeed use a Lorentz invariant UV and IR regularization) since at zero momentum there is no

way to form a Lorentz scalar with an odd number of gauge fields A. Next, we look at the term

quadratic in A. If present at zero momentum such a term clearly represents a mass term for the

gauge field and breaks gauge invariance. The corresponding contribution to γ1−loop is

iγ1−loop

∣

∣

∣

A2
=

∫

d4p

(2π)4

{

(

−
1

2
ηµνη

µν + 1

)(

ηλρ

p2
−

2pλpρ

p4

)

tradjAλAρ

+2

(

ηλρ

p2 +m2
−

2pλpρ

(p2 +m2)2

)

trRAλAρ

}

. (3.3)

Here the first line contains the contributions from MA′

(∼ −1
2
ηµνη

µν) and Mω′

(∼ 1), while the

second line contains those of Mψ. Note that the factor of 2 in the second line would be absent

for Majorana fermions. In dimensional regularization without any IR cutoff µ one has

∫

ddp

(

ηλρ

p2 +m2
−

2pλpρ

(p2 +m2)2

)

= 0 , (3.4)

for all m and in particular also for m = 0. This implies the vanishing of (3.3) and the absence of

mass terms for the gauge field in the 1PI action Γ.

13The term without any field dependence in iγ1−loop is just given by replacing the full M’s in (3.1) by the M0’s

which gives
∫

d4p
(2π)4

[

(− 1
24 + 1)(− log p2) tradj 1 − 2 log(p2 + m2) trR 1

]

, with the 2 in front of the second log absent

for Majorana fermions. Thus we see that the integrand vanishes if the fermions are massless Majorana fermions
and transform also in the adjoint representation as is the case for the N = 1 vector multiplet: the vacuum energy
density vanishes as it should for unbroken susy. This result is not affected by the introduction of the IR cutoff µ.
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In section 2.3, we discussed how to introduce the IR cutoff µ on the standard form of the loop

integrals. To bring them into standard form one had to perform translations of the integration

variables and in order to be able to do so we had to work with already convergent integrals.

This is why we used dimensional regularization of the integrals. Here, however, since we work at

vanishing external momentum, the integrals already are in standard form. Thus, alternatively, we

can simply introduce a euclidean momentum UV cutoff Λ and IR cutoff µ on the integrals in (3.3),

working directly in 4 dimensions. It will be interesting to compare both UV regularizations. The

relevant integrals (which we denote by ÎN to distinguish them from their dimensionally regularized

cousins IN) then are

ÎN(m2) = i

∫

µ2≤p2E≤Λ2

d4pE
(2π)4

1

(p2
E +m2)N

, Îλ...ρN (m2) = i

∫

µ2≤p2E≤Λ2

d4pE
(2π)4

pλE . . . p
ρ
E

(p2
E +m2)N

, (3.5)

and are given by

Î1(m
2) =

i

(4π)2

(

Λ2 − µ2 +m2 log
m2 + µ2

m2 + Λ2

)

,

Î2(m
2) =

i

(4π)2

(

m2

Λ2 +m2
−

m2

µ2 +m2
− log

m2 + µ2

m2 + Λ2

)

,

ÎN(m2) =
i

(4π)2

( 1

N − 2

1

(µ2 +m2)N−2
−

1

N − 1

m2

(µ2 +m2)N−1
+ O(

1

Λ
)
)

, N ≥ 3 , (3.6)

as well as

ÎλρN (m2) =
1

4
δλρ
(

ÎN−1(m) −m2ÎN(m)
)

,

ÎνλρσN (m2) =
1

24

(

δνλδρσ + δνρδλσ + δνσδλρ
)

(

ÎN−2(m) − 2m2ÎN−1(m) +m4ÎN(m)
)

. (3.7)

Using these integrals we get from (3.3)

iγµ,1−loop

∣

∣

∣

A2
=

{

(−2 + 1)
1

2
Î1(0) tradjA

λAλ

+
(

Î1(m
2) +m2Î2(m

2))
)

trRA
λAλ

}

, (3.8)

with the first line coming from the gauge field and ghost loop and the second line from the fermion

matter loop. Explicitly one has

iγµ,1−loop

∣

∣

∣

A2
=

i

(4π)2

{

−
1

2
(Λ2 − µ2) tradjA

λAλ +

(

Λ2 −
µ4

µ2 +m2
−m2

)

trRA
λAλ + O(

1

Λ
)

}

.

(3.9)

Had we used dimensional regularization together with the IR cutoff µ, the quadratic UV diver-

gences would have been absent and we would have obtained instead

iγµ,1−loop

∣

∣

∣

A2
=

i

(4π)2

{

µ2

2
tradjA

λAλ −
µ4

µ2 +m2
trRA

λAλ + O(ǫ)

}

. (3.10)
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Both expressions (3.9) and (3.10) in general are non-vanishing for µ 6= 0, thus explicitly breaking

the gauge invariance of the Wilsonian effective action.14 Note that these non-invariant terms

get contributions not only from the massless gauge and ghost fields but also from the massive

fermion fields. This is somewhat contrary to the naive expectation that for a massive field it does

not matter whether one imposes an IR cutoff or not. What remains true is that in dimensional

regularization for m ≫ µ the non-invariant contribution of the massive fields is suppressed by a

factor µ2

m2 .

Supersymmetric gauge theories

Now consider what happens in a supersymmetric gauge theory. We already noted in the footnote

above that the vacuum energy density vanishes, independently of the IR-cutoff, thus leaving

supersymmetry unbroken. Concerning the quadratic terms, first look at the vector multiplet.

The contributions of the gauge fields and the ghosts are unaltered, but for the fermions there are

several modifications: they are massless Majorana fermions in the adjoint representation. Thus

in the second line in (3.8) we must set m = 0, include an extra factor 1
2

and replace trRA
λAλ by

tradjA
λAλ. As a result iγµ,1−loop|A2 vanishes. Alternatively, this can be seen directly from (3.3).

Similarly for a chiral multiplet we have a complex boson and a Majorana fermion of the same

mass m and in the same representation R. The contribution of the complex boson can be obtained

from that of the ghost in (3.3) by replacing the massless propagator by a massive one, replacing

tradjA
λAλ by trRA

λAλ and changing the overall sign. Including a factor 1
2

for the Majorana

fermions it is then immediately clear from (3.3) that both contributions cancel. Thus

γµ,1−loop

∣

∣

∣

vector multiplet

A2
= γµ,1−loop

∣

∣

∣

chiral multiplet

A2
= 0 , even for µ 6= 0 . (3.11)

This is valid whether the UV divergences have been regularized dimensionally or by the explicit

cutoff Λ.

3.1.2 Quartic terms

General gauge theories

Next, we look at the terms in γµ,1−loop that are quartic in the background gauge field. In particular

this will yield the µ-dependence of the one-loop Wilsonian gauge coupling. We will also find non

gauge-invariant terms in the presence of massive matter, that cancel however when considering

full susy multiplets. Again, we first use an explicit UV cutoff Λ and an explicit IR cutoff µ and

14Note that (3.9) only has quadratic divergences, while the logarithmic divergences have cancelled. Similarly
(3.10) has no divergences at all. Nevertheless, the finite part of (3.9) does not equal (3.10), since the latter gets
an extra finite contribution ∼ (4 − d) 2

ǫm
2, which can be traced to the difference between (2.11) and (3.7). Note

also that we mentioned in sect. 2.3 that one can opt for dimensional reduction (i.e. first doing all γ-matrix and
tensor algebra in four dimensions and only then dimensionally continuing the integral) or ordinary dimensional
regularization. In the latter case, in (3.3) one should set ηµνη

µν = d and the 2 in the second line becomes 21−ǫ/2.
However, this only changes the O(ǫ) term in (3.10).
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work in 4 dimensions, and below compare with dimensional regularization. After the relevant

algebra one finds for the gauge and ghost contributions

iγµ,1−loop

∣

∣

∣

A′

A4
= −

1

2
tradj

{

− 2
(

(AλA
λ)2 + FλρF

λρ
)

Î2(0) + 16AνAρAλA
λÎνρ3 (0)

−16AνAρAλAσ Î
νρλσ
4 (0)

}

=
5

6
Î2(0) tradj FλρF

λρ , (3.12)

and

iγµ,1−loop

∣

∣

∣

ω′

A4
= tradj

{

−
1

2
(AλA

λ)2Î2(0) + 4AνAρAλA
λÎνρ3 (0) − 4AνAρAλAσ Î

νρλσ
4 (0)

}

=
1

12
Î2(0) tradj FλρF

λρ , (3.13)

which are both manifestly gauge invariant, even though the ÎN(0) are the IR and UV cutoff

integrals (3.6). Next we give the contribution of the Dirac fermion of mass m. After some

standard but lengthy algebra one finds

iγµ,1−loop

∣

∣

∣

ψ′

A4
= −

1

4

∫ Λ

µ

d4p

(2π)4

tr (p/ + im)γν(p/ + im)γρ(p/ + im)γλ(p/ + im)γσ

(p2 +m2)4
trRAνAρAλAσ

=
1

3

(

2Î2(m
2) + 2m2Î3(m

2) −m4Î4(m
2)
)

trRAλAρA
λAρ

−
1

3

(

2Î2(m
2) + 2m2Î3(m

2) + 2m4Î4(m
2)
)

trRAλA
λAρA

ρ

= −
1

3

(

Î2(m
2) +m2Î3(m

2) +m4Î4(m
2)
)

trR FρλF
ρλ −m4Î4(m

2) trRAλAρA
λAρ .

(3.14)

In the massless case one just gets the gauge invariant −1
3
Î2(0) trR FρλF

ρλ reproducing together

with (3.12) and (3.13) the well-known β-function. However, for m 6= 0 we also get a non-gauge

invariant term.15 We will also need the contribution of the complex scalar φ. Again, this is similar

to the contribution of the ghost, but with non-zero mass, an extra minus sign and the replacement

tradj → trR . We obtain

iγµ,1−loop

∣

∣

∣

φ′

A4
= −

1

12

(

Î2(m
2) − 2m2Î3(m

2) − 2m4Î4(m
2)
)

trR FλρF
λρ +

m4

2
Î4(m

2) trRAλAρA
λAρ ,

(3.15)

again with a non gauge-invariant term ∼ m4Î4(m
2).

15Note that when using dimensional regularization without IR cutoff there is a subtle cancellation and this non-
invariant term is absent. Indeed, in dimensional regularization, in the second expression (3.14) the coefficient
of trR AλAρA

λAρ is replaced by 1
3

(

(2 − 5
12ǫ)I2(m

2) + 2m2I3(m
2) − m4I4(m

2)
)

and that of trR AλA
λAρA

ρ is

replaced by − 1
3

(

(2 − 2
3ǫ)I2(m

2) + 2m2I3(m
2) + 2m4I4(m

2)
)

, where the I now are the corresponding dimensionally

regularized integrals. The O(ǫ) terms in front of I2 together with the 1
ǫ pole of I2 now produce another non-gauge-

invariant term ∼ 1
3 ( 5

12ǫ− 2
3ǫ) i

(4π)2
2
ǫ = − i

6(4π)2 which exactly cancels the non-invariant term ∼ m4I4(m
2) = i

6(4π)2 .
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Thus again, just as what happened for the quadratic terms, the quartic terms in the Wilsonian

effective action are not gauge-invariant due to the introduction of the explicit IR-cutoff. Somewhat

contrary to naive expectations, the contributions to the non-invariant quartic terms only come

from massive fields and not from the massless ones.

Supersymmetric gauge theories

How does this conclusion get modified in a supersymmetric theory? For the vector multiplet,

the above computation applies but with the fermion mass set to zero, taking R to be the adjoint

representation, and including a factor 1
2

for the Majorana fermions. Since m = 0, all terms are

gauge invariant. Similarly, for the chiral multiplet, the non-invariant terms cancel between the

Majorana fermion and the complex scalar. We get

iγµ,1−loop

∣

∣

∣

vector multiplet

A4
=

(

5

6
+

1

12
−

1

6

)

Î2(0) tradj FλρF
λρ =

3

4
Î2(0) tradj FλρF

λρ , (3.16)

and

iγµ,1−loop

∣

∣

∣

chiral multiplet

A4
= −

1

4
Î2(m

2) trR FλρF
λρ , (3.17)

all obviously again gauge invariant.

For gauge theories with extended supersymmetry, note that the N = 2 vector multiplet consists

of an N = 1 vector and an N = 1 chiral multiplet (all in the adjoint), while the N = 2 hyper

multiplet consists of two N = 1 chiral multiplets in the same representation R. Hence

iγµ,1−loop

∣

∣

∣

N=2 vector

A4
=

1

2
Î2(0) tradj FλρF

λρ , iγµ,1−loop

∣

∣

∣

N=2 hyper

A4
= −

1

2
Î2(m

2) trR FλρF
λρ .

(3.18)

Of course, the N = 4 multiplet consists of an N = 2 vector and a massless hyper multiplet in the

adjoint, and hence

iγµ,1−loop

∣

∣

∣

N=4

A4
= 0 . (3.19)

Using dimensional regularization instead

It is again interesting to see how these conclusions are modified if instead of the UV cutoff Λ we

use dimensionally regularized integrals. We can treat the usual dimensional regularization (with

all tensor and γ-matrix algebra in d dimensions) and dimensional reduction (with γ-matrix and

tensor algebra in 4 dimensions and only the integrals dimensionally regularized) simultaneously:

the only difference is a factor dA = ηνση
νσ appearing in the A′ contribution (dA = d, resp. 4), and

a factor dψ in the ψ′ contribution from the trace over γ-matrices (dψ = 2d/2, resp. 4). One then
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finds (the relevant integrals are now given by (2.10) and (2.11))

iγµ,1−loop

∣

∣

∣

A′

A4
=

[

1 −
dA
24

(

1 +
2ǫ

3

)]

I2(0) tradj FλρF
λρ −

dA
24

i

(4π)2
tradjAλAρA

λAρ , (3.20)

iγµ,1−loop

∣

∣

∣

ω′

A4
=

(

1

12
+

ǫ

18

)

I2(0) tradj FλρF
λρ +

i

12(4π)2
tradjAλAρA

λAρ , (3.21)

iγµ,1−loop

∣

∣

∣

ψ′

A4
=

dψ
2

[

−

(

1

6
−

ǫ

18

)

I2(m
2) −

m2

6
I3(m

2) −
m2

6
I4(m

2)

]

trR FλρF
λρ

+
dψ
2

[

i

12(4π)2
−
m2

2
I4(m

2)

]

trRAλAρA
λAρ , (3.22)

and

iγµ,1−loop

∣

∣

∣

φ′

A4
=

[

−

(

1

12
+

ǫ

18

)

I2(m
2) +

m2

6
I3(m

2) +
m2

6
I4(m

2)

]

trR FλρF
λρ

−

[

i

12(4π)2
−
m2

2
I4(m

2)

]

trRAλAρA
λAρ . (3.23)

This time, each contribution contains non-gauge invariant terms.16 Again, in a supersymmetric

theory, they exactly cancel for the N = 1 vector and chiral multiplets, provided dA = dψ = 4 :

As expected, we must use the dimensional reduction procedure rather than the usual dimensional

regularization. We then get:

iγµ,1−loop

∣

∣

∣

N=1 vector

A4
=

3

4
I2(0) tradj FλρF

λρ , (3.24)

iγµ,1−loop

∣

∣

∣

N=1 chiral

A4
= −

1

4
I2(m

2) trR FλρF
λρ . (3.25)

Not only are these gauge invariant, they also take exactly the same form as the corresponding

quantities derived above with the UV cutoff Λ (i.e. all the extra terms ∼ ǫI2 present in the

individual non-supersymmetric contributions have also cancelled).

3.2 Quadratic terms for non-constant background gauge fields

3.2.1 General gauge theories

One might wonder whether the cancellation of the non-gauge invariant terms within the super-

multiplets is a special feature for constant background fields or whether it continues to hold even

at non-zero momenta. We will now compute the one-loop Wilsonian effective action Γµ, 1−loop in

the presence of the IR-cutoff µ up to second order in an arbitrary non-constant gauge field Aν(x),

thus involving arbitrarily many derivatives. It is not difficult to adapt the previous computation

to the present case, and we will skip most of the details. Again, Γµ, 1−loop is given by the sum of

16It is amusing to remark that there are more non-gauge invariant terms when using dimensional regularization
than in the computation above done with an explicit UV cutoff.
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logarithms of the various determinants, but now all the momentum modes17 Ãν(q) will contribute.

We write:

Γµ, 1−loop

∣

∣

∣

A2
=

1

2

∫

d4q

(2π)4
Γ

(2)
λν (q) tr Ãλ(q)Ãν(−q) , (3.26)

where it is implicitly understood that Γ
(2)
λν (q) is meant to be one loop and that the trace is to

be taken in the appropriate representation for each contribution. Explicitly, the different fields

contribute

i

2
Γ

(2)
λν (q)

∣

∣

∣

A′

= −
1

2

{

ηρση
ρσ

∫

ddp

(2π)d

(

ηλν
p2

−
1

2

(2p+ q)λ(2p+ q)ν
p2(p+ q)2

)

+4 (qλqν − q2ηλν)

∫

ddp

(2π)d
1

p2(p+ q)2

}

, (3.27)

i

2
Γ

(2)
λν (q)

∣

∣

∣

ω′

=

∫

ddp

(2π)d

(

ηλν
p2

−
1

2

(2p+ q)λ(2p+ q)ν
p2(p+ q)2

)

, (3.28)

i

2
Γ

(2)
λν (q)

∣

∣

∣

ψ′

= 2

∫

ddp

(2π)d
−pλ(p+ q)ν − pν(p+ q)λ + p · (p+ q)ηλν +m2ηλν

[p2 +m2][(p+ q)2 +m2]
, (3.29)

i

2
Γ

(2)
λν (q)

∣

∣

∣

φ′

= −

∫

ddp

(2π)d

(

ηλν
p2 +m2

−
1

2

(2p+ q)λ(2p+ q)ν
[p2 +m2][(p+ q)2 +m2]

)

, (3.30)

where, as before, φ′ is a complex scalar and ψ′ is a Dirac fermion. For Majorana fermions the

factor 2 in (3.29) is absent.

This time we have opted for dimensional regularization (actually dimensional reduction) to

deal with the UV divergences.18 Indeed, before introducing the IR cutoff µ, the integrands must

be brought into the “standard form” according to the rules discussed in sect. 2.3: first introduce

a Feynman parameter x to rewrite the denominators 1
[p2+m2][(p+q)2+m2]

=
∫ 1

0
dx 1

[(p+xq)2+R(x)]2
where

we define

R(x) = m2 + x(1 − x)q2 , R0(x) = x(1 − x)q2 . (3.31)

Then we shift the loop momentum from p to p′ = p + xq which, of course, is a well-defined

operation only for convergent integrals, and this is why it is much more convenient to deal with

dimensionally regularized integrals from the start. It is only then that we impose the IR cutoff µ.

17Our normalisation is Aν(x) =
∫

d4q
(2π)4 e−iqλx

λ

Ãν(q) so that the tree-level action SYM = − 1
4g2

∫

d4xF a
λσF

λσ
a

corresponds to Γ
(2)
λν (q)|tree = 1

g2 (qλqν − q2ηλν)
1

Cadj
, where tradj t

atb = Cadjδ
ab. Of course, we want to consider

background gauge fields that are non-vanishing only for q2

µ2 . 1 in order to get a Wilsonian action that can be

expanded in powers of q2

µ2 .

18It is again easy to get the results for the usual dimensional regularization: then ηρση
ρσ = d and Γ

(2)
λν (q)

∣

∣

∣

ψ′

gets

an extra factor 2−ǫ/2.
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We get

i

2
Γ

(2)
λν (q)

∣

∣

∣

A′

= −
1

2

∫ 1

0

dx
{

ηρση
ρσ

(

ηλνI1(0) − 2I2,λν(R0) −
(1 − 2x)2

2
qλqνI2(R0)

)

+4 (qλqν − q2ηλν)I2(R0)
}

, (3.32)

i

2
Γ

(2)
λν (q)

∣

∣

∣

ω′

=

∫ 1

0

dx

(

ηλνI1(0) − 2I2,λν(R0) −
(1 − 2x)2

2
qλqνI2(R0)

)

, (3.33)

i

2
Γ

(2)
λν (q)

∣

∣

∣

ψ′

= 2

∫ 1

0

dx
(

ηλνI1(R) − 2I2,λν(R) + 2(qλqν − q2ηλν)x(1 − x)I2(R)
)

, (3.34)

i

2
Γ

(2)
λν (q)

∣

∣

∣

φ′

= −

∫ 1

0

dx

(

ηλνI1(m
2) − 2I2,λν(R) −

(1 − 2x)2

2
qλqνI2(R)

)

, (3.35)

with the integrals I1 and I2 given in (2.9), (2.10) and (2.11). The remaining integrals over the

Feynman parameter x are elementary. We found it convenient to introduce

ξ =
q2

µ2
, ρ =

q2

µ2 +m2
, g(ξ) =

1
√

1 + 4/ξ
log

√

1 + 4/ξ + 1
√

1 + 4/ξ − 1
, (3.36)

as well as the following functions

f2(ξ) =
(2 − ξ)(ξ + 4)

12 ξ2
g(ξ) −

1

3ξ
+

5

36
= −

ξ

60
+

ξ2

560
+ O(ξ3) ,

f3(ξ) =
g(ξ)

ξ2
−

1

2ξ
+

1

12
=

ξ

60
−

ξ2

280
+ O(ξ3) , (3.37)

which are such that fi(ξ) and fi(ρ) all vanish at q2 = 0. The various contributions to the part of

the Wilsonian one-loop effective action that is quadratic in A then are

Γµ,1−loop

∣

∣

∣

A′

A2
= cd

∫

d4q

(2π)4

{

[

5

6

(

2

ǫ
− log µ2

)

+ 10f2(ξ) − 8f3(ξ)

]

tradj F̃
lin
λσ (q)F̃ λσ

lin (−q)

+µ2

[

1 + 2ξf3(ξ) −
ξ

6

]

tradj Ãλ(q)Ã
λ(−q)

}

, (3.38)

Γµ,1−loop

∣

∣

∣

ω′

A2
= cd

∫

d4q

(2π)4

{

[

1

12

(

2

ǫ
− log µ2

)

+ f2(ξ)

]

tradj F̃
lin
λσ (q)F̃ λσ

lin (−q)

−
µ2

2

[

1 + 2ξf3(ξ) −
ξ

6

]

tradj Ãλ(q)Ã
λ(−q)

}

, (3.39)
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and

Γµ,1−loop

∣

∣

∣

ψ′

A2
= 2cd

∫

d4q

(2π)4

{[

−
1

6

(

2

ǫ
− log(µ2 +m2) −

m2

µ2 +m2

)

− 2f2(ρ) + 2f3(ρ)

−
2m2

µ2 +m2
f3(ρ)

]

trR F̃
lin
λσ (q)F̃ λσ

lin (−q)

−
1

2

µ4

µ2 +m2

[

1 + 2ρf3(ρ) −
ρ

6

]

trR Ãλ(q)Ã
λ(−q)

}

, (3.40)

Γµ,1−loop

∣

∣

∣

φ′

A2
= cd

∫

d4q

(2π)4

{[

−
1

12

(

2

ǫ
− log(µ2 +m2) −

m2

µ2 +m2

)

− f2(ρ)

+
m2

µ2 +m2

(

4 + ρ

2
f3(ρ) −

ρ

24

)

]

trR F̃
lin
λσ (q)F̃ λσ

lin (−q)

+
1

2

µ4

µ2 +m2

[

1 + 2ρf3(ρ) −
ρ

6

]

trR Ãλ(q)Ã
λ(−q)

}

, (3.41)

where

cd =
1

(4π)d/2Γ(d
2
)
, (3.42)

and F̃ lin
λν (q) = −i(qλÃν(q) − qνÃλ(q)) is the linearized part of the field strength. Again, for

Majorana fermions the factor of 2 is absent in Γµ,1−loop

∣

∣

∣

ψ′

A2
.

There are a few simple checks we can make: First we note that for q2 = 0, and hence ρ = ξ = 0,

we have fi = 0 and F̃ lin
λν (q) = 0 and we recover the results obtained above for constant A, see

eq. (3.10). We can also compare the q-independent coefficients of
∫

d4q
(2π)4

tr F̃ lin
λσ (q)F̃ λσ

lin (−q) =
∫

d4x trF lin
λσ (x)F λσ

lin (x) with the corresponding coefficients of trFλσF
λσ in γµ,1−loop|A4 obtained

above for constant A, see (3.12)-(3.14). Modulo the replacement log Λ → 2
ǫ

we get again perfect

agreement.19

3.2.2 Supersymmetric gauge theories

Next, we see that the different Γµ,1−loop

∣

∣

∣

A2
contribute different non-gauge invariant terms

∼ tr Ãλ(q)Ã
λ(−q), with q-dependent coefficients. For a general theory these non invariant terms

do not cancel. However, there is again a perfect cancellation for the N = 1 vector and the N = 1

19Of course, in eq, (3.14) there is an ambiguity concerning the m4I4(m
2) coefficient of tr FF because we can

change this coefficient by writing the non-gauge invariant term as trAλA
λAρA

ρ instead of trAλAρA
λAρ. However

since the non invariant terms cancel when adding γµ,1−loop|
ψ′

A4 and γµ,1−loop|
φ′

A4 one can compare the corresponding
sums and one gets again perfect agreement. Due to this same ambiguity it is not useful to compare directly with
(3.20)-(3.23).
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chiral multiplets:

Γµ,1−loop

∣

∣

∣

N=1 vector

A2
=

3

4
cd

∫

d4q

(2π)4
γ̂µ(0, ξ) tradj F̃

lin
λσ (q)F̃ λσ

lin (−q) , (3.43)

Γµ,1−loop

∣

∣

∣

N=1 chiral

A2
= −

1

4
cd

∫

d4q

(2π)4
γ̂µ(m, ρ) trR F̃

lin
λσ (q)F̃ λσ

lin (−q) , (3.44)

where we defined

γ̂µ(m, ρ) =

(

2

ǫ
− log(µ2 +m2)

)

+ 12f2(ρ) − 8f3(ρ) −
m2

µ2 +m2

(

1 + 2ρf3(ρ) −
ρ

6

)

=

(

2

ǫ
− log(µ2 +m2)

)

−
ρ

3
+
ρ2

20
−

m2

µ2 +m2

(

1 −
ρ

6
+
ρ2

30

)

+ O(ρ3) . (3.45)

Thus, we see again that, in supersymmetric gauge theories, the terms of the Wilsonian effective

action we computed indeed are gauge invariant. Similarly for the N = 2 vector and hyper

multiplets:

Γµ,1−loop

∣

∣

∣

N=2 vector

A2
=

1

2
cd

∫

d4q

(2π)4
γ̂µ(0, ξ) tradj F̃

lin
λσ (q)F̃ λσ

lin (−q) , (3.46)

Γµ,1−loop

∣

∣

∣

N=2 hyper

A2
= −

1

2
cd

∫

d4q

(2π)4
γ̂µ(m, ρ) trR F̃

lin
λσ (q)F̃ λσ

lin (−q) . (3.47)

Finally, for the N = 4 multiplet, one gets the sum of (3.46) and (3.47) with m = 0 and R taken

to be the adjoint :

Γµ,1−loop

∣

∣

∣

N=4

A2
= 0 , (3.48)

and we explicitly see (at one loop) that for N = 4 not only the Wilsonian gauge coupling is not

renormalized, but there also are no higher derivative terms in the quadratic part of the Wilsonian

effective action. One can consider other one-loop finite theories like N = 4 broken to N = 2

by giving a mass m to the hyper multiplet. It is actually known [31] that N = 2 theories that

are finite at one loop are finite to all orders in perturbation theory. Although being finite, the

one-loop contributions to the effective action for this theory are non-vanishing and e.g. the terms

quadratic in the gauge field are

Γµ,1−loop

∣

∣

∣

N=4 → N=2

A2
=

1

2
cd

∫

d4q

(2π)4
[γ̂µ(0, ξ) − γ̂µ(m, ρ)] tradj F̃

lin
λσ (q)F̃ λσ

lin (−q) . (3.49)

3.3 Higher-derivative Wilsonian couplings in susy gauge theories

Let us write the first few terms in a derivative expansion of the Wilsonian effective action in a

general N = 1 susy gauge theory with one vector multiplet and ni chiral multiplets with masses
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mi in representations Ri. We let tradj t
atb = Cadjδ

ab as well as tr Ri
tatb = CRi

δab. Then

∫

d4q

(2π)4
ρni tr adj/Ri

F̃ lin
λσ (q)F̃ λσ

lin (−q) =
Cadj/Ri

(µ2 +m2
i )
n

∫

d4x (∂ν1 . . . ∂νnF
lin
aλσ(x))∂

ν1 . . . ∂νnF aλσ
lin (x) ,

(3.50)

and similarly for ξn with m2 = 0. If we assume that all terms in Γ1−loop are gauge invariant, F lin
λσ

must actually be the full Fλσ and the derivatives must be covariant derivatives. Thus we deduce

from (3.43), (3.44) and (3.45) that the terms involving two F ’s and an arbitrary number of their

derivatives20 in the Wilsonian effective action in an N = 1 susy gauge theory are

Γµ =

∫

d4x

[

−
1

4g2
(0)(µ)

F a
λσF

λσ
a +

∞
∑

n=1

g(2n)(µ)(Dν1 . . . DνnFλσ)
a(Dν1 . . . DνnF λσ)a + . . .

]

, (3.51)

with the first few Wilsonian couplings given up to one-loop order (i.e. now including also the

tree-level and counterterm contributions) by

1

g2
(0)(µ)

=
1

g2
+

1

(4π)2

[

3Cadj log µ2 −
∑

i

niCRi

(

log(µ2 +m2
i ) +

m2
i

µ2 +m2
i

)

+ ĉ

]

,

g(2)(µ) = −
1

12(4π)2

[

3Cadj
1

µ2
−
∑

i

niCRi

2µ2 +m2
i

2(µ2 +m2
i )

2

]

,

g(4)(µ) =
1

80(4π)2

[

3Cadj
1

µ4
−
∑

i

niCRi

3µ2 +m2
i

3(µ2 +m2
i )

3

]

. (3.52)

The precise value of the finite constant ĉ depends on the choice of renormalization condition. Of

course, the expansions of f2 and f3 immediately allow us to extract similarly all the one-loop

Wilsonian couplings g(2n). Obviously also, there are many more terms in the Wilsonian action

that we did not compute.

***

In this section, we have seen that the introduction of the IR cutoff µ spoils the gauge invari-

ance of the one-loop effective action, but when summing the contributions over full N = 1 susy

multiplets the non-invariant terms cancel. This is reminiscent of anomalies where the contribu-

tions of individual chiral fermions to the effective action are not invariant but when summing over

appropriate sets of fields the anomaly cancels. In this case there is a powerful theorem that no

anomaly can occur at more than one loop. Of course, our non-gauge invariant terms have a struc-

ture that is very different from the topological character of “ordinary anomalies”. Nevertheless,

it is tempting to speculate that one can prove a similar theorem also in the present case.

20As is well known, terms with different orderings of the covariant derivatives can be rewritten in the same form
plus terms involving less derivatives and more than two F ’s, see e.g. [32].
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4 Conclusion

In this note we have given a detailed critical discussion of the properties of Wilsonian effective

actions Γµ. In particular, we have given a precise prescription how to implement the infrared

cutoff µ in any loop integral. At least at one loop, it is completely obvious that the full mo-

mentum integrals are reproduced when using Γµ as the action now with a UV cutoff µ. This

prescription is manifestly Lorentz invariant and also preserves global linear symmetries such as

e.g. supersymmetry. We have given a long discussion of the issue of gauge invariance of effective

actions in general and in particular when using background field gauge. We have also discussed

the approaches in the literature based on the exact renormalization group which are somewhat

different in spirit. Our prescription of IR cutoff (as any similar prescription) breaks the gauge

symmetry. Using our prescription, we have explicitly computed, at one loop, many terms of the

Wilsonian effective action for general gauge theories involving bosonic and fermionic matter fields

of arbitrary masses and in arbitrary representations, exhibiting the non-gauge invariant (as well

as the gauge invariant) terms. We have seen that for supersymmetric gauge theories all non-gauge

invariant terms cancel within each supermultiplet. This is similar to the cancellation of anomalies

for certain “sets” of chiral fermions, and we have speculated that cancellation at one-loop is maybe

enough to prove cancellation at any order. In any case, the cancellation provides strong evidence

that in supersymmetric gauge theories one can indeed define a Lorentz, susy and gauge invariant

Wilsonian action, which is the basic ingredient for the elegant proof of the non-renormalization

theorems in [4]. We have given explicit formula in a general supersymmetric gauge theory for the

one-loop Wilsonian couplings of various higher-derivative terms in the Wilsonian effective action.
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5 Appendix : Explicit IR cutoffs for L-loop integrals and
a complete 2-loop computation

A.1 The IR cutoff one-loop integrals

First, let us indicate how one obtains the IR cutoff one-loop integrals in dimensional regularization,

as given in eq. (2.10). After the obvious integration over the Sd−1 and setting k2
E = y they read

IN(R) =
i

(4π)
d
2 Γ(d

2
)

∫ ∞

µ2

dy
y

d
2
−1

(y +R)N
. (A.1)

For general d = 4− ǫ they are given in terms of incomplete Beta-functions. However, it is easy to

extract the expansion for small ǫ. For N = 2 one rewrites

1

(y +R)2
= −

R

y(y +R)2
−

R

y2(y +R)
+

1

y2
. (A.2)

The first two terms lead to integrals that converge for ǫ = 0 and hence can be evaluated directly

at ǫ = 0 where they are elementary, while the last term yields 2
ǫ
µ−ǫ = 2

ǫ
− log µ2 + O(ǫ). For

N = 1 one rewrites
1

y +R
=

R2

y2(y +R)
−
R

y2
+

1

y
, (A.3)

with the first term giving a convergent integral when evaluated at ǫ = 0, the second leading to

−2
ǫ
R + R log µ2 + O(ǫ), and the last one, obtained by continuation from the region ǫ > 2, yields

−µ2. Finally, for N ≥ 3 the integrals are convergent and can be evaluated at ǫ = 0. This leads to

the integrals (2.10).

A.2 The prescription for L-loop integrals

Now we will show how to extend our prescription for the IR cutoff to arbitrary L-loop diagrams.

After introducing Feynman parameters xa, an arbitrary L-loop diagram G involving r propagators

leads to a dimensionally regularized integral of the form

IG(ps) = (r − 1)!

(

r
∏

a=1

∫ 1

0

dxa

)

δ
(

r
∑

a=1

xa − 1
)

(

L
∏

i=1

ddki
(2π)d

)

IG , (A.4)

where

IG = Q(ki, ps)

[

L
∑

i,j=1

aij(xa)ki · kj + 2
L
∑

i=1

ki · Pi(xa, ps) + C(xa, ps,ma)

]−r

. (A.5)

Here ki is the loop-momentum in the ith loop, the ps are external momenta and the ma are

the masses of the internal propagators. For generic values of the Feynman parameters, [. . .] is

a non-degenerate, positive quadratic form in the ki which one can diagonalize by an orthogonal
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transformation ki = Jijk
′
j. After appropriately shifting the k′i this assumes what we call the

standard form

IG(ps) = (r − 1)!

(

r
∏

a=1

∫ 1

0

dxa

)

δ
(

r
∑

a=1

xa − 1
)

(

L
∏

i=1

ddk′i
(2π)d

)

I ′
G , (A.6)

where now

I ′
G = Q̃(k′i, ps)

[

L
∑

i=1

Ai(xa)k
′
i
2
+R(xa, ps,ma)

]−r

, (A.7)

the Ai being the eigenvalues of (aij). It is again on this standard form, after Wick rotating each

k′i, that one imposes the IR cutoff on each (k′i)
2
E :

(k′i)
2
E ≥ µ̃2

G . (A.8)

It should be clear that this µ̃2
G does not necessarily need to be identical with µ2 (which is the same

for all diagrams), but may differ from it by a numerical factor depending on the topology of the

diagram G. Indeed, one may convince oneself that µ̃2
G and µ2 should be related by

µ̃2
G = µ2

[

(r − 1)!

(

r
∏

a=1

∫ 1

0

dxa

)

δ
(

r
∑

a=1

xa − 1
)

L
∑

i=1

Ai(xa)

]−1

. (A.9)

Clearly, for a one-loop diagram (where A = 1) this gives back µ̃2
G = µ2. For multi-loop diagrams

that do not have several loops sharing a common propagator one has
∑

iAi(xa) = 1 and this also

gives µ̃2
G = µ2. However, if several loops share a common propagator there is no reason why µ̃2

G

should equal µ2 and (A.9) provides the required correction factor. We will see an explicit example

for both situations below and check that (A.9) is indeed necessary for the consistency.

It is clear that this prescription for implementing the IR cutoff µ is universal and unambiguous

and that it preserves the various linear global symmetries. As repeatedly emphasized, an important

consistency requirement is that, when computing correlation functions starting from the Wilsonian

effective action and imposing a UV cutoff µ using exactly the same prescription, the µ-dependence

should cancel. This is obviously the case at one-loop. However, we were not able to provide a

general proof beyond one loop. It might also be the case that a complete cancellation requires some

further refinement of our prescription for higher loop diagrams. Of course, the difficulty is due to

multi-loop diagrams containing different loops sharing a common propagator. It is similar to the

complications encountered in the BPHZ renormalization program when dealing with overlapping

UV divergences. In the latter case the parametric representation can be useful to simplify this

problem [33], and maybe these techniques could be implemented here as well.

A.3 A complete two-loop computation

To see how our prescription for multi-loop integrals works in practice, we will compute Γ
(2)
µ up

to order g2 in scalar ϕ4-theory. In particular, this involves computing the two two-loop diagrams

shown in Fig. 3, using our IR-cutoff µ.
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ec dba

Figure 3: Shown are the O(g2) contributions to Γ
(2)
µ : there are two two-loop diagrams (a) and (b)

as well as two one-loop diagrams (c) and (d) involving counterterms, and the O(g2) wave function
renormalization counterterm (e).

We will first compute the simpler diagram (a) shown on the left of Fig. 3. The relevant integral

for this diagram is p-independent and is simply

I
(2)
(a) =

∫

ddk

(2π)d
ddl

(2π)d
1

[k2 +m2]2 [l2 +m2]
. (A.10)

This factorizes as a product of two one-loop integrals, and one clearly should impose the IR cutoff

for each loop separately as k2
E ≥ µ2 and l2E ≥ µ2 which simply gives

I
(2)
(a)µ = I2(m

2) I1(m
2) , (A.11)

with I1 and I2 given in (2.10). Let us alternatively apply our general prescription explained above

and check that it leads to the same result:

I
(2)
(a) = 2

∫ 1

0

dx dy dz δ(x+ y + z − 1)

∫

ddk

(2π)d
ddl

(2π)d
I(a) , (A.12)

with

I(a) =
[

x l2 + (y + z) k2 +m2
]−3

≡
[

A l2 +B k2 +m2
]−3

. (A.13)

This already is in the standard form and, according to (A.8), the IR cutoff is l2E ≥ µ̃2 and

k2
E ≥ µ̃2. We have A+B = 1 and thus (A.9) gives µ̃2 = µ2. Thus, in the present case, our general

prescription reduces to the obvious IR cutoff k2
E ≥ µ2 and l2E ≥ µ2 for each loop, and we get just

(A.11).

For m 6= 0, (A.11) contains 1
ǫ2

poles. The result is somewhat simpler for m = 0, where only

I2 has a 1
ǫ

pole while I1(0) = − i
(4π)2

µ2
[

1 + (2 − γ + log 4π − log µ2) ǫ
2

+ O(ǫ2)
]

is finite. We then

get

I
(2)
(a)µ =

1

(4π)4

(

1

ǫ
+

3

2
− γ + log 4π − log µ2

)

2µ2 , for m = 0 . (A.14)

Now we turn to the other two-loop diagram (b) shown in Fig. 3, which is somewhat more

complicated. Labelling the loop-momenta by k, l and letting p be the external momentum, the
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relevant integral is

I
(2)
(b) (p) =

∫

ddk

(2π)d
ddl

(2π)d
1

[(p+ k + l)2 +m2][l2 +m2][k2 +m2]

= 2

∫ 1

0

dx dy dz δ(x+ y + z − 1)Ĩ(x, y, z) , (A.15)

with

Ĩ(x, y, z) =

∫

ddk

(2π)d
ddl

(2π)d
[x(p+ k + l)2 + yl2 + zk2 +m2]−3 . (A.16)

The quadratic form in k and l appearing in the denominator is diagonalized by the orthogonal

transformation

(

k
l

)

=

(

cos θ sin θ
− sin θ cos θ

)(

q
r

)

, cos 2θ =

√

(y − z)2

(y − z)2 + 4x2
. (A.17)

One then shifts q and r to bring the integrand in the standard form. After some algebra one gets

Ĩ(x, y, z) =

∫

ddq

(2π)d
ddr

(2π)d
[Aq2 +B r2 +R]−3 , (A.18)

where A, B and R depend on x, y and z and are given by

A = x+
y + z

2
−

1

2
sgn(y − z)

√

(y − z)2 + 4x2 ,

B = x+
y + z

2
+

1

2
sgn(y − z)

√

(y − z)2 + 4x2 ,

R = m2 +
xyz

xy + xz + yz
p2 . (A.19)

It is on this standard form (A.18), after Wick rotating each of the two integrations, that we impose

the IR cutoff: s ≡ q2
E ≥ µ̃2 and t ≡ r2

E ≥ µ̃2. Thus

Ĩµ(x, y, z) = −
1

(4π)dΓ(d
2
)2

∫ ∞

µ̃2

ds s
d
2
−1

∫ ∞

µ̃2

dt t
d
2
−1[As+Bt+R]−3

= −
(AB)−

d
2

(4π)dΓ(d
2
)2

∫ ∞

µ̃2A

ds

∫ ∞

µ̃2B

dt
(st)

d
2
−1

(s+ t+R)3
. (A.20)

Even if this integral were UV convergent in d = 4 one should not set d = 4 at this stage since

the integrals over the Feynman parameters x, y and z typically are divergent for d = 4, and d 6= 4

also regularizes these integrals. To perform the latter one lets x = 1− u, y = uv and z = u(1− v)

so that

I
(2)
(b)µ(p) = 2

∫ 1

0

dv

∫ 1

0

duu Ĩµ(1 − u, uv, u(1 − v)) . (A.21)
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With this parametrization we have

AB = u(1 − σ(v)u) , A+B = 2 − u ,

R = m2 +
u(1 − u)(1 − σ(v))

(1 − σ(v)u)
p2 , σ(v) = 1 − v(1 − v) . (A.22)

Then eq. (A.9) gives

µ̃2 = µ2

[

2

∫ 1

0

dv

∫ 1

0

duu (A+B)

]−1

=
3

4
µ2 . (A.23)

Divergences arise in (A.21) either as u→ 0, or as u→ 1 and σ(v) → 1. To see this, consider first

the case µ = 0 where the integral (A.20) is easily evaluated:

Ĩµ=0 = −
Γ(3 − d)

2(4π)d
(AB)−

d
2Rd−3 . (A.24)

For m2 6= 0 the corresponding integrand in (A.21) is singular as u−1+ ǫ
2 for u → 0 and as

(1 − σ(v)u)−2+ ǫ
2 for u → 1, σ(v) → 1. Both lead to a 1

ǫ
pole. Together with Γ(3 − d) this

produces a double pole. However, we will be mostly interested in the case m = 0. Then the

integrand is less singular since it behaves as u
ǫ
2 for u → 0 and as (1 − σ(v)) (1 − σ(v)u)−3+ ǫ

2 for

u→ 1, σ(v) → 1, giving a finite result even at ǫ = 0 (apart from the 1
ǫ

pole from Γ(3− d)). Thus,

expanding the integrand to first order in ǫ, one obtains quite easily

I
(2)
(b)µ=0(p)

∣

∣

∣

m=0
= −

Γ(3 − d)

(4π)d
(p2)d−3

∫ 1

0

udu

∫ 1

0

dv

[

u2(1 − u)v(1 − v)
]d−3

[

u[1 − u(1 − v(1 − v))]
]

3d
2
−3

=
1

2(4π)4

{(

1

ǫ
+

13

4
− γ + log 4π

)

p2 − p2 log p2 + O(ǫ)

}

, (A.25)

exhibiting a divergent p2 piece and a finite non-local term p2 log p2, as expected in a massless

theory in the absence of an IR-cutoff.

Let us now return to Ĩµ in the presence of the IR cutoff µ. We will now restrict ourself to the

massless case which is really the interesting one. To compute this double integral (A.20) one has

to resort to the same type of rewriting of the integrand as we already used to evaluate the one-loop

diagrams, see (A.2) and (A.3), namely (s+ t+R)−3 = [(s+ t+R)−3 − g(s, t, R)]+ g(s, t, R) with

g(s, t, R) chosen such that the first term [. . .] yields a UV convergent integral for ǫ = 0 and such

that the second term can be explicitly evaluated even for ǫ 6= 0 . We will take

g(s, t, R) =
1

(s+ t)3
−

3R

(s+ t)4
. (A.26)

34



This corresponds to separating off the first two terms in a Taylor expansion in R. Accordingly we

have Ĩµ = Ĩµ,1 + Ĩµ,2 with

Ĩµ,1 = −
(AB)−

d
2

(4π)dΓ(d
2
)2

∫ ∞

µ̃2A

ds

∫ ∞

µ̃2B

dt (st)
d
2
−1

[

1

(s+ t+R)3
− g(s, t, R)

]

,

Ĩµ,2 = −
(AB)−

d
2

(4π)dΓ(d
2
)2

∫ ∞

µ̃2A

ds

∫ ∞

µ̃2B

dt (st)
d
2
−1 g(s, t, R) . (A.27)

Let us first compute Ĩµ,1. The integrals over s and t are convergent for d < 5 and Ĩµ,1 can be

expanded in powers of ǫ = 4−d: Ĩµ,1 = Ĩ
(0)
µ,1 +ǫ Ĩ

(1)
µ,1 + . . .. As explained above, the integrations over

the “Feynman parameters” u and v potentially lead to singularities, so that one might have to

keep the pre-factor (AB)−
d
2 as such. However, one can convince oneself21 that no such singularities

are generated when integrating Ĩ
(0)
µ,1 or Ĩ

(1)
µ,1, and hence we can set ǫ = 0 and obtain

Ĩµ,1

∣

∣

∣

d=4
= −

(AB)−2R

2(4π)4

{

log

(

1 +
R

µ̃2(A+B)

)

+
AB

(A+B)2

R

µ̃2(A+B) +R

}

. (A.28)

Next, the integral Ĩµ,2 decomposes in an obvious way as

Ĩµ,2 = −
(AB)−

d
2

(4π)d
(

Γ(d
2
)
)2

(

J (3) − 3RJ (4)
)

,

J (n) =

∫ ∞

µ̃2A

ds

∫ ∞

µ̃2B

dt
(st)

d
2
−1

(s+ t)n
. (A.29)

The J (n) can be expressed in terms of hypergeometric functions which one can then expand in ǫ.

Alternatively, with some care, one can obtain the leading and subleading terms in an expansion

in ǫ directly as elementary integrals. The result is22

J (3) =
(µ̃2)1−ǫ

2

{

AB

A+B
− (A+B) +

ǫ

2

[

(A+B)
(

log(A+B) − 1
)

+
A2 logA+B2 logB

A+B

]}

,

J (4) =
(µ̃2)−ǫ

6

{

1

ǫ
+

AB

(A+B)2
− log(A+B)

}

. (A.30)

It remains to perform the integrations over the “Feynman parameters” u and v. For Ĩµ,1 we

get

2

∫ 1

0

dv

∫ 1

0

duu Ĩµ,1

∣

∣

∣

d=4
= −

1

(4π)4
p2 F (

p2

µ̃2
) , (A.31)

21This will be obviously the case for Ĩ
(0)
µ,1 ≡ Ĩµ,1|d=4 given below. We have also computed Ĩ

(1)
µ,1 and checked

explicitly that its integrals over u and v are non-singular, too.
22As usual in dimensional regularization, quadratically divergent integrals like J (3) or the one-loop integral I1

are defined by continuation from their region of convergence which is d < 2. This is why J (3), just as I1(0), has no
1
ǫ pole. We have scaled out a factor µ̃2−2ǫ, resp. µ̃−2ǫ, from J (3), resp. J (4), before expanding in ǫ.
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with

F (ξ) =

∫ 1

0

dv

∫ 1

0

du
(1 − u)(1 − σ)

(1 − σu)3

{

log

(

1 +
u(1 − u)(1 − σ)

(2 − u)(1 − σu)
ξ

)

+
u2(1 − u)(1 − σ)

(2 − u)3
ξ

(

1 +
u(1 − u)(1 − σ)

(2 − u)(1 − σu)
ξ

)−1
}

≃ 0.02687 ξ − 0.00091 ξ2 + 0.00005 ξ3 + O(ξ4) , (A.32)

with σ ≡ σ(v) = 1 − v(1 − v). When performing the integral of Ĩµ,2, the part coming from J (4)

gives no further singularity and one can expand (AB)−
d
2 = (AB)−2

(

1+ ǫ
2
log(AB)

)

. The integrals

then are elementary.23 On the other hand, the part coming from J (3) generates a 1
ǫ

pole plus a

finite piece. To get the finite part correctly requires some care.24 We get

2

∫ 1

0

dv

∫ 1

0

duu Ĩµ,2 =
1

(4π)4

[(

1

ǫ
+ a+ log

3

4
− log µ̃2

)

8µ̃2 +

(

1

ǫ
+ b+ log

3

4
− log µ̃2

)

p2

2

]

,

(A.33)

with

a = 2 − γ −
C

4
+ log 2π +

1

2
log 2 − log

3

4
,

b =
3

4
− γ + log 2π − log

3

4
, (A.34)

where C ≃ 0.915966 is Catalan’s constant. Thus, collecting all the pieces, and substituting

µ̃2 = 3
4
µ2 (cf. (A.23)), we finally get

I
(2)
(b)µ(p) =

1

(4π)4

[(

1

ǫ
+ a− log µ2

)

6µ2 +

(

1

ǫ
+ b− log µ2

)

p2

2
− p2F

(

4p2

3µ2

)]

. (A.35)

Note that this corresponds to a local contribution to the Wilsonian action Γµ, since F
(

4p2

3µ2

)

and

hence I
(2)
(b)µ(p) can be expanded in a series in p2, as long as | p

2

µ2 | is not too large. In fact, it is easy

to see numerically that F (ξ) has a singularity at ξ ≃ −11.5, so the expansion is possible as long

as | p
2

µ2 | . 8.6. If p2 is too large, or µ2 too small one sees again the cross-over to the non-local

behavior, just as in the one-loop examples studied in section 2.2.

23We have
∫ 1

0
dv
∫ 1

0
du u (AB)−2R = p2

2 and
∫ 1

0
dv
∫ 1

0
du u (AB)−2R

[

1
2 log(AB) − log(A + B) + AB

(A+B)2

]

=

−(log 2 + 1
4 )p

2

2 .

24First, the part in J (3) that multiplies ǫ, only contributes at the singularities of u (AB)−2+ǫ/2 =
u−1+ǫ/2(1 − σu)−2+ǫ/2 which are at {u = 0} and {u = 1, σ(v) = 1}. This leads to
∫ 1

0
dv
∫ 1

0
du u (AB)−2+ǫ/2 ǫ

2

[

(A + B)
(

log(A + B) − 1
)

+ A2 logA+B2 logB
A+B

]

= 4 log 2 − 4. Then, in the integral
∫ 1

0
dv
∫ 1

0
du u (AB)−2+ǫ/2

(

AB
(A+B) − (A + B)

)

one extracts the singular parts which are
∫ 1

0
dv
∫ 1

0
du u−1+ǫ/2(−2) =

− 4
ǫ and

∫ 1

0
dv
∫ 1

0
du (1 − σ(v)u)−2+ǫ/2(−1) = − 4

ǫ − 2, the remainder then is non-singular and can be

evaluated at ǫ = 0 yielding 2C − 2, C being Catalan’s costant. Thus
∫ 1

0
dv
∫ 1

0
du u (AB)−2+ǫ/2J (3) =

1
2 (µ̃2)1−ǫ

(

− 8
ǫ + 2C − 8 + 4 log 2

)

.
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It is interesting to take the limit µ→ 0 and see how (A.35) matches (A.25). In this limit one

needs the asymptotics of F (ξ) for ξ → ∞. It is then easy to perform the integrals in F (ξ) and

one gets

F (ξ) ∼
ξ→∞

1

2

(

log ξ −
5

2
− log 2

)

. (A.36)

We see that the p2 log µ2 term then cancels and we get

I
(2)
(b)µ(p) ∼

µ→0

1

2(4π)4

[(

1

ǫ
+ b+

5

2
+ log 2 + log

3

4

)

p2 − p2 log p2

]

. (A.37)

Given the value (A.34) of b, this matches (A.25) exactly.

Let us now give the contributions of these two two-loop diagrams to the Wilsonian Γ
(2)
µ . Each

integral gets multiplied by a (−g)2 for the two vertices and a (−i)2 for the two loops. More

importantly, diagram (a) comes with a symmetry factor 1
4

while diagram (b) has a symmetry

factor 1
6
. Thus from (A.14) and (A.35)

Γ(2)
µ (p)

∣

∣

∣

2−loop
= −g2

(

1

4
I

(2)
(a)µ(p) +

1

6
I

(2)
(b)µ(p)

)

= −
g2

(4π)4

[(

3

2ǫ
−

3

2
log µ2 + ã

)

µ2 +

(

1

ǫ
+ b− log µ2

)

p2

12
−
p2

6
F

(

4p2

3µ2

)]

, (A.38)

where ã = a+ 3
4
− γ

2
+ 1

2
log 4π, and a and b are given in (A.34). Note that the coefficient 3

2
of µ2

ǫ

originates as 1
4
× 2 + 1

6
× 6 where the last 6 arose from converting the 8µ̃2 to 6µ2.

There are two more O(g2) contributions to Γ
(2)
µ which are one-loop and involve countert-

erms. The first corresponds to the one-loop diagram (c) of Fig. 3 involving the ϕ4 counterterm

needed to make the Γ
(4)
µ finite at one loop. As discussed in section 2.4.1, this counterterm is

∫

d4x
(

− 1
4!

)

3g2

(4π)2

(

1
ǫ
+ c0

2

)

ϕ4, where the value of the finite constant c0 depends on the renormal-

ization condition. Thus the contribution of diagram (c) to Γ
(2)
µ (p) is (still for m = 0)

Γ(2)
µ (p)

∣

∣

∣

1−loop/counterterm
=

1

2

(

−
3g2

(4π)2

)(

1

ǫ
+
c0
2

)

(−i)I1(0)

= −
g2

(4π)4

(

−
3

2ǫ
+

3

4
log µ2 + ĉ0

)

µ2 , (A.39)

where ĉ0 = −3
4
(c0 + 2 − γ + log 4π). Diagram (d) involves the O(g) (mass renormalization)

counterterm. The latter is ∼ m2 and, since we are restricting ourselves here to m = 0, it is

absent and diagram (d) gives no contribution. Finally, there is the wave-function renormalization

counterterm of diagram (e) which just gives a

Γ(2)
µ (p)

∣

∣

∣

counterterm
=

g2

(4π)4

(

1

ǫ
+ b− b̂

)

p2

12
, (A.40)
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designed to cancel the p2

ǫ
term in (A.38). Again, the value of b̂ depends on the renormalization

conditions.

Adding (A.38), (A.39) and (A.40), we finally obtain the full O(g2) contribution to Γ
(2)
µ :

Γ(2)
µ (p)

∣

∣

∣

g2
= −

g2

(4π)4

[(

â−
3

4
log µ2

)

µ2 +
(

b̂− log µ2
) p2

12
−
p2

6
F

(

4p2

3µ2

)]

, (A.41)

where â = ã+ ĉ0 is given by

â = −
3

4
(c0 + γ − log 4π) +

5

4
−

C

4
−

1

2
log

9

8
, (A.42)

and depends, via c0, on the renormalization conditions. We observe that the terms ∼ µ2

ǫ
have

cancelled, as they indeed should. Clearly, the presence of such a µ-dependent diverging term

would have been a disaster since we are not allowed to add a µ-dependent counterterm to the

action. The cancellation of these terms constitutes a non-trivial consistency check of our two-loop

computation and in particular of the relation (A.9) giving µ̃ in terms of µ. Furthermore, loosely

speaking, the µ2 log µ2 and p2 log µ2 terms are the remnants in the renormalized Γ
(2)
µ of the UV

divergences of the loop diagrams. It is then not too difficult to see that, when computing the 1PI

Γ(2)|g2 , the various µ2 log µ2 and p2 log µ2 terms cancel.
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