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Abstract

We propose a new approach for estimating the parameters of a probability

distribution. It consists on combining two new methods of estimation. The first

is based on the definition of a new distance measuring the difference between

variations of two distributions on a finite number of points from their support

and on using this measure for estimation purposes by the method of minimum

distance. For the second method, given an empirical discrete distribution, we

build up an auxiliary discrete theoretical distribution having the same support

of the first and depending on the same parameters of the parent distribution

of the data from which the empirical distribution emanated. We estimate

then the parameters from the empirical distribution by the usual statistical

methods. In practice, we propose to compute the two estimations, the second

based on maximum likelihood principle of known theoretical properties, and

the first being as a control of the effectiveness of the obtained estimation, and

for which we prove the convergence in probability, so we have also a criterion

on the quality of the information contained in the observations. We apply the

approach to truncated or grouped and censored data situations to give the

flavour on the effectiveness of the approach. We give also some interesting

perspectives of the approach including model selection from truncated data,

estimation of the initial trial value in the celebrate EM algorithm in the case

of truncation and merged normal populations, a test of goodness of fit based

on the new distance, quality of estimations and data.

Key words and phrases: EM algorithm, Minimum distance, Model selection from trun-

cated data, Point estimation, Truncated data, Grouped and censored data.
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1 Introduction

Point estimation is the most popular forms of statistical inference (see Lehmann and
Casella [10]). We introduce in this paper a new statistical point estimation approach
which found be useful in special practical situations such as truncated and grouped
and censored data. The data are said to be truncated when measuring devices fail
to report observations below and/or above certain readings. For example, truncated
data frequently arise in the statistical analysis of astronomical observations ( see
Efron and Petrosian [6]) and in medical data (see Klein and Zhang [9]), and if the
truncation is ignored this can cause considerable bias in the estimation. There exists
in the literature many approaches of estimation from ”incomplete data” such as
maximum likelihood based approach of the EM algorithm (Hartley [7], Dempster
et al [5]), or nonparametric methods such as Kaplan-Meier (Kaplan and Meier [8])
or Lynden-Bell estimators (Lynden-Bell [11]). The purpose of the present paper is
to investigate another approach which consists on combining two new methods of
estimation and to apply it in the fixed type I censored or grouped and censored data
situations.

In the first method, we remark that in estimation problems we deal in general
with three functions: a theoretical probability law f(·, θ) of a random variable X,

depending on a parameter θ (real or vector valued), an empirical distribution f̂
constructed from a sample of observations drawn from the random variable X, and
an estimation f̃ (from an estimation θ̃ of θ) obtained through the empirical law f̂.

The empirical distribution f̂ is considered as a representative distribution of f, but in
practice it is reduced to only few of its characteristics such as the mean and variance.
The variational aspect of f̂ is often neglected while its importance. We can easily
find, for instance, two distributions having the same support, mean and variance
while their variations differ significantly, or conversely having the same variations
but their supports and characteristic parameters are different. But two probability
distributions with same support and same variations in each subset of the support
are necessarily the same. We introduce then a new distance which measures the
difference between variations of two distributions on a finite number of points and to
use it for estimation purposes by the method of minimum distance. Since the new
measure is not equivalent to classical ones it will give new insights that could not be
investigated by classical distances.

In the second method, we remark that the empirical distribution arising from a
sample of observations can be viewed in fact as a conditional distribution as it is
built from the knowledge of the data. It will be then an estimation of the theoretical
conditional distribution with respect to the observations before being an estimation
for the parent distribution. This theoretical conditional distribution is represented
by the auxiliary distribution introduced in this paper. To determine this distribution
in discrete case, we have simply to take the conditional distribution with respect to
the observed values and we proceed analogously for the continuous case. It should
be noted that in discrete case it is known as the truncated distribution which is
the conditional distribution given a truncation (see for example Shaw [13]) but it
is presented here in a general framework. We have to deal with two discrete prob-
ability distributions having the same finite support, a theoretical distribution and
its empirical representation with respect to the observations. The parameters of the
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former are those of the parent distribution and the aim is to estimate them from the
first instead of the parent one as commonly used. We use classical tools such as the
method of moments or maximum likelihood principle. The setting that seems to us
most suitable for illustrating our approach is the one of truncated or grouped and
censored data. In usual practical problems, truncation can be on left or right or in
either situations, and the ”cut off” can be deterministic or random. In our approach,
the truncation may be on any part of the range of the distribution so that the setting
is more general. Also, classical approaches for truncated data are in general custom-
made depending on specific problems and distributions, or subjective based methods.
Instead, our approach is quite general and might be used in any situation where the
underlying complete data come from a known family of distributions. We confine
ourselves as a first presentation to fixed type I and grouped and censored data.

In the subsequent section, we propose a variational distance between probability
distributions. In Section 3, we define a truncation of data and associated empirical
and theoretical distributions and we use two different methods for estimation from
truncation, a first method using minimum of the new distance introduced in this
paper and a second method based on traditional tools of estimations such as the
method of maximum likelihood. In Section 4, we present the new approach and
we illustrate the procedure by three examples: a binomial probability law, a normal
distribution and a Gamma density function. We present also a basic feature of the new
approach which prove the accuracy of the method and some illustrative examples.
In Section 5, we give some elements of comparison with the classical approach of
estimation. In Section 6, we list some perspectives of the new approach: model
selection from truncated data using the new distance, estimation of the first trial
value in the celebrate EM algorithm for incomplete data in the case of truncation and
merged normal distributions, a goodness of fit test based on the new distance, decision
making about the quality of estimations and data. Finally, concluding remarks are
made some pointing to other possible extensions and applications.

2 A New Distance Between Probability Distribu-

tions

As is usual, given a sample of n independent and identically distributed observations,
(x1, ..., xn) , drawn from an unknown discrete random variable X falling in a discrete
family of probability laws P = {f(·, θ), θ ∈ R

r} depending on a parameter θ (real or
vector valued), i.e., f(x, θ) = P (X = x), one can summarize the sample into k couples

(y1, f̂1), ..., (yk, f̂k), k ≤ n, where the yi are the different values taken by the sample

and f̂ is the empirical law f̂j = nj/n, where nj represents the absolute frequency of
the value yj, j = 1, ..., k.

Usually, it is hoped that f̂j ≈ f(yj, θ), in a certain probabilistic sense. But if the
empirical distribution arises from truncated data, we do not hope in general having
f̂(x) ≈ f(x, θ), for the values x in the support of f̂ , since the complete sample size n
is usually not reported. However, we expect reasonably to have approximately

f̂(x)

f̂(y)
≈

f(x, θ)

f(y, θ)
, (1)
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for any points in its support, only if the sample has serious irregularities.
Introduce the following distance of proportional variations between f(·, θ) and f̂

dv(f̂ , f(·, θ)) =
∑

i,j∈{1,...,k}

∣∣∣∣∣
f̂i

f̂j

−
f(yi, θ)

f(yj, θ)

∣∣∣∣∣ . (2)

It turns out that this new distance, as we will show, measures the variations between
probability distributions.

In continuous case also, any sample x1, ..., xn is summarized into k couples (y1, f̂1), ...

, (yk, f̂k), k ≤ n. This can be done uniquely, by grouping for example the sample in

classes where the yi are the mid-classes (or class means) and f̂i = f̂(yi) where f̂ is an
empirical density estimator, or the data is presented in a grouped and censored form.
The proportional variational distance dv in this case, between the density f(x, θ) of

X and its empirical law f̂ , is thus defined as (2). One of its main powerful feature is
that when using traditional distances we have to use the sample size n through the
expression of f̂i = ni/(nhn), where hn is the size of class intervals; but sometimes, as
for truncated data situations where measuring devices fail to report even the number
of sample points in certain ranges, then the real size n is not known, but a truncated
sample size nt is instead used. Using the ratios f̂i/f̂j will clear up the effect of the
truncated sample size which can lead to considerable bias in the estimation.

Note that dv possesses the properties of symmetry and triangle inequality. But
in the identity property dv(f, g)(x, y) = 0 ⇐⇒ f ≡ g, the equality between f and g
must be understood in the sense that f and g have the same variations on the points
x and y. It should be stressed that this new measure is not equivalent to classical
ones and should then give new insights and information about other characteristics
and features of probability distributions.

From now on f shall represent a theoretical probability law in both discrete or
continuous cases and f̂ shall represent the corresponding empirical law in both cases.
Denote by Ω = {x ∈ R, f(x, θ) > 0} the set of atoms of f or support. Let F be the
σ−algebra generated by sets A = B ∩ ω where the ω are the Borel sets of R and
B ⊂ Ω. For all A ∈ F , we have P (A) =

∫
A

f(x, θ)µ(dx),where µ is the Lebesgue
measure on R. In discrete case, we have P (A) =

∑
x∈A f(x, θ).

For all i ≥ 1, we set Ωi = Ω, Fi = F and Pi = P. Let Ωn = Ω1 × ... × Ωn,
F (n) = F1 ⊗ ...⊗Fn and P (n) = P1 ⊗ ...⊗ Pn. The probability space

(
Ωn,F (n), P (n)

)

represents the space of samples of size n from the random variable X. We omit the
subscript n in

(
Ωn,F (n), P (n)

)
for notational convenience and shall denote the sample

space as (Ω,F , P ) .

2.1 A Notion of Variation between probability distributions

We will discuss now the measure theoretic aspect of the new distance introduced
above. Let P and Q two probability measures defined on the same measurable space
(Ω,F), f and g their respective probability densities, not necessarily with respect
to the same measure and E an event of this space. We say that f and g have the
same variation on E, if the respective restrictions of f and g on E, define the same
probability measure on E endowed with the sigma algebra traces of F on E.
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Definition 1 Let f and g two probability distributions positive and defined on a part
E not reduced to only one element. If in any point (x, y) of E × E, we have:

f(x)

f(y)
=

g(x)

g(y)
(3)

then we say that f and g have same variations on E.

Example 2 Let f be a density of a probability measure P and E an event such that
P (E) > 0. The restriction of f on E and the conditional distribution of f with respect
to E define the same probability measure on E and consequently they have the same
variations on E.

Definition 3 Let f and g two probability distributions and E an event on which they
are strictly positive. If E is discrete and not reduced to only one element, and one
of the distributions f and g being discrete and the other may not be discrete, we call
distance in variations between f and g on E the quantity:

dv(f, g)E =
∑

(x,y)∈E

∣∣∣∣
f(x)

f(y)
−

g(x)

g(y)

∣∣∣∣ .

If E is an interval of R and, f and g are probability densities on R, with respect to
Lebesgue measure µ on R, we call distance in variations between f and g on E, the
quantity:

dv(f, g)E =

∫∫

E×E

∣∣∣∣
f(x)

f(y)
−

g(x)

g(y)

∣∣∣∣ µ(dx)µ(dy).

Let be given a classical distance d between two functions f and g which associates
for points x and y from the intersection of their domain of definitions, the quantity
d (f, g) (x, y) = |f(x) − g(x)| + |f(y) − g(y)| .

Proposition 4 We have the following properties for the distance dv :
1. d(f, g)(x, y) = 0 =⇒ dv(f, g)(x, y) = 0, the converse is not always true.

2. Let f̂ be a kernel density estimation. Then limn→∞ dv(f̂ , f) = 0 in probability.
3. Let f and g be two functions defined on R and E ⊂ R satisfying:

∀ (x, y) ∈ E × E, dv(f, g)(x, y) = 0.

If ∫

R

f dµ =

∫

R

g dµ = 1,

where µ is the Lebesgue measure on R, then

µ
(
E

)
= 0 =⇒ f = g µ − almost surely on R.

Proof. 1. Follows directly from the definitions of d and dv.
2. Follows from the fact limn→∞ d(f̂ , f) = 0 in probability (see Parzen [12]), then

limn→∞ dv(f̂ , f) = 0 in the same probabilistic notion of convergence.
3. Fix y0 ∈ E, we have f(x)/f(y0) = g(x)/g(y0) for all x ∈ E. This implies that

∫

E

f(x)dx = 1 ⇐⇒

∫

E

f(y0)
g(x)

g(y0)
dx =

f(y0)

g(y0)

∫

E

g(x)dx = 1.

We deduce that f(y0) = g(y0), and the result follows.
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3 Truncated Data

The truncated data specification, or generally incomplete data, implies the existence
of two sample spaces Xo and Xt, such that the complete sample space is given by
Ω = Xo ∪ Xt. The observed data xo = (x1, ..., xnt

) , where nt is the truncated sample
size, are a realization from Xo and the unobserved data z =

(
x∗

1, ..., x
∗
n−nt

)
, where n

is the complete unknown sample size, are from Xt. The complete data x = xo ∪ z
is known only through the observed data xo (see Dempster, Laird and Rubin [5] for
further explanations about incomplete data specification).

Consider a sample of observations x1, ..., xn drawn from a theoretical probability
law f(·, θ), depending on a parameter θ ∈ R

r. As usual, the data are summarized, in

discrete or continuous cases (as shown in Section 2), into k couples (y1, f̂1), ..., (yk, f̂k),
k ≤ n, and let △ = {u1, ..., um} a part from the set {y1, ..., yk} , m ≤ k, which
we will call truncation. The observed data is summarized by a truncation △o =
{u1, ..., um} and an empirical estimation f̂o and assume that the unobserved data is

also summarized by a set △t = {u∗
1, ..., u

∗
p} and f̂t.

The structure of the new distance dv allows the following decomposition property:

dv(f̂ , f(·, θ)) = dv(f̂o, f(·, θ)) + dv(f̂t, f(·, θ))+ (4)

∑

ui∈△o

u∗j∈△t

∣∣∣∣∣
f̂o (ui)

f̂t

(
u∗

j

) −
f(ui, θ)

f(u∗
j , θ)

∣∣∣∣∣ +
∑

ui∈△o

u∗j∈△t

∣∣∣∣∣
f̂t

(
u∗

j

)

f̂o (ui)
−

f(u∗
j , θ)

f(ui, θ)

∣∣∣∣∣ .

The following proposition is typical for the new distance and is useful for using the
minimum of distance dv.

Proposition 5 Let be given a truncated data △o with corresponding empirical esti-
mation f̂o. Then limnt→∞ dv(f̂o, f) = 0 in probability.

Proof. We have from Proposition 1 that limn→∞ dv(f̂ , f) = 0 in probability. Then,

from the decomposition property (4) we obtain limn→∞ dv(f̂o, f) = limnt→∞ dv(f̂o, f) =
0 in probability.

3.1 An Auxiliary Distribution

Define the empirical distribution f̃ corresponding to a given truncation △ by:

f̃(x) =

{
f̃i if x = ui, i = 1, ..., m,
0 otherwise,

where the f̃i satisfy the following set of proportional allocation equations f̃i/f̃j =

f̂i/f̂j, for i, j = 1, ..., m and f̃1 + ... + f̃m = 1.
Define the following auxiliary distribution from f(·, θ), which is akin to the pro-

portional allocation procedure for missing values (see Hartley [7]).

h (x, θ) =






f(x, θ)

f(u1, θ) + f(u2, θ) + ... + f(um, θ)
if x = ui, i = 1, ..., m,

0 otherwise
(5)
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Remark 6 If the truncation is random, that is, there exists a random variable T
such that we observe, for example, the random variable X only if X > T or X < T,
then the probability law used in (5) is replaced by the conditional law of X with respect
to {X > T} or {X < T} respectively.

The auxiliary distribution h was found be useful for estimation problems in trun-
cated data. Indeed, it is well known in classical estimation from truncated data (see
Hartley [7]) that missing values could be recovered by ”proportional allocation” pro-
cedures, then the auxiliary distribution h, which is already based on proportional
allocation, will be an intuitive and natural tool for estimation purposes from trun-
cated data. The function h is a theoretical probability distribution depending on the
same parameters of those of f . It has also the same support as that of f̃ .

Definition 7 We call f̃ and h(·, θ) the empirical and theoretical distributions of a
given truncation △ = {u1, ..., um} from a sample of observations (x1, ..., xn) .

4 The Approach of Estimation

We will use mainly two methods of estimation. The first method is a minimum
distance estimation using the metric dv between the empirical and theoretical distri-
butions f̂ and f(·, θ). The second is similar to traditional ones such as the method

of substitution or maximum likelihood principle, by considering f̃ as an empirical
estimation of h(·, θ). The first is based on variational difference between distributions
and the second in the sense of an euclidean difference and hence they treat different
aspects of the sample of observations. If for a given data they give different estima-
tions, we cannot suspect the approaches but we can say that the data do not restore
in a coherent way all aspects of the probability distribution from which it emanated.
If on the other hand they give significantly the same estimations we can assert that
the estimation is credible since through different aspects it has given the same dis-
tribution. That is the distribution which fits the best the empirical distribution.
Practically, we propose to calculate the estimations by the two methods and take the
second one since based on maximum likelihood principle of good known theoretical
properties. We use then the first as a tool of decision on whether the estimation is
credible or not. The estimation will then be considered as credible in cases where the
two methods give approximately the same estimation.

4.1 Convergence in Probability of the Minimum Distance

Estimator

Let X1, X2, ..., Xn a sample with Xi ∼ f(x, θ), θ = (θ1, ..., θs)
t ∈ Θ ⊆ R

s, with

f(x, θ) = K(x) × exp

{
s∑

k=1

θkTk(x) + A(θ)

}
, (6)

x ∈ X ⊆ R, where X is a Borel set of R such that X = {x : f(x, θ) > 0} for all θ ∈ Θ.
The family (6) is very rich, one finds there, for example, the family of the normal

laws, and the family of the laws of Poisson. We assume that the support X does not
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depend on θ. Denote by θ̃n the estimator by the minimum of metric dv between the
empirical and theoretical distributions f̂n (based on a sample of size n) and f(·, θ),
that is

θ̃n = arg min
θ

dv(f(·, θ), f̂n).

This estimator falls into the class of M-estimators. Using well known theorems on
the convergence of M-estimators (see for example Amemiya [1]) we will prove that θ̃n

converges in probability to the true parameter.

Proposition 8 Let X1, X2, ..., Xn be a sample from the family of distributions (6).
If the set of natural parameters Θ is covex and the true parameter θ is an interior
point of Θ, then the estimator θ̃n by the minimum of the distance of variations dv

converges in probability to the true parameter θ, i.e.,

θ̃n
P

−→ θ.

Proof. Since we search for a minimum of the criterion function dv, it suffices to
show, under the assumptions of the family (6) and the convexity of the set Θ, that
dv(θ, x) seen as a function of θ is a convex function (see Amemiya [1]). Hence, this
reduces the problem to the convexity of

δij(θ) =

∣∣∣∣∣
f(yi, θ)

f(yj, θ)
−

f̂(yi)

f̂(yj)

∣∣∣∣∣ .

For λ, µ ∈ R with λ + µ = 1, and θ(1), θ(2) ∈ Θ, we have

δij(λθ(1) + µθ(2)) =

∣∣∣∣∣Cij exp

{
s∑

k=1

[
λθ

(1)
k + µθ

(2)
k

]
(Tk(yi) − Tk(yj))

}
− Aij

∣∣∣∣∣ (7)

where Cij = K(yi)/K(yj) and assume that Cij > 0 and Aij = f̂(yi)/f̂(yj).
we have from the convexity of the exponential function that

exp

{
s∑

k=1

[
λθ

(1)
k + µθ

(2)
k

]
(Tk(yi) − Tk(yj))

}
≤ λ exp

{
s∑

k=1

θ
(1)
k (Tk(yi) − Tk(yj))

}

+ µ exp

{
s∑

k=1

θ
(2)
k (Tk(yi) − Tk(yj))

}
,

then

Cij exp

{
s∑

k=1

[
λθ

(1)
k + µθ

(2)
k

]
(Tk(yi) − Tk(yj))

}
− Aij ≤

λCij exp

{
s∑

k=1

θ
(1)
k (Tk(yi) − Tk(yj))

}
+ µCij exp

{
s∑

k=1

θ
(2)
k (Tk(yi) − Tk(yj))

}

− (λ + µ)Aij ≤ λ

[
Cij exp

{
s∑

k=1

θ
(1)
k (Tk(yi) − Tk(yj))

}
− Aij

]
+
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µ

[
Cij exp

{
s∑

k=1

θ
(2)
k (Tk(yi) − Tk(yj))

}
− Aij

]
.

Introducing the absolute value we get

δij(λθ(1) + µθ(2)) =

∣∣∣∣∣Cij exp

{
s∑

k=1

[
λθ

(1)
k + µθ

(2)
k

]
(Tk(yi) − Tk(yj))

}
− (λ + µ)Aij

∣∣∣∣∣

≤ λ

∣∣∣∣∣Cij exp

{
s∑

k=1

θ
(1)
k (Tk(yi) − Tk(yj))

}
− Aij

∣∣∣∣∣

+µ

∣∣∣∣∣Cij exp

{
s∑

k=1

θ
(2)
k (Tk(yi) − Tk(yj))

}
− Aij

∣∣∣∣∣ = λδij(θ
(1)) + µδij(θ

(2)).

Hence δij(θ) is a convex function of θ, which implies the convexity of dv(θ, x) seen as
a function of θ and then the convergence in probability of the minimum of distance
dv estimator.

4.2 A Maximum Likelihood Principle with the Auxiliary Dis-

tribution

We firstly begin in a general situation, that of the one-parameter exponential family,
to show how to use the procedure explained below in the case of the new method.
Consider the one-parameter exponential family with density

f(x, θ) = K(x) × exp[θT (x) − A(θ)], (8)

where θ is the parameter, T a statistic, K(x) a function of x and A is a function of
the parameter θ. Let us use the maximum likelihood principle. Consider a sample of
observations x1, ..., xn from which we derive the support △ = {y1, ..., yk} . We then
construct the auxiliary distribution from the support △, expressed in the following
form

h(x, θ) =
K(x) × exp[θT (x) − A(θ)]

∑k

i=1 K(yi) × exp[θT (yi) − A(θ)]
. (9)

We have to maximize the likelihood function given in our case by

Lh (y, θ) =
k∏

i=1

h(yi, θ). (10)

Without loss of generality, we assume that the class intervals are the same. Then, we
have

logLh (y, θ) =

k∑

i=1

log h(yi, θ) =

k∑

i=1

ni

n
log




K(yi) × exp[θT (yi) − A(θ)]
k∑

i=1

K(yi) × exp[θT (yi) − A(θ)]




, (11)
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taking the derivative and solving the score equation on θ we obtain an estimator of
the parameter θ satisfying the relation

k∑

i=1

ni

n

k∑

i=1

T (yi) × f(yi, θ)

k∑

i=1

f(yi, θ)

=

k∑

i=1

ni

n
T (yi). (12)

The later result may be obtained directly by the method of moments, but we have
presented the maximum likelihood method since it is widely used in statistical infer-
ence.

In order to test the performance of the proposed approach, we use synthetic data
sets which were generated by simulation from three examples of probability law: bi-
nomial law, normal density and a Gamma distribution. The examples were selected
from various simulation studies from different family of probability distributions and
the two methods have shown their effectiveness and never deviate significantly from
the true parameter. The reason for using synthetic data sets is that the true param-
eters for the synthetic datasets are known and the accuracy of results obtained by
using the two new methods can be compared.

4.3 Examples

Binomial distribution. We generated a synthetic data set of size 500 from a
binomial law B(n, p) with n = 10 and p = 0.3, and denote by f(y; p) = Cy

npy(1−p)n−y

its probability mass function. The data are summarized in the following table.

Table 1.
yi 0 1 2 3 4 5 6 7
ni 15 71 108 134 97 47 23 5

Our aim is to estimate the parameter p, with the knowledge of n = 10, from
different truncation of data.

For illustrating the two methods, consider the truncation △ = {2, 3, 4, 5} with
truncated sample size nt = 386. We have then a truncation proportion of Q =
100(n − nt)/n = 22, 8 % in data. For the first method, we have to search the value
of the parameter p which minimizes the distance dv, that is:

min
p

dv(f̂ , f) = min
p

∑

i,j∈△
i6=j

∣∣∣∣
f(yi; p)

f(yj; p)
−

ni

nj

∣∣∣∣ ,

Using computer algebra package, we obtain the result p̃1 = 0.299.
For the second method, the empirical distribution f̃ given the truncation ∆ =

{2, 3, 4, 5} is given by f̃(2) = 108/386, f̃(3) = 134/386, f̃(4) = 97/386, f̃(5) = 47/386

and f̃(x) = 0 if x /∈ ∆.
The auxiliary distribution h(·, p) is given by:

h(x, p) =

{ f(x, p)

f(2, p) + f(3, p) + f(4, p) + f(5, p)
if x = ui, ui ∈ {2, 3, 4, 5}

0 otherwise.
(13)
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By the method of substitution, the estimation of p is obtained by solving the equation:

∑

ui∈{2,3,4,5}

ui × h(ui, p) =
∑

ui∈{2,3,4,5}

ui × f̃(ui) (14)

Using a computer algebra package we obtain the result p̃2 = 0.3.
In the following table we present the estimations p̃1 from the first method using

minimum distance approach using the distance dv, and p̃2 from the auxiliary distribu-
tion, of the parameter p, for known n, according to the truncation △ = {u1, ..., um}
considered.

11



Table 2. The estimations p̃1 and p̃2 by the new approach of the parameter p
of the binomial probability law B(n, p) with p = 0.3 and known n = 10.

Truncated Proportion of
n◦ △ sample size nt truncation Q (%) p̃1 p̃2

1 {0, 1, 2, 3, 4, 5, 6, 7} 500 0 0.305 0.298
2 {0, 1, 2, 3, 4, 5} 472 5.6 0.295 0.293
3 {1, 2, 3, 4, 5} 457 8.6 0.288 0.292
4 {0, 1, 2, 3, 4} 425 15 0.295 0.293
5 {1, 2, 3, 4} 410 18 0.287 0.292
6 {0, 2, 3, 4, 5} 401 19.8 0.295 0.298
7 {2, 3, 4, 5} 386 22.8 0.299 0.3
8 {0, 1, 3, 4, 5} 364 27.2 0.295 0.289
9 {0, 2, 3, 4} 354 29.2 0.295 0.301
10 {1, 3, 4, 5} 349 30.2 0.287 0.287
11 {2, 3, 4} 339 32.2 0.305 0.305
12 {0, 3, 4, 5} 293 41.4 0.295 0.293
13 {2, 4, 5, 6, 7} 280 44 0.308 0.307
14 {0, 1, 2, 5, 6, 7} 269 46.2 0.298 0.299
15 {0, 1, 4, 5, 6, 7} 258 48.4 0.3013 0.295
16 {0, 4, 5, 6, 7} 187 62.6 0.3071 0.302
17 {0, 5, 6, 7} 90 82 0.3014 0.301
18 {0, 5} 62 87.6 0.2937 0.294

As previously said, the two estimations by the new approach, p̃1 and p̃2, are ac-
curate in all cases and close to each other. Furthermore, the truncation proportion
has no effect on the quality of estimations. The two estimations are also not sensitive
to small cell probabilities as for truncations including the value y8 = 7. It should
be noted that the classical estimation by maximum likelihood without truncation is
p̂ = 0.297, and considering our approach we obtained the estimations p̃1 = 0.3053 for
the first method and p̃2 = 0.2978 for the second.

Normal distribution. Consider a sample of size 400 drawn from a normal popula-
tion with mean m = 0 and standard deviation σ = 1. Consider the data falling in 11
fixed class intervals as shown in the following table, with mid-classes ui and absolute
frequencies ni

Table 3.
yi −2.581 −2.06 −1.533 −1.009 −0.485 0.039 0.563 1.086 1.610 2.134 2.658
ni 5 8 23 48 71 89 72 43 25 10 6

The number of bins can be selected from an optimal procedure developed by
Birgé and Rozenholc [2]. Let the following table where we estimate simultaneously
m and σ by the minimum distance procedure with dv. We denote the estimations
by m̃1 and σ̃1. In each line of the table the estimates are made starting from the
table of frequencies based on the observations indicated in the first column. The
truncated sample size is denoted by nt. We have then a truncation proportion of
Q = 100(n − nt)/n in data.

Table 4.
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S nt Q% m̃1 σ̃1

{y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11} 400 0 0.083 1.130
{y1, y2, y3, y4, y5, y6, y7, y8, y9} 384 4 0.003 1.092
{y2, y3, y4, y5, y6, y7, y8, y9} 379 5.25 0.054 0.977
{y3, y4, y5, y6, y7, y8, y9} 371 7.25 0.052 0.993
{y4, y5, y6, y7, y8, y9} 348 13 0.043 1.017
{y5, y6, y7, y8, y9} 300 25 0.052 1.012
{y3, y4, y5, y6} 231 42.25 0.303 1.104
{y6, y7, y8, y9} 229 42.75 −0.225 1.140
{y6, y7, y8} 204 49 −0.065 1.052
{y3, y5, y7} 166 58.5 0.052 0.993

{y2, y3, y4, y5} 150 62.5 −0.137 0.904
{y3, y4, y5} 142 64.5 −0.151 0.893

Remark 9 In practice, the bins are in fact chosen after obtaining the truncated
sample so the results should be more efficient, but this does not affect the preceding
results obtained after grouping the whole sample and truncate from the bins since the
aim is to give some feel about the accuracy of the estimations. Also we can avoid
grouping the observations by considering empirical frequencies obtained from kernel
density estimations.

4.3.1 Gamma probability density

Consider a sample of size 800 drawn from a Gamma distribution G(a, b) with density
given by

f(x | a, b) =
1

baΓ(a)
xa−1 exp

(
−

x

b

)
, x ≥ 0, (15)

and parameters a = 7 and b = 3. Consider the data falling in 16 fixed class intervals
as shown in the following table, with mid-classes ui and absolute frequencies ni :

Table 5.
ui 5.89 8.72 11.56 14.39 17.23 20.06 22.89 25.73 28.56 31.39
ni 11 40 60 108 118 104 100 74 63 53

34.23 37.06 39.89 42.73 45.56 48.39
27 21 11 5 3 2

In the following table we show the estimations b̃1 from the minimum of distance
dv and b̃2 by the second method for the parameter b, with known a = 10, according
to the truncation △ considered.
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Table 6. The estimations b̃1 and b̃2 by the new approach of the parameter b
of the Gamma probability distribution G(a, b) with b = 3 and known a = 7.

n◦ △ nt Q (%) b̃1 b̃2

1 {u1, u2, u3, u4, u5, u6, u7, u8, u9 800 0 3.018 3.054
u10, u11, u12, u13, u14, u15, u16}

2 {u2, u3, u4, u5, u6, u7, u8, u9, 787 1.625 2.980 3.065
u10, u11, u12, u13, u14, u15}

3 {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12} 779 2.625 3.012 3.068
4 {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10} 731 8.625 2.895 3.059
5 {u2, u3, u4, u5, u6, u7, u8, u9, u10} 720 10 3.063 3.075
6 {u3, u4, u5, u6, u7, u8, u9, u10} 680 15 3.157 3.119
7 {u1, u2, u3, u4, u5, u6, u7, u8, u9} 678 15.25 2.864 3.002
8 {u2, u3, u4, u5, u6, u7, u8, u9} 667 16.625 2.978 3.018
9 {u3, u4, u5, u6, u7, u8, u9} 627 21.625 3.086 3.062
10 {u1, u2, u3, u4, u5, u6, u7, u8} 615 23.125 2.859 2.960
11 {u2, u3, u4, u5, u6, u7, u8} 604 24.5 2.908 2.977
12 {u4, u5, u6, u7, u8, u9} 567 29.125 3.046 3.016
13 {u2, u3, u4, u5, u6, u7} 530 33.75 2.908 2.978
14 {u2, u3, u4, u5, u10, u11, u12, u13, u14} 443 44.625 3.018 3.080
15 {u1, u2, u3, u4, u5, u6} 441 44.875 2.775 2.894
16 {u1, u2, u3, u4, u8, u9, u10, u11, u15} 439 45.125 2.969 3.048
17 {u1, u2, u3, u4, u5, u11, u12, u13, u14, u15, u16} 406 50.75 3.018 3.031
18 {u1, u2, u3, u4, u5} 337 57.875 2.788 2.931
19 {u8, u9, u10, u11, u12, u13, u14, u15, u16} 256 67.625 2.990 3.212
20 {u10, u11, u12, u13, u14, u15, u16} 122 84.75 2.894 2.822

The estimations from the two methods are also accurate in this case of gamma
distribution for the parameter b. Here also the truncation proportion does not af-
fect the quality of estimations. When we consider the complete data, the classical
estimation is b̂ = 3.04 and the two new estimations are b̃1 = 3.018 and b̃2 = 3.054.

As it was noticed in the examples above, the two methods lead to approximately
the same estimation results. Nevertheless, if the two estimations are significantly
different, it seems related to the quality of the selected data. An important feature of
this new approach is that the quality of estimations is uninfluenced by the truncation
proportion. The following section will give further insights of the new approach.

4.4 A Basic Feature of the New Approach

The preceding results have shown the effectiveness of the new approach and worked
well in simulation experiments. Furthermore, the proposition below will give an
insight of a major feature of the new approach by considering the one parameter
exponential family. We will prove that for all truncation considered formed by more
than two points, from a sample of observations; if the ratios of the relative frequencies
of the ui are equal to the theoretical ones, then we may obtain the true value of the
parameter. We may conjecture that when considering an arbitrary law of probability
depending on r parameters, such that we have a truncation composed by r+1 points
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having exact empirical ratios of the relative frequencies then we obtain the true values
of the r parameters.

Proposition 10 Consider a probability distribution f from the one-parameter expo-
nential family with density

f(x, θ) = K(x) × exp[θT (x) − A(θ)], (16)

where θ ∈ R is the parameter, T a statistic, K(x) a function of x and A is a function
of the parameter θ. Assume that we wish to estimate the parameter θ. If we consider a
truncation having two points x and y with empirical frequencies f1 and f2 satisfying
f1/f2 = f(x, θ)/f(y, θ), then, using the approach considered here, we obtain the true
value of θ.

Proof. 1. If we consider the minimum of distance dv the result is immediate.
2. Consider now the second method to estimate m. Consider two values x and y
from the exponential family with density given by (16), with θ̃ being the estimation
by the new approach, and assume that their empirical frequencies f1 and f2 are such
that

f1

f2

=
f(x, θ̃)

f(y, θ̃)
.

We obtain

u = xf1 + yf2 =
xK(x) exp

(
θ̃T (x)

)
+ yK(y) exp

(
θ̃T (y)

)

K(x) exp
(
θ̃T (x)

)
+ K(y) exp

(
θ̃T (y)

) .

Then, we solve on θ the following equation:


x −

xK(x) exp
(
θ̃T (x)

)
+ yK(y) exp

(
θ̃T (y)

)

K(x) exp
(
θ̃T (x)

)
+ K(y) exp

(
θ̃T (y)

)


 K(x) exp (θT (x))

+



y −
xK(x) exp

(
θ̃T (x)

)
+ yK(y) exp

(
θ̃T (y)

)

K(x) exp
(
θ̃T (x)

)
+ K(y) exp

(
θ̃T (y)

)



 K(y) exp (θT (y)) = 0,

after straightforward algebra we obtain

(x − y) exp
(
θ̃T (y) + θT (x)

)
+ (y − x) exp

(
θ̃T (x) + θT (y)

)
= 0,

yielding the true value θ̃ = θ. The proof is complete.

Remark 11 Note that the frequencies f1 and f2 need not be exact, that is f1 may be
different from f(x, θ) and also f2, but we require only that their ratio is equal to the
theoretical one f(x, θ)/f(y, θ).
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Examples
Binomial distribution. Consider again the binomial distribution B(n, p) with
n = 10 and p = 0.3 and assume n is known and we wish to estimate p. Assume we
have the following truncation with only two points △ = {0, 1} . The exact ratio of
their probability distribution is given by f(0, p)/f(1, p) = 7/30, which is a rational
value that will simplify the example. Choose the absolute frequencies of the two values
considered as being n1 = 7 and n2 = 30 for the values u1 = 0 and u2 = 1 respectively,
in order for having f1/f2 = f(x, p)/f(y, p) = 7/30. Using the first approach, that of
the minimum of distance dv, we have to solve

min
p

dv(f̂ , f) = min
p

[∣∣∣∣
C0

10(1 − p)10

C1
10p(1 − p)9

−
7

30

∣∣∣∣ +

∣∣∣∣
C1

10p(1 − p)9

C0
10(1 − p)10

−
30

7

∣∣∣∣
]

,

and we get the true value p̃1 = 0.3.
Using the second method we have to solve the following equation on p

0 × C0
10(1 − p)10 + 1 × C1

10p(1 − p)9

C0
10(1 − p)10 + C1

10p(1 − p)9
=

30

37
,

and we obtain also the exact result p̃2 = 0.3.

Gamma distribution. Consider the Gamma probability distribution G(a, b) with
a = 10 and b = 5. Assume that a is known and we wish to estimate b. Consider the
truncation △ = {u3, u8} with u3 = 30.13 and u8 = 60.02. We have the following
value of the ratio f (u3, b) /f (u8, b) ≈ 0.799 (the result is an approximate result
since for probability density functions it is difficult to get an exact rational value
but we will show that the estimations are very close to the true value). Consider
the absolute frequencies n3 = 79.93 (or 80) and n8 = 100 for the values u3 = 30.13
and u8 = 60.02 respectively. We have then n3/n8 ≈ f (u3, b) /f (u8, b) . Using the
minimum of distance dv, we have to solve

min
b

dv(f̂ , f) = min
b

[∣∣(79.93/100)− ((30.13/60.02)9 × exp(−(1/b) × (30.13 − 60.02)))
∣∣

+(100/79.93)− ((60.02/30.13)9 × exp(−(1/b) × (60.02 − 30.13)))
]
,

and we get the result b̃1 ≈ 5.
From the second method, we compute u = 46.7438 and solve on b the following

equation
(30.13 − 46.7438) × 30.139 × exp(−30.13/b)

+(60.02 − 46.7438) × 60.029 × exp(−60.02/b) = 0.

The result is b̃2 ≈ 5.
Now assume that the parameters a and b are unknown and show how to jointly

estimate them using the new approach. Since now there are two unknown parameters,
we need to have three points from the support, so consider u1 = 34.7702, u2 = 57.5008
and u3 = 74.5487 with their corresponding absolute frequencies n1 = 102, n2 =
100 and n3 = 34. We have to find a and b which minimize the distance dv that is
mina,b dv(f̂ , f). The result is ã ≈ 10.0454 and b̃ ≈ 4.9739.
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5 Elements of Comparison with the Classical Ap-

proach

Our aim here is not to give a detailed comparison study which needs to be investi-
gated thoroughly, but only some elements of appreciation. A major feature which
characterizes this new approach from the others is that when we have exact ratios of
frequencies we obtain the true parameter and when their difference from the theoret-
ical ratios decrease the quality of estimation increase even if we are using only a part
from the sample of observations. This is not the case for classical approaches. In
classical approaches, quality considerations are only viewed through mean properties
of estimators or their asymptotic behaviour. By combining the two proposed meth-
ods we have in fact a point criterion. Another characteristics is that the proportion
of truncation has any effect on the quality of estimations. The first method uses a
well known method of minimum distance but with a new one which has an important
advantage of being symmetric, the property of which many traditional distances do
not have. However, the estimations are obtained in this case implicitly so it is difficult
to find explicit expressions and study their properties to compare them with classical
ones. Using the new distance we hope having fast convergent estimators since we
expect that the influence of the errors in the frequencies will be slight in the new
approach as we are using ratios of frequencies. Consider now the second method of
the new approach. We use classical procedures of estimation such as the maximum
likelihood principle using the auxiliary distribution. We may obtain the estimators
and study their properties as commonly used and then preserves the advantages of
classical methods. In classical approach, given a sample, the estimation of certain
parameters such as the mean and variance do not change according to the family of
parent distributions. The latter information is not used and this disadvantages the
approach. However, in the new approach the estimations of the mean and variance
change according to the distribution from which the data emanated.

The following two examples show the effectiveness of using the auxiliary distribu-
tion.

Example. Consider the following frequency table:

Table 7.
xi 2 3 Total
ni n1 n2 n

f̂ (xi) = fi f1 = (n1/n) f2 = (n2/n) 1

Any sample of observations that satisfies the preceding frequency table may belong
from one of the following distributions:

g1 (x) =

{
x
6

0
if x ∈ {1, 2, 3} ,

otherwise,
or g2 (x) =

{
x−1
6

0
if x ∈ {2, 3, 4} ,

otherwise.

The decision for determining which of the two distributions is more appropriate for
table 7, depends intuitively on the values n1 and n2 (or f1 and f2). However, if we use
the classical maximum likelihood, we obtain that the samples of observations were
generated from distribution h1 whatever the values of n1 and n2, that is:

(
1

6

)n1

×

(
2

6

)n2

<

(
2

6

)n1

×

(
3

6

)n2

.
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We will show by using the new approach that the decision is more relevant. Determine
first the auxiliary distributions, h1 and h2, based on the truncation △ = {2, 3}, for
g1 and g2 respectively. We obtain

h1(x) =





2/5
3/5
0

if x = 2,
if x = 3,

otherwise,
and h2(x) =





1/3
2/3
0

if x = 2,
if x = 3,

otherwise.

By using the maximum likelihood for h1 and h2, we have to decide according to the
quantities (2/5)n1 × (3/5)n2 and (1/3)n1 × (2/3)n2 . Solving the following inequality

(
2

5

)n1

×

(
3

5

)n2

≤

(
1

3

)n1

×

(
2

3

)n2

,

which is equivalent to (6/5)α (9/10)1−α ≤ 1, where α = n1/n2, we obtain 0 < α ≤
− log(9/10)/ log(4/3) = x0 ≈ 0.36624. If 0 < α < x0, the data were generated from
g2 and if x0 < α < 1, the data were generated from g1. We cannot make any decision
about the case α = x0.

Example. Consider a binomial distribution with parameters n = 4 and p is un-
known, from which we consider some samples of observations of size 15 given in table
8 by their absolute frequencies and chosen in order for having x = 8/15.

Table 8.
Values

samples 0 1 2 3 4 p̂ p̃
1 7 8 0 0 0 0.133 0.222
2 9 5 0 1 0 0.133 0.184
3 9 4 2 0 0 0.133 0.139
4 10 3 1 1 0 0.133 0.134
5 10 4 0 0 1 0.133 0.216
6 12 0 2 0 1 0.133 0.196
7 13 0 0 0 2 0.133 0.385

It is clear that the information given by the samples are not the same, nevertheless
the classical estimation method gives us the same estimation p̂ = 8/(15×4) ≈ 0.133.
If we use the second method of the new approach, we have to solve the following
equation for each sample:

0 × h(0, p) + 1 × h(1, p) + 2 × h(2, p) + 3 × h(3, p) + 4 × h(4, p) = x,

where h(x, p) is the corresponding auxiliary distribution. The estimations given by
the new method differ from sample to another as shown in the latest column of table
8, which is natural since each sample provides a different information about the parent
distribution. We can also use the minimum of distance dv and we get also the same
conclusion.
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6 Perspectives for the New Approach

6.1 Model Selection From Truncated Data

The fact that the distance dv is a metric allow to propose various applications of this
new measure. We can use it for model selection amongst different probability families.
We choose two or more possible candidate parametric families of distributions, and
for each alternative family, estimate the parameters to select a specific candidate.
Determine the distance between the specific candidate and the empirical distribution
using the new metric dv. Finally, select the family which yields the minimum distance.
In view of the new approach this can also be done in case of truncated data as opposed
to classical approaches (see for example Cox [3], [4]), Taylor and Jakeman [16]) for
model selection which can be used, from the best of our knowledge, only for complete
data.

To investigate this perspective thoroughly, samples of various sizes from known
distributions should be simulated, and the method for model selection applied, we
can score the selection as correct or not after repeating the process a large number
of times, the probability of correct selection could be estimated according to a given
sample size.

We can also use the new distance in cases where classical goodness of fit tests can-
not reject two candidate families. We can choose the one which yields the minimum
of distance dv.

In the following examples, we shall select, in the first, between binomial distribu-
tions from truncated data. In the second example, we select between a Weibull and
a Gamma distributions from right truncated data.

Selection from Binomial distributions. We simulated 10000 samples of size 100
from a Binomial distribution B(8, 0.1) and each time we retained only the observa-
tions belonging from {0, 1, 2, 3} with their frequencies. Then we tried to identify the
law simulated starting from the corresponding table of frequencies. We used the dis-
tance dv to select between the original distribution of each simulated sample and the
distribution B(10, 0.15) and we score the selection as correct if the distance between
the empirical distribution and the original one is less than with the alternative one
B(15, 0.15). The correct distribution was selected 98, 8%. Conversely, we simulated
10000 samples of size 100 from a Binomial distribution B(10, 0.15) and we select with
B(8, 0.1), the correct distribution was selected 99, 43%.

Selection between Weibull and Gamma distributions. We simulated 10000
samples of size 1000 from the weibull distribution W(1.2, 1.5) and we truncated them
on right by considering only observations above the cut-off 1.25. Each truncated
sample was summarized into 11 classes. We selected between W(1.2, 1.5) and the
Gamma distribution G (2, 0.5) . The distance dv has selected the correct distribution,
that is W(1.2, 1.5), 98.16%.

We can also find, before selecting between distribution, the best fit from the family
of gamma distributions G (a, b) of the truncated data from a given probability den-
sity say W(1.2, 1.5). We have then to solve an optimization problem of finding the

minimum of a function of two variables, mina,b dv(f̂ , f) where f̂ is the empirical dis-
tribution and f ≡ G (a, b), using well known methods such as Lavenberg-Marquardt
using a computer algebra package. Also it should be better to choose the number of
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bins for each truncated sample by an optimal procedure, for example that of Birgé
and Rozenholc [2].

6.2 Estimation of the initial trial value in EM Algorithm

The initial starting value is of great importance in convergence behaviour of algo-
rithms such as EM Algorithm. Usually, as for the latter, the initial trial value is
guessed. Surprisingly, we will show that our procedure gives an estimation of the
starting value instead of having to guess. The approach will be illustrated by the
following classical example which was the basis of the EM algorithm.

Example of Hartley (1958) revisited. Hartley [7] used an algorithmic procedure
to estimate the parameter of a Poisson distribution from data on the pollution of a
sort of seeds by the presence of noxious weed seeds quoted from Snedecor [15] and
truncated them by missing the frequencies of the values 0 and 1 as shown in the
following table 9 (Table 1 in Hartley [7])

Table 9.
Values missing 0 1

observed 2 3 4 5 6 7 9
frequencies ni 26 16 18 9 3 5 1

Hartley [7] has guessed the frequencies of the missing values 0 and 1 by taking
n0 = 4 and n1 = 14, and after 4 steps of his algorithmic procedure, which has been
the basis of the well known EM algorithm for incomplete data (Dempster, Laird and

Rubin [5]), has reached the estimation λ̂ = 3.026 (see table 1 p.177 Hartley [7]). Using

the second method, we get the estimation λ̃2 = 3.1149. And by proportional alloca-
tion procedure we can see that the frequencies we get are n0 = 4.29 and n1 = 13.38
which are close to the guessed values. Using the distance dv we obtain the estimation
λ̃1 = 3.8447, and by removing the last value which has a small frequency n7 = 1, we
obtain a better result λ̃1 = 3.4441, which are also appreciable as starting values since
in practice the true parameter is unknown.

Initial trial value for mixture Normal Populations. We shall present an ap-
plication of the previous method used for truncated data in the situation where we
have a mixture population of two normal distributions. In classical methods, we use
the merged distribution f = αf1 + (1 − α) f2 and we estimate the parameters α,
m1 and m2 using for example the EM algorithm which is based on maximizing the
complete likelihood of the merged distribution by an algorithmic procedure from a
guessed initial trial value. However, the problem of occurrence of several local max-
ima is well-known for the setting of EM algorithm. Also, Seidel, Mosler and Alker [14]
pointed out that the likelihood-ratio test in mixture models depends on the choice of
the initial trial value for the EM algorithm. If the initial trial value is close to the
true value it is clear that the algorithm will converge in few steps to the true local
maximum. We will show that using the new approach we get an accurate estimated
initial trial value.

Assume we have a merged sample from two samples of observations of sizes n1

and n2 from two normal distributions f1 = N(m1, σ1) and f2 = N(m2, σ2), with
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m1 6= m2. By assuming that σ1 and σ2 are known, our aim is to estimate the means
m1 and m2, and also the merging proportion α of each population.

We will use a method based on truncations. The main idea being to split the
range of the merged sample into three suitably chosen parts. A central part where
the observations are highly merged, a left and right truncated parts where the ob-
servations become mainly from one of the distributions considered. If for example
m1 < m2, then to estimate m1 we have to use the chosen right truncated part (left
truncation △).

The procedure is summarized as follows:
1. We compute the sample mean mg of the merged observations.
2. For determining the location of the two means m1 and m2, we compute the

empirical standard deviation Sl of the observations less than mg, and Sr for those
that are greater. Assume that Sl < Sr, in this case if σ1 < σ2 then we deduce that
m1 is situated on the left of mg. Otherwise, it will be assumed to be on its right. We
follow the same idea for the case Sl > Sr. If σ1 = σ2 we pass directly to the third
step.

3. Assume that m1 is on the left. It is well known that for a normal distribution
N (m, σ) we have P (]m − σ, m + σ[) ≃ 0.68. We hope that on the left of supl = mg−σ2

the number of observations generated from N (m2, σ2) is negligible, and on the right
of minr = mg + σ1 the number of observations generated from N(m1, σ1) is also
negligible. Hence, to estimate m1, we consider only the part of observations situated
on the left of mg − σ2, and to estimate m2 we consider the part situated on the right
of mg + σ1.

The following example will provide some feel for the accuracy of the procedure.
Example. We consider the case where σ1 = σ2. consider two samples of observations
generated from N(m1, σ1) and N(m2, σ2), where m1 = 1.3 and m2 = 2.4, with known
σ1 = σ2 = 1 and sizes n1 = 300 and n2 = 200. We combine them to obtain a
merged sample of size n = 500. We have chosen the distributions in such a way
that the histogram (Fig.1) of the merged sample does not show directly the existence
of a mixture of two distributions. When the histogram of the merged population
is bimodal the situation is more easier, since when taking a suitably left (or right)
part we get more accurate estimation from the situation that this part will have a
negligible number of observations from the second distribution.
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Fig 1. Merged histogram of two normal distributions N(1.3, 1) and N(2.4, 1).

It should be stressed that the histogram is one modal and does not show at first
glance any mixture situation. Following the steps of the procedure we begin by
calculating the mean of the resulting merged sample and we obtain mg = 1.8046.
Since the standard deviations are assumed to be equal then we compute directly
supl = mg − σ2 = 0.8046. By grouping the observations on the left of supl (which
constitute the chosen right truncated part) in 7 classes we obtain the following table:

Table 10.
ui −1.5589 −1.1294 −0.6998 −0.2703 −0.1593 0.5888
ni 1 3 6 17 24 41

Using the distance dv we obtain for all the truncation m̃
(dv)
1 = 1.244 and by

deleting u1 we get the value m̃
(dv)
1 = 1.2516.

The sample mean of the observations on the left of supl is given by ul = 0.1483.
Using the second method we have to solve on m the following formula

u1 × exp
[
−(u1−m)2

2σ2

]
+ u2 × exp

[
−(u2−m)2

2σ2

]
+ ... + uk × exp

[
−(uk−m)2

2σ2

]

exp
[
−(u1−m)2

2σ2

]
+ exp

[
−(u2−m)2

2σ2

]
+ ... + exp

[
−(uk−m)2

2σ2

] = ul. (17)

we obtain the estimation m̃1 = 1.2646. By deleting the first value u1 which has a weak
frequency n1 = 1, that is using the truncation △ = {u2, u3, u4, u5, u6} , (we compute
again ul = 0.1734) we obtain a better estimation m̃1 = 1.3011, which is very close to
the true value m1 = 1.3.

To estimate m2, we consider the part situated on the right of minr = mg + σ1 =
2.8046. Grouping the observations on the right of infd (which constitute the chosen
right part) in 7 classes we obtain the following table:

Table 11.
ui 2.979 3.316 3.653 3.990 4.326 4.663
ni 38 25 15 9 7 3
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Using the distance dv for all the truncation we get m̃
(dv)
2 = 2.397. The sample

mean of the observations on the right part is given by ud = 3.523. Using formula (17)
with ud, we obtain the result m̃2 = 2.245. Deleting the extreme values u1 and u6 we
obtain m̃2 = 2.412.

The mixture proportion α can easily be estimated using the formula α × m̃1 +
(1 − α) × m̃2 = mg.

Considering the estimations obtained, which are close to the true values of m1

and m2, it is clear that the EM algorithm will converge fastly to the unique solutions.

6.3 Test of Goodness of Fit Based on the New Distance

We can obtain empirical quantile estimations of dv using Montecarlo or Bootstrap-
ping technics, and use them in a test of goodness of fit for a specified probability
distribution. We simulate N samples of the same size from the specified probabil-
ity distribution and calculate the distances d

(1)
v , ..., d

(N)
v . We can then estimate the

asymptotic distribution of dv by

Fdv
(d) =

#d
(i)
v < d

N
. (18)

Consequently, for a sample of the same size we compute d
(obs)
v and we reject the

hypothesis that it belongs from the specified distribution if Fdv
(d

(obs)
v ) > (1 − α) for

a given level of significance α.
The values d

(1)
v , ..., d

(N)
v may be obtained from the empirical distribution function

Fn of the sample.

6.4 Quality of Data

The fact that the new measure dv is not equivalent to classical ones means that it
treats other aspects not investigated by the latter. This may open new perspec-
tives such as making decision about the accuracy of an estimation in cases where
the classical and new estimations are close to each others. In cases where the clas-
sical estimation and the new one using dv are significantly different then we can say
that the sample of observations considered does not restore coherently all necessary
information about the parent distribution from which it emanated.

7 Concluding Remarks

In the foregoing study, we have presented a new statistical point estimation method
which found be useful in truncated and grouped and censored data situations. A new
distance between probability distributions was introduced. It measures the difference
between the variations of two given probability distributions. We introduced an
auxiliary distribution based on a truncation, from a chosen family of probability
distributions. This new distribution will have the same parameters to estimate as
the parent one. We use then statistical methods to estimate the parameters of the
random variable under study using the empirical and new auxiliary distribution in
the region that captures the data, from which we determine the corresponding parent
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distribution. The later is the estimation by the new method. Using the new distance
introduced we also estimate by the minimum distance approach and use the resulting
estimation as a control on the accuracy of estimation obtained by the former method.
We have obtained a result which states that if we have to estimate the parameter of
a probability distribution from the one parameter exponential family, then it suffices
to have two points with exact ratio of frequencies, that is equal to the theoretical
one expressed by the ratio of the value of the probability distribution on these two
points, to obtain the true value of the parameter. We have conjectured that if we
have in general r parameters, then it suffices to have r + 1 points with exact ratios
of their frequencies to obtain the r true parameters exactly. The later result need
to be proved rigorously in a general setting for other distributions than the class
considered. A large comparative study between the classical and new methods should
also be investigated. We presented some perspectives of the new approach such as
model selection from truncated data using the new distance, estimation of the first
trial value in the celebrate EM algorithm in the case of truncation and for mixture of
two normal populations, a test of goodness of fit based on the new distance, decision
making about the quality of estimations and data.
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