
HAL Id: hal-00256257
https://hal.science/hal-00256257v1

Preprint submitted on 15 Feb 2008 (v1), last revised 28 Dec 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Approach of Point Estimation and its
Application to Truncated Data Situations

Ahmed Guellil, Tewfik Kernane

To cite this version:
Ahmed Guellil, Tewfik Kernane. A New Approach of Point Estimation and its Application to Trun-
cated Data Situations. 2007. �hal-00256257v1�

https://hal.science/hal-00256257v1
https://hal.archives-ouvertes.fr


ha
l-

00
25

62
57

, v
er

si
on

 1
 -

 1
5 

Fe
b 

20
08

A New Approach of Point Estimation and its

Application to Truncated Data Situations

Ahmed Guellil and Tewfik Kernane

Department of Probability and Statistics, Faculty of Mathematics

University of Sciences and Technology USTHB,

BP 32 El-Alia, Algeria

e-mail: guellilamed@yahoo.fr, tkernane@gmail.com

March 2007

Abstract

We propose a new approach for estimating the parameters of a probability dis-
tribution. It consists on combining two new methods of estimation. The first is
based on the definition of a new distance measuring the difference between varia-
tions of two distributions on a finite number of points from their support and on
using this measure for estimation purposes by the method of minimum distance.
For the second method, given an empirical discrete distribution, we build up an
auxiliary discrete theoretical distribution having the same support of the first and
depending on the same parameters of the parent distribution of the data from which
the empirical distribution emanated. We estimate then the parameters from the
empirical distribution by the usual statistical methods. In practice, we propose
to compute the two estimations and we choose the second, of known theoretical
properties, and let the first being as a control of the effectiveness of the obtained
estimation, so we have also a criterion on the quality of the information contained
in the observations. We apply the approach to truncated data situations to give the
flavour on the effectiveness of the approach. We give also some interesting perspec-
tives of the approach including model selection from truncated data, estimation of
the initial trial value in the celebrate EM algorithm in the case of truncation and
merged normal populations, a test of goodness of fit based on the new distance,
quality of estimations and data, optimum number of classes in grouping data from
continuous distributions.

Key words and phrases: EM algorithm, Minimum distance, Model selection from truncated

data, Point estimation, Truncated data.

1 Introduction

Point estimation is the most popular forms of statistical inference (see Lehmann and
Casella (1998)). We introduce in this paper a new statistical point estimation approach
which found be useful in special practical situations such as truncated data. The data
are said to be truncated when measuring devices fail to report observations below and
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above certain readings. For example, truncated data frequently arise in the statistical
analysis of astronomical observations ( see Efron and Petrosian (1999)) and in medical
data (see Klein and Zhang (1996)), and if the truncation is ignored this can cause
considerable bias in the estimation. There exist in the literature many approaches of
estimation from ”incomplete data” such as maximum likelihood based approach of the
EM algorithm (Hartley (1958), Dempster et al (1977)), or nonparametric methods such
as Kaplan-Meier (Kaplan and Meier (1958)) or Lynden-Bell estimators (Lynden-Bell
(1971)). The purpose of the present paper is to investigate another approach which
consists on combining two new methods of estimation.

In the first method, we remark that in estimation problems we deal in general with
three functions: a theoretical probability law f(·, θ) of a random variable X, depending
on a parameter θ (real or vector valued), an empirical distribution f̂ constructed from a
sample of observations drawn from the random variable X, and an estimation f̃ (from
an estimation θ̃ of θ) obtained through the empirical law f̂. The empirical distribution
f̂ is considered as a representative distribution of f, but in practice it is reduced to only
few of its characteristics such as the mean and variance. The variational aspect of f̂ is
often neglected while its importance. We can easily find, for instance, two distributions
having the same support, mean and variance while their variations differ significantly, or
conversely having the same variations but their supports and characteristic parameters
are different. But two probability distributions with same support and same variations
in each subset of the support are necessarily the same. We introduce then a new distance
which measures the difference between variations of two distributions on a finite number
of points and to use it for estimation purposes by the method of minimum distance.
Since the new measure is not equivalent to classical ones it will give new insights that
could not be investigated by classical distances.

In the second method, we remark that the empirical distribution arising from a sam-
ple of observations can be viewed in fact as a conditional distribution as it is built from
the knowledge of the data. It will be then an estimation of the theoretical conditional
distribution with respect to the observations before being an estimation for the parent
distribution. This theoretical conditional distribution is represented by the auxiliary
distribution introduced in this paper. To determine this distribution in discrete case,
we have simply to take the conditional distribution with respect to the observed values
and we proceed analogously for the continuous case. It should be noted that in dis-
crete case it is known as the truncated distribution which is the conditional distribution
given a truncation (see for example Shaw (1988)) but it is presented here in a general
framework. We have to deal with two discrete probability distributions having the same
finite support, a theoretical distribution and its empirical representation with respect
to the observations. The parameters of the former are those of the parent distribution
and the aim is to estimate them from the first instead of the parent one as commonly
used. We use classical tools such as the method of moments or maximum likelihood
principle. The setting that seems to us most suitable for illustrating our approach is the
one of truncated data. In usual practical problems, truncation can be on left or right or
in either situations, and the ”cut off” can be deterministic or random. In our approach,
the truncation may be on any part of the range of the distribution so that the setting is
more general. Also, classical approaches for truncated data are in general custom-made
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depending on specific problems and distributions, or subjective based methods. Instead,
our approach is quite general and might be used in any situation where the underlying
complete data come from a known family of distributions. We confine ourselves as a
first presentation to deterministic truncations.

In the subsequent section, we propose a variational distance between probability
distributions. In Section 3, we define a truncation of data and associated empirical
and theoretical distributions and we use two different methods for estimation from
truncation, a first method using minimum of the new distance introduced in this paper
and a second method based on traditional tools of estimations such as the method of
maximum likelihood. In Section 4, we present the new approach and we illustrate the
procedure by three examples: a binomial probability law, a normal distribution and a
Gamma density function. We present also a basic feature of the new approach which
prove the accuracy of the method and some illustrative examples. In Section 5, we give
some elements of comparison with the classical approach of estimation. In Section 6, we
list some perspectives of the new approach: model selection from truncated data using
the new distance, estimation of the first trial value in the celebrate EM algorithm for
incomplete data in the case of truncation and merged normal distributions, a goodness
of fit test based on the new distance, decision making about the quality of estimations
and data, optimum number of classes in grouping data from continuous distributions.
Finally, concluding remarks are made some pointing to other possible extensions and
applications.

2 A New Distance Between Probability Distributions

As is usual, given a sample of n independent and identically distributed observations,
(x1, ..., xn) , drawn from an unknown discrete random variable X falling in a discrete
family of probability laws P = {f(·, θ), θ ∈ R

r} depending on a parameter θ (real or
vector valued), i.e., f(x, θ) = P(X = x), one can summarize the sample into k couples(
y1, f̂1

)
, ...,

(
yk, f̂k

)
, k ≤ n, where the yi are the different values taken by the sample

and f̂ is the empirical law f̂j = nj/n, where nj represents the absolute frequency of the
value yj, j = 1, ..., k.

Usually, it is hoped that f̂j ≈ f(yj, θ), in a certain probabilistic sense. But if the
empirical distribution arises from truncated data, we do not hope in general having
f̂(x) ≈ f(x, θ), for the values x in the support of f̂ , since the complete sample size n is
usually not reported. However, we expect reasonably to have approximately

f̂(x)

f̂(y)
≈

f(x, θ)

f(y, θ)
, (1)

for any points in its support, only if the sample has serious irregularities.
Introduce the following distance of proportional variations between f(·, θ) and f̂

dv(f̂ , f(·, θ)) =
∑

i,j∈{1,...,k}

∣∣∣∣∣
f̂i

f̂j

−
f(yi, θ)

f(yj, θ)

∣∣∣∣∣ . (2)
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It turns out that this new distance, as we will show, measures the variations between
probability distributions.

In continuous case also, any sample x1, ..., xn is summarized into k couples (y1, f̂1), ...
, (yk, f̂k), k ≤ n. This can be done uniquely, by grouping for example the sample in
classes where the yi are the mid-classes (or class means) and f̂i = f̂(yi) where f̂ is a
kernel density estimator. The proportional variational distance dv in this case, between
the density f(x, θ) of X and its empirical law f̂ , is thus defined as (2). One of its main
powerful feature is that when using traditional distances we have to use the sample size
n through the expression of f̂i = ni/(nhn), where hn is the size of class intervals ; but
sometimes, as for truncated data situations where measuring devices fail to report even
the number of sample points in certain ranges, then the real size n is not known, but a
truncated sample size nt is instead used. Using the ratios f̂i/f̂j will clear up the effect
of the truncated sample size which can lead to considerable bias in the estimation.

Note that dv possesses the properties of symmetry and triangle inequality. But in
the identity property dv(f, g)(x, y) = 0 ⇐⇒ f ≡ g, the equality between f and g must
be understood in the sense that f and g have the same variations on the points x and
y. It should be stressed that this new measure is not equivalent to classical ones and
should then give new insights and information about other characteristics and features
of probability distributions.

From now on f shall represent a theoretical probability law in both discrete or
continuous cases and f̂ shall represent the corresponding empirical law in both cases.
Denote by Ω = {x ∈ R, f(x, θ) > 0} the set of atoms of f or support. Let F be the
σ−algebra generated by sets A = B∩ω where the ω are the Borel sets of R and B ⊂ Ω.
For all A ∈ F , we have P (A) =

∫
A

f(x, θ)µ(dx),where µ is the Lebesgue measure on R.
In discrete case, we have P (A) =

∑
x∈A f(x, θ).

For all i ≥ 1, we set Ωi = Ω, Fi = F and Pi = P. Let Ωn = Ω1 × ... × Ωn,
F (n) = F1 ⊗ ... ⊗ Fn and P

(n) = P1 ⊗ ... ⊗ Pn. The probability space
(
Ωn,F (n), P(n)

)

represents the space of samples of size n from the random variable X. We omit the
subscript n in

(
Ωn,F (n), P(n)

)
for notational convenience and shall denote the sample

space as (Ω,F , P) .
Let be given a classical distance d between two functions f and g which associates

for points x and y from the intersection of their domain of definitions, the quantity
d (f, g) (x, y) = |f(x) − g(x)| + |f(y) − g(y)| .

Proposition 1 We have the following properties for the distance dv :
1. d(f, g)(x, y) = 0 =⇒ dv(f, g)(x, y) = 0, the converse is not always true.
2. Let f̂ be a kernel density estimation. Then limn→∞ dv(f̂ , f) = 0 in probability.
3. Let f and g be two functions defined on R and E ⊂ R satisfying:

∀ (x, y) ∈ E × E, dv(f, g)(x, y) = 0.

If ∫

R

f dµ =

∫

R

g dµ = 1,

where µ is the Lebesgue measure on R, then

µ
(
E

)
= 0 =⇒ f = g µ − almost surely on R.
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Proof. 1. Follows directly from the definitions of d and dv.
2. Follows from the fact limn→∞ d(f̂ , f) = 0 in probability (see Parzen (1962)), then
limn→∞ dv(f̂ , f) = 0 in the same probabilistic notion of convergence.
3. Fix y0 ∈ E, we have f(x)/f(y0) = g(x)/g(y0) for all x ∈ E. This implies that

∫

E

f(x)dx = 1 ⇐⇒

∫

E

f(y0)
g(x)

g(y0)
dx =

f(y0)

g(y0)

∫

E

g(x)dx = 1.

We deduce that f(y0) = g(y0), and the result follows.

3 Truncated Data

The truncated data specification, or generally incomplete data, implies the existence
of two sample spaces Xo and Xt, such that the complete sample space is given by
Ω = Xo ∪ Xt. The observed data xo = (x1, ..., xnt) , where nt is the truncated sample
size, are a realization from Xo and the unobserved data z =

(
x∗

1, ..., x
∗
n−nt

)
, where n is

the complete unknown sample size, are from Xt. The complete data x = xo∪z is known
only through the observed data xo (see Dempster, Laird and Rubin (1977) for further
explanations about incomplete data specification).

Consider a sample of observations x1, ..., xn drawn from a theoretical probability
law f(·, θ), depending on a parameter θ ∈ R

r. As usual, the data are summarized, in
discrete or continuous cases (as shown in Section 2), into k couples (y1, f̂1), ..., (yk, f̂k),
k ≤ n, and let △ = {u1, ..., um} a part from the set {y1, ..., yk} , m ≤ k, which we will
call truncation. The observed data is summarized by a truncation △o = {u1, ..., um}
and an empirical estimation f̂o and assume that the unobserved data is also summarized
by a set △t = {u∗

1, ..., u
∗
p} and f̂t.

The structure of the new distance dv allows the following decomposition property:

dv(f̂ , f(·, θ)) = dv(f̂o, f(·, θ)) + dv(f̂t, f(·, θ))+ (3)

∑

ui∈△o

u∗j∈△t

∣∣∣∣∣∣
f̂o (ui)

f̂t

(
u∗

j

) −
f(ui, θ)

f(u∗
j , θ)

∣∣∣∣∣∣
+

∑

ui∈△o

u∗j∈△t

∣∣∣∣∣∣

f̂t

(
u∗

j

)

f̂o (ui)
−

f(u∗
j , θ)

f(ui, θ)

∣∣∣∣∣∣
.

The following proposition is typical for the new distance and is useful for using the
minimum of distance dv.

Proposition 2 Let be given a truncated data △o with corresponding empirical estima-
tion f̂o. Then limnt→∞ dv(f̂o, f) = 0 in probability.

Proof. We have from Proposition 1 that limn→∞ dv(f̂ , f) = 0 in probability. Then,
from the decomposition property (3) we obtain limn→∞ dv(f̂o, f) = limnt→∞ dv(f̂o, f) =
0 in probability.
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3.1 An Auxiliary Distribution

Define the empirical distribution f̃ corresponding to a given truncation △ by:

f̃(x) =

{
f̃i if x = ui, i = 1, ...,m,
0 otherwise,

where the f̃i satisfy the following set of proportional allocation equations f̃i/f̃j = f̂i/f̂j ,

for i, j = 1, ...,m and f̃1 + ... + f̃m = 1.
Define the following auxiliary distribution from f(·, θ), which is akin to the propor-

tional allocation procedure for missing values (see Hartley (1958)).

h (x, θ) =





f(x, θ)

f(u1, θ) + f(u2, θ) + ... + f(um, θ)
if x = ui, i = 1, ...,m,

0 otherwise
(4)

Remark 3 If the truncation is random, that is, there exists a random variable T such
that we observe, for example, the random variable X only if X > T or X < T, then
the probability law used in (4) is replaced by the conditional law of X with respect to
{X > T} or {X < T} respectively.

The auxiliary distribution h was found be useful for estimation problems in truncated
data. Indeed, it is well known in classical estimation from truncated data (see Hartley
(1958)) that missing values could be recovered by ”proportional allocation” procedures,
then the auxiliary distribution h, which is already based on proportional allocation,
will be an intuitive and natural tool for estimation purposes from truncated data. The
function h is a theoretical probability distribution depending on the same parameters
of those of f . It has also the same support as that of f̃ .

Definition 4 We call f̃ and h(·, θ) the empirical and theoretical distributions of a given
truncation △ = {u1, ..., um} from a sample of observations (x1, ..., xn) .

4 The Approach of Estimation

We will use mainly two methods of estimation. The first method is a minimum distance
estimation using the metric dv between the empirical and theoretical distributions f̂
and f(·, θ). The second is similar to traditional ones such as the method of substitution
or maximum likelihood principle, by considering f̃ as an empirical estimation of h(·, θ).
The first is based on variational difference between distributions and the second in the
sense of an euclidean difference and hence they treat different aspects of the sample of
observations. If for a given data they give different estimations, we cannot suspect the
approaches but we can say that the data do not restore in a coherent way all aspects
of the probability distribution from which it emanated. If on the other hand they give
significantly the same estimations we can assert that the estimation is credible since
through different aspects it has given the same distribution. That is the distribution
which fits the best the empirical distribution. Practically, we propose to calculate the
estimations by the two methods and take the second one since based on maximum
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likelihood principle of good known theoretical properties. We use then the first as a
tool of decision on whether the estimation is credible or not. The estimation will then
be considered as credible in cases where the two methods give approximately the same
estimation.

In order to test the performance of the proposed approach, we use synthetic data sets
which were generated by simulation from three examples of probability law: binomial
law, normal density and a Gamma distribution. The examples were selected from
various simulation studies from different family of probability distributions and the two
methods have shown their effectiveness and never deviate significantly from the true
parameter. The reason for using synthetic data sets is that the true parameters for the
synthetic datasets are known and the accuracy of results obtained by using the two new
methods can be compared.

4.1 Examples

Binomial distribution. We generated a synthetic data set of size 500 from a binomial
law B(n, p) with n = 10 and p = 0.3. The data are summarized in the following table.

Table 1.
yi 0 1 2 3 4 5 6 7

ni 15 71 108 134 97 47 23 5

Our aim is to estimate the parameter p, with the knowledge of n = 10, from different
truncation of data.

For illustrating the two methods, consider the truncation △ = {2, 3, 4, 5} with trun-
cated sample size nt = 386. We have then a truncation proportion of Q = (n−nt)/n =
22, 8 % in data. For the first method, we have to search the value of the parameter p
which minimizes the distance dv, that is:

min
p

dv(f̂ , f) = min
p

[∣∣∣∣
C2

10p
2(1 − p)8

C3
10p

3(1 − p)7
−

108

134

∣∣∣∣ +

∣∣∣∣
C3

10p
3(1 − p)7

C2
10p

2(1 − p)8
−

134

108

∣∣∣∣+
∣∣∣∣
C2

10p
2(1 − p)8

C4
10p

4(1 − p)6
−

108

97

∣∣∣∣ +

∣∣∣∣
C4

10p
4(1 − p)6

C2
10p

2(1 − p)8
−

97

108

∣∣∣∣ +

∣∣∣∣
C2

10p
2(1 − p)8

C5
10p

5(1 − p)5
−

108

47

∣∣∣∣ +

∣∣∣∣
C5

10p
5(1 − p)5

C2
10p

2(1 − p)8
−

47

108

∣∣∣∣ +

∣∣∣∣
C3

10p
3(1 − p)7

C4
10p

4(1 − p)6
−

134

97

∣∣∣∣ +

∣∣∣∣
C4

10p
4(1 − p)6

C3
10p

3(1 − p)7
−

97

134

∣∣∣∣ +

∣∣∣∣
C3

10p
3(1 − p)7

C5
10p

5(1 − p)5
−

134

47

∣∣∣∣ +

∣∣∣∣
C5

10p
5(1 − p)5

C3
10p

3(1 − p)7
−

47

134

∣∣∣∣ +

∣∣∣∣
C4

10p
4(1 − p)6

C5
10p

5(1 − p)5
−

97

47

∣∣∣∣+
∣∣∣∣
C5

10p
5(1 − p)5

C4
10p

4(1 − p)6
−

47

97

∣∣∣∣
]

.

Using computer algebra package, we obtain the result p̃1 = 0.2991.
For the second method, the empirical distribution f̃ given the truncation ∆ =

{2, 3, 4, 5} is given by f̃(2) = 108/386, f̃(3) = 134/386, f̃(4) = 97/386, f̃(5) = 47/386
and f̃(x) = 0 if x /∈ ∆.
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Let f(x, p) = Cx
npx(1 − p)n−x the binomial probability law. The auxiliary distribu-

tion h(·, p) is given by:

h(x, p) =

{ f(x, p)

f(2, p) + f(3, p) + f(4, p) + f(5, p)
if x = ui, ui ∈ {2, 3, 4, 5}

0 otherwise.
(5)

By the method of substitution, the estimation of p is obtained by solving the equation:

∑

ui∈{2,3,4,5}

ui × h(ui, p) =
∑

ui∈{2,3,4,5}

ui × f̃(ui) (6)

that is

2 × C2
10p

2(1 − p)8 + 3 × C3
10p

3(1 − p)7 + 4 × C4
10p

4(1 − p)6 + 5 × C5
10p

5(1 − p)5

C2
10p

2(1 − p)8 + C3
10p

3(1 − p)7 + C4
10p

4(1 − p)6 + C5
10p

5(1 − p)5
=

1241

386
.

(7)
Using a computer algebra package we obtain the result p̃2 = 0.3001.

In the following table we present the estimations p̃1 from the first method using
minimum distance approach using the distance dv , and p̃2 from the auxiliary distribu-
tion, of the parameter p, for known n, according to the truncation △ = {u1, ..., um}
considered.

Table 2. The estimations p̃1 and p̃2 by the new approach of the parameter p
of the binomial probability law B(n, p) with p = 0.3 and known n = 10.

Truncated Proportion of
n◦ △ sample size nt truncation Q (%) p̃1 p̃2

1 {0, 1, 2, 3, 4, 5, 6, 7} 500 0 0.3053 0.2978

2 {0, 1, 2, 3, 4, 5} 472 5.6 0.2952 0.2926

3 {1, 2, 3, 4, 5} 457 8.6 0.2877 0.2922

4 {0, 1, 2, 3, 4} 425 15 0.2952 0.2928

5 {1, 2, 3, 4} 410 18 0.2868 0.2922

6 {0, 2, 3, 4, 5} 401 19.8 0.2952 0.2983

7 {2, 3, 4, 5} 386 22.8 0.2991 0.3001

8 {0, 1, 3, 4, 5} 364 27.2 0.2952 0.2892

9 {0, 2, 3, 4} 354 29.2 0.2952 0.3009

10 {1, 3, 4, 5} 349 30.2 0.2870 0.2872

11 {2, 3, 4} 339 32.2 0.3049 0.3052

12 {0, 3, 4, 5} 293 41.4 0.2952 0.2932

13 {2, 4, 5, 6, 7} 280 44 0.3077 0.3071

14 {0, 1, 2, 5, 6, 7} 269 46.2 0.2981 0.2985

15 {0, 1, 4, 5, 6, 7} 258 48.4 0.3013 0.2945

16 {0, 4, 5, 6, 7} 187 62.6 0.3071 0.3018

17 {0, 5, 6, 7} 90 82 0.3014 0.3011

18 {0, 5} 62 87.6 0.2937 0.2937
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As previously said, the two estimations by the new approach, p̃1 and p̃2, are accurate
in all cases and close to each other. Furthermore, the truncation proportion has no effect
on the quality of estimations. The two estimations are also not sensitive to small cell
probabilities as for truncations including the value y8 = 7. It should be noted that
the classical estimation by maximum likelihood without truncation is p̂ = 0.297, and
considering our approach we obtained the estimations p̃1 = 0.3053 for the first method
and p̃2 = 0.2978 for the second.

Normal distribution. Consider a sample of size 400 drawn from a normal population
with mean m = 0 and standard deviation σ = 1. Consider the data falling in 11
fixed class intervals as shown in the following table, with mid-classes ui and absolute
frequencies ni

Table 3.
ui −2.5808 −2.057 −1.5331 −1.0092 −0.4853 0.0386 0.5625 1.0863

ni 5 8 23 48 71 89 72 43

1.6102 2.1341 2.658

25 10 6

In the following table we show the estimations of m according to the truncation
△ considered, where m̃1 represents the estimation by the minimum of the variational
distance dv and m̃2 that of the second method.

Table 4. The estimations m̃1 and m̃2 by the new approach of the parameter m
of the standard normal distribution with known standard deviation σ = 1.

n◦ △ nt Q (%) m̃1 m̃2

1 {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11} 400 0 0.0651 0.0521

2 {u3, u4, u5, u6, u7, u8, u9} 371 7.25 0.0592 0.0325

3 {u4, u5, u6, u7, u8, u9} 348 13 0.0515 0.0216

4 {u5, u6, u7, u8, u9} 300 25 0.0520 0.0119

5 {u5, u6, u7} 232 42 0.052 0.0518

6 {u3, u4, u5, u6} 231 42.25 0.1137 0.1092

7 {u6, u7, u8, u9} 229 42.75 0.0165 −0.0402

8 {u6, u7, u8} 204 49 −0.1319 −0.1284

9 {u3, u5, u7} 166 58.5 0.0593 0.0574

10 {u6, u7} 161 59.75 −0.1040 −0.1039

11 {u2, u3, u4, u5} 150 62.5 0.1179 0.0845

12 {u3, u4, u5} 142 64.5 0.0665 0.0529

13 {u7, u8, u9} 140 65 0.0767 0.0323

14 {u4, u5} 119 70.25 6 × 10−6 0.0003

15 {u2, u3, u4} 79 80.25 0.1769 0.1631

16 {u8, u9, u10} 78 80.5 0.2181 0.2436

For the normal distribution the two estimations m̃1 and m̃2 by the new approach are
somewhat close to each other for all the truncations considered, they are also close to
the true value m = 0. When we do not consider truncation in data the empirical mean
is given by x = 0.0517, and the two new estimations are m̃1 = 0.0651 and m̃2 = 0.0521.
Here also, the truncation proportion has no effect on the quality of estimations.
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4.1.1 Gamma probability density

Consider a sample of size 800 drawn from a Gamma distribution G(a, b) with density
given by

f(x | a, b) =
1

baΓ(a)
xa−1 exp

(
−

x

b

)
, x ≥ 0, (8)

and parameters a = 7 and b = 3. Consider the data falling in 16 fixed class intervals as
shown in the following table, with mid-classes ui and absolute frequencies ni :

Table 5.
ui 5.89 8.72 11.56 14.39 17.23 20.06 22.89 25.73 28.56 31.39

ni 11 40 60 108 118 104 100 74 63 53

34.23 37.06 39.89 42.73 45.56 48.39

27 21 11 5 3 2

In the following table we show the estimations b̃1 from the minimum of distance dv

and b̃2 by the second method for the parameter b, with known a = 10, according to the
truncation △ considered.

Table 6. The estimations b̃1 and b̃2 by the new approach of the parameter b
of the Gamma probability distribution G(a, b) with b = 3 and known a = 7.

n◦ △ nt Q (%) b̃1 b̃2

1 {u1, u2, u3, u4, u5, u6, u7, u8, u9 800 0 3.0183 3.0541
u10, u11, u12, u13, u14, u15, u16}

2 {u2, u3, u4, u5, u6, u7, u8, u9, 787 1.625 2.9802 3.0652
u10, u11, u12, u13, u14, u15}

3 {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12} 779 2.625 3.0121 3.0676

4 {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10} 731 8.625 2.8948 3.0586

5 {u2, u3, u4, u5, u6, u7, u8, u9, u10} 720 10 3.0628 3.0751

6 {u3, u4, u5, u6, u7, u8, u9, u10} 680 15 3.1574 3.1192

7 {u1, u2, u3, u4, u5, u6, u7, u8, u9} 678 15.25 2.8636 3.0016

8 {u2, u3, u4, u5, u6, u7, u8, u9} 667 16.625 2.9778 3.0181

9 {u3, u4, u5, u6, u7, u8, u9} 627 21.625 3.0860 3.0615

10 {u1, u2, u3, u4, u5, u6, u7, u8} 615 23.125 2.8587 2.9595

11 {u2, u3, u4, u5, u6, u7, u8} 604 24.5 2.9082 2.9773

12 {u4, u5, u6, u7, u8, u9} 567 29.125 3.0462 3.0156

13 {u2, u3, u4, u5, u6, u7} 530 33.75 2.9082 2.9776

14 {u2, u3, u4, u5, u10, u11, u12, u13, u14} 443 44.625 3.0175 3.0795

15 {u1, u2, u3, u4, u5, u6} 441 44.875 2.7753 2.89414

16 {u1, u2, u3, u4, u8, u9, u10, u11, u15} 439 45.125 2.9691 3.0480

17 {u1, u2, u3, u4, u5, u11, u12, u13, u14, u15, u16} 406 50.75 3.0183 3.0312

18 {u1, u2, u3, u4, u5} 337 57.875 2.7882 2.9306

19 {u8, u9, u10, u11, u12, u13, u14, u15, u16} 256 67.625 2.9896 3.2119

20 {u10, u11, u12, u13, u14, u15, u16} 122 84.75 2.8944 2.8219

The estimations from the two methods are also accurate in this case of gamma
distribution for the parameter b. Here also the truncation proportion does not affect the
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quality of estimations. When we consider the complete data, the classical estimation is
b̂ = 3.04 and the two new estimations are b̃1 = 3.0183 and b̃2 = 3.0541.

As it was noticed in the examples above, the two methods lead to approximately
the same estimation results. Nevertheless, if the two estimations are significantly dif-
ferent, it seems related to the quality of the selected data. An important feature of this
new approach is that of the uninfluence of the truncation proportion on the quality of
estimations. The following section will give further insights of the new approach.

4.2 A Basic Feature of the New Approach

The preceding results have shown the effectiveness of the new approach and worked
well in simulation experiments. Furthermore, the proposition below will give an insight
of a major feature of the new approach by considering the one parameter exponential
family. We will prove that for all truncation considered formed by more than two
points, from a sample of observations; if the ratios of the relative frequencies of the ui

are equal to the theoretical ones, then we may obtain the true value of the parameter.
We may conjecture that when considering an arbitrary law of probability depending
on r parameters, such that we have a truncation composed by r + 1 points having
exact empirical ratios of the relative frequencies then we obtain the true values of the r
parameters.

Proposition 5 Consider a probability distribution f from the one-parameter exponen-
tial family with density

f(x, θ) = K(x) × exp[θT (x) − A(θ)], (9)

where θ ∈ R is the parameter, T a statistic, K(x) a function of x and A is a function
of the parameter θ. Assume that we wish to estimate the parameter θ. If we consider a
truncation having two points x and y with empirical frequencies f1 and f2 satisfying
f1/f2 = f(x, θ)/f(y, θ), then, using the approach considered here, we obtain the true
value of θ.

Proof. 1. If we consider the minimum of distance dv the result is immediate.
2. Consider now the second method to estimate m. Consider two values x and y from
the exponential family with density given by (9), with θ̃ being the estimation by the
new approach, and assume that their empirical frequencies f1 and f2 are such that

f1

f2
=

f(x, θ̃)

f(y, θ̃)
.

We obtain

u = xf1 + yf2 =
xK(x) exp

(
θ̃T (x)

)
+ yK(y) exp

(
θ̃T (y)

)

K(x) exp
(
θ̃T (x)

)
+ K(y) exp

(
θ̃T (y)

) .

Then, we solve on θ the following equation:

x −

xK(x) exp
(
θ̃T (x)

)
+ yK(y) exp

(
θ̃T (y)

)

K(x) exp
(
θ̃T (x)

)
+ K(y) exp

(
θ̃T (y)

)


 K(x) exp (θT (x))
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+


y −

xK(x) exp
(
θ̃T (x)

)
+ yK(y) exp

(
θ̃T (y)

)

K(x) exp
(
θ̃T (x)

)
+ K(y) exp

(
θ̃T (y)

)


 K(y) exp (θT (y)) = 0,

after straightforward algebra we obtain

(x − y) exp
(
θ̃T (y) + θT (x)

)
+ (y − x) exp

(
θ̃T (x) + θT (y)

)
= 0,

yielding the true value θ̃ = θ. The proof is complete.

Remark 6 Note that the frequencies f1 and f2 need not be exact, that is f1 may be
different from f(x, θ) and also f2, but we require only that their ratio is equal to the
theoretical one f(x, θ)/f(y, θ).

Examples
Binomial distribution. Consider again the binomial distribution B(n, p) with n = 10
and p = 0.3 and assume n is known and we wish to estimate p. Assume we have
the following truncation with only two points △ = {0, 1} . The exact ratio of their
probability distribution is given by f(0, p)/f(1, p) = 7/30, which is a rational value that
will simplify the example. Choose the absolute frequencies of the two values considered
as being n1 = 7 and n2 = 30 for the values u1 = 0 and u2 = 1 respectively, in order for
having f1/f2 = f(x, p)/f(y, p) = 7/30. Using the first approach, that of the minimum
of distance dv , we have to solve

min
p

dv(f̂ , f) = min
p

[∣∣∣∣
C0

10(1 − p)10

C1
10p(1 − p)9

−
7

30

∣∣∣∣ +

∣∣∣∣
C1

10p(1 − p)9

C0
10(1 − p)10

−
30

7

∣∣∣∣
]

,

and we get the true value p̃1 = 0.3.
Using the second method we have to solve the following equation on p

0 × C0
10(1 − p)10 + 1 × C1

10p(1 − p)9

C0
10(1 − p)10 + C1

10p(1 − p)9
=

30

37
,

and we obtain also the exact result p̃2 = 0.3.

Gamma distribution. Consider the Gamma probability distribution G(a, b) with
a = 10 and b = 5. Assume that a is known and we wish to estimate b. Consider the
truncation △ = {u3, u8} with u3 = 30.13 and u8 = 60.02. We have the following value
of the ratio f (u3, b) /f (u8, b) ≈ 0.7993 (the result is an approximate result since for
probability density functions it is difficult to get an exact rational value but we will
show that the estimations are very close to the true value). Consider the absolute
frequencies n3 = 79.93 (or 80) and n8 = 100 for the values u3 = 30.13 and u8 = 60.02
respectively. We have then n3/n8 ≈ f (u3, b) /f (u8, b) . Using the minimum of distance
dv, we have to solve

min
b

dv(f̂ , f) = min
b

[∣∣(79.93/100) − ((30.13/60.02)9 × exp(−(1/b) × (30.13 − 60.02)))
∣∣

+(100/79.93) − ((60.02/30.13)9 × exp(−(1/b) × (60.02 − 30.13)))
]
,
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and we get the result b̃1 ≈ 5.
From the second method, we compute u = 46.7438 and solve on b the following

equation
(30.13 − 46.7438) × 30.139 × exp(−30.13/b)

+(60.02 − 46.7438) × 60.029 × exp(−60.02/b) = 0.

The result is b̃2 ≈ 5.

5 Elements of Comparison with the Classical Approach

Our aim here is not to give a detailed comparison study which needs to be investigated
thoroughly, but only some elements of appreciation. A major feature which characterizes
this new approach from the others is that when we have exact ratios of frequencies we
obtain the true parameter and when their difference from the theoretical ratios decrease
the quality of estimation increase even if we are using only a part from the sample of
observations. This is not the case for classical approaches. In classical approaches,
quality considerations are only viewed through mean properties of estimators or their
asymptotic behaviour. By combining the two proposed methods we have in fact a point
criterion. Another characteristics is that the new approach works even the sample
may be selected randomly or not and the proportion of truncation has any effect on
the quality of estimations. The first method uses a well known method of minimum
distance but with a new one which has an important advantage of being symmetric, the
property of which many traditional distances do not have. However, the estimations are
obtained in this case implicitly so it is difficult to find explicit expressions and study
their properties to compare them with classical ones. Furthermore, the new distance
may open new perspectives in handling small sample cases. Using the new distance
we hope having fast convergent estimators since we expect that the influence of the
errors in the frequencies will be slight in the new approach as we are using ratios of
frequencies. But it still an open problem which needs a rigorous proof. Consider now
the second method of the new approach. We use classical procedures of estimation such
as the maximum likelihood principle using the auxiliary distribution. We may obtain
the estimators and study their properties as commonly used and then preserves the
advantages of classical methods. In classical approach, given a sample, the estimation
of certain parameters such as the mean and variance do not change according to the
family of parent distributions. The latter information is not used and this disadvantages
the approach. However, in the new approach the estimations of the mean and variance
change according to the distribution from which the data emanated.

The following two examples show the effectiveness of using the auxiliary distribution.

Example. Consider the following frequency table:

Table 7.
xi 2 3 Total

ni n1 n2 n

f̂ (xi) = fi f1 = (n1/n) f2 = (n2/n) 1
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Any sample of observations that satisfies the preceding frequency table may belong
from one of the following distributions:

g1 (x) =

{
x
6
0

if x ∈ {1, 2, 3} ,
otherwise,

or g2 (x) =

{
x−1

6
0

if x ∈ {2, 3, 4} ,
otherwise.

The decision for determining which of the two distributions is more appropriate for
table 7, depends intuitively on the values n1 and n2 (or f1 and f2). However, if we
use the classical maximum likelihood, we obtain that the samples of observations were
generated from distribution h1 whatever the values of n1 and n2, that is:

(
1

6

)n1

×

(
2

6

)n2

<

(
2

6

)n1

×

(
3

6

)n2

.

We will show by using the new approach that the decision is more relevant. Determine
first the auxiliary distributions, h1 and h2, based on the truncation △ = {2, 3}, for g1

and g2 respectively. We obtain

h1(x) =





2/5
3/5
0

if x = 2,
if x = 3,

otherwise,
and h2(x) =





1/3
2/3
0

if x = 2,
if x = 3,

otherwise.

By using the maximum likelihood for h1 and h2, we have to decide according to the
quantities (2/5)n1 × (3/5)n2 and (1/3)n1 × (2/3)n2 . Solving the following inequality

(
2

5

)n1

×

(
3

5

)n2

≤

(
1

3

)n1

×

(
2

3

)n2

,

which is equivalent to (6/5)α (9/10)1−α ≤ 1, where α = n1/n2, we obtain 0 < α ≤
− log(9/10)/ log(4/3) = x0 ≈ 0.36624. If 0 < α < x0, the data were generated from
g2 and if x0 < α < 1, the data were generated from g1. We cannot make any decision
about the case α = x0.

Example. Consider a binomial distribution with parameters n = 4 and p is unknown,
from which we consider some samples of observations of size 15 given in table 8 by their
absolute frequencies and chosen in order for having x = 8/15.

Table 8.
Values

samples 0 1 2 3 4 p̂ p̃
1 7 8 0 0 0 0.1333 0.2222
2 9 5 0 1 0 0.1333 0.1838
3 9 4 2 0 0 0.1333 0.1394
4 10 3 1 1 0 0.1333 0.1336
5 10 4 0 0 1 0.1333 0.2157
6 12 0 2 0 1 0.1333 0.1957
7 13 0 0 0 2 0.1333 0.3851
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It is clear that the information given by the samples are not the same, nevertheless
the classical estimation method gives us the same estimation p̂ = 8/(15×4) ≈ 0.1333. If
we use the second method of the new approach, we have to solve the following equation
for each sample:

0 × h(0, p) + 1 × h(1, p) + 2 × h(2, p) + 3 × h(3, p) + 4 × h(4, p) = x,

where h(x, p) is the corresponding auxiliary distribution. The estimations given by the
new method differ from sample to another as shown in the latest column of table 8,
which is natural since each sample provides a different information about the parent
distribution. We can also use the minimum of distance dv and we get also the same
conclusion.

6 Perspectives for the New Approach

6.1 Model Selection From Truncated Data

The fact that the distance dv is a metric allow to propose various applications of this new
measure. We can use it for model selection amongst different probability families. We
choose two or more possible candidate parametric families of distributions, and for each
alternative family, estimate the parameters to select a specific candidate. Determine
the distance between the specific candidate and the empirical distribution using the new
metric dv. Finally, select the family which yields the minimum distance. In view of the
new approach this can also be done in case of truncated data as opposed to classical
approaches (see for example Cox (1961, 1962), Taylor and Jakeman (1985)) for model
selection which can be used, from the best of our knowledge, only for complete data.

To investigate this perspective thoroughly, samples of various sizes from known
distributions should be simulated, and the method for model selection applied, we can
score the selection as correct or not after repeating the process a large number of times,
the probability of correct selection could be estimated according to a given sample size.

We can also use the new distance in cases where classical goodness of fit tests
cannot reject two candidate families. We can choose the one which yields the minimum
of distance dv .

In the following examples, we shall select, in the first, between a Normal and a
Student distribution from a left truncated data. In the second example, we select
between a Weibull, a Gamma and a Log-normal distributions from right truncated
data.

Selection from a normal and a Student distributions. Consider a data set of size
300 simulated from a standard normal distribution and truncated on the left by taking
only observations below the level −0.5. The resulting truncated data has a truncated
sample size nt = 204 and is summarized in 8 classes in table

Table 9. Truncated data set from N (0, 1).
ui −0.318 0.032 0.383 0.733 1.083 1.434 1.784 2.134

ni 38 46 42 30 24 14 6 4
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Using the new distance dv we compute the distance between the empirical distri-
bution f̂ of the data in table 9 and the standard normal density fN and also with
the student distribution with 5 degree of freedom ft5 . We also drawn a sample of size
300 from a Student distribution with 5 degree of freedom and truncated it on left by
taking only observations greater than −0.5. The truncated sample of size nt = 200 is
summarized in the following table.

Table 10. Truncated data set from t5.
ui −0.215 0.342 0.898 1.454 2.01 2.567 3.123 3.679

ni 54 73 39 18 10 3 1 2

The results are given in the following table

Table 11

Truncated dv

(
f̂ , f

)

Data f ≡ N (0, 1) f ≡ t5
N (0, 1) 18,41 34, 38

t5 2847, 2 215,02

Table 11 shows that in each cases the distance has selected the correct distribution
even with a truncated data set.

Selection between Weibull, Gamma and log-normal distributions. We simu-
lated three samples of sizes 400 from the Weibull W(1.2, 1.5), the Gamma G (2, 0.5) and
the log-normal LN (0, 0.5) . The data were truncated on right by considering only ob-
servations above the cut-off 1.25. Each truncated sample was summarized into classes.
The following table 12 summarizes the truncated dataset from W(1.2, 1.5).

Table 12. Truncated data from W(1.2, 1.5).
ui 0.067 0.192 0.316 0.44 0.564 0.689 0.813 0.937 1.061 1.185

ni 20 36 37 43 45 38 35 27 26 19

The truncated data of the G (2, 0.5) is given in table 13.

Table 13. Truncated data from G (2, 0.5) .
ui 0.087 0.209 0.332 0.454 0.576 0.698 0.82 0.942 1.065 1.187

ni 14 33 31 37 37 28 37 27 16 23

For the LN (0, 0.5) we obtain the following table for the truncated dataset.

Table 14. Truncated data from LN (0, 0.5) .

ui 0.342 0.437 0.533 0.628 0.723 0.819 0.914 1.01 1.105 1.201

ni 10 12 34 34 38 27 40 37 23 24

The following table 15 shows that the distance dv has selected the correct distribution
in each combination between the three distributions.
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Table 15

Truncated dv

(
f̂ , f

)

Data f ≡ W(1.2, 1.5) f ≡ G (2, 0.5) f ≡ LN (0, 0.5)

W(1.2, 1.5) 8.96 23.13 355.84
G (2, 0.5) 26.42 20.21 89079

LN (0, 0.5) 67.07 59.9 26.96

We can also find, before selecting between distribution, the best fit from the family of
gamma distributions G (a, b) of the truncated data (table 12 for example) from a given
probability density say W(1.2, 1.5). We have then to solve an optimization problem of

finding the minimum of a function of two variables, mina,b dv(
(
f̂ , f

)
where f̂ is the

empirical distribution from table 12 and f ≡ G (a, b), using well known methods such
as Lavenberg-Marquardt using a computer algebra package.

6.2 Estimation of the initial trial value in EM Algorithm

The initial starting value is of great importance in convergence behaviour of algorithms
such as EM Algorithm. Usually, as for the latter, the initial trial value is guessed.
Surprisingly, we will show that our procedure gives an estimation of the starting value
instead of having to guess. The approach will be illustrated by the following classical
example which was the basis of the EM algorithm.

Example of Hartley (1958) revisited. Hartley (1958) used an algorithmic procedure
to estimate the parameter of a Poisson distribution from data on the pollution of a sort of
seeds by the presence of noxious weed seeds quoted from Snedecor (1956) and truncated
them by missing the frequencies of the values 0 and 1 as shown in the following table
16 (Table 1 in Hartley (1958))

Table 16.
Values missing 0 1

observed 2 3 4 5 6 7 9

frequencies ni 26 16 18 9 3 5 1

Hartley (1958) has guessed the frequencies of the missing values 0 and 1 by taking
n0 = 4 and n1 = 14, and after 4 steps of his algorithmic procedure, which has been the
basis of the well known EM algorithm for incomplete data (Dempster, Laird and Rubin
(1977)), has reached the estimation λ̂ = 3.026 (see table 1 p.177 Hartley (1958)). Using
the second method, we get the estimation λ̃2 = 3.1149. And by proportional allocation
procedure we can see that the frequencies we get are n0 = 4.29 and n1 = 13.38 which are
close to the guessed values. Using the distance dv we obtain the estimation λ̃1 = 3.8447,
and by removing the last value which has a small frequency n7 = 1, we obtain a better
result λ̃1 = 3.4441, which are also appreciable as starting values since in practice the
true parameter is unknown.

Initial trial value for mixture Normal Populations. We shall present an appli-
cation of the previous method used for truncated data in the situation where we have
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a mixture population of two normal distributions. In classical methods, we use the
merged distribution f = αf1 + (1 − α) f2 and we estimate the parameters α, m1 and
m2 using for example the EM algorithm which is based on maximizing the complete
likelihood of the merged distribution by an algorithmic procedure from a guessed initial
trial value. However, the problem of occurrence of several local maxima is well-known
for the setting of EM algorithm. Also, Seidel, Mosler and Alker (2000) pointed out
that the likelihood-ratio test in mixture models depends on the choice of the initial trial
value for the EM algorithm. If the initial trial value is close to the true value it is clear
that the algorithm will converge in few steps to the true local maximum. We will show
that using the new approach we get an accurate estimated initial trial value.

Assume we have a merged sample from two samples of observations of sizes n1 and
n2 from two normal distributions f1 = N(m1, σ1) and f2 = N(m2, σ2), with m1 6= m2.
By assuming that σ1 and σ2 are known, our aim is to estimate the means m1 and m2,
and also the merging proportion α of each population.

We will use a method based on truncations. The main idea being to split the
range of the merged sample into three suitably chosen parts. A central part where the
observations are highly merged, a left and right truncated parts where the observations
become mainly from one of the distributions considered. If for example m1 < m2, then
to estimate m1 we have to use the chosen right truncated part (left truncation △).

The procedure is summarized as follows:
1. We compute the sample mean mg of the merged observations.
2. For determining the location of the two means m1 and m2, we compute the

empirical standard deviation Sl of the observations less than mg, and Sr for those that
are greater. Assume that Sl < Sr, in this case if σ1 < σ2 then we deduce that m1 is
situated on the left of mg. Otherwise, it will be assumed to be on its right. We follow
the same idea for the case Sl > Sr. If σ1 = σ2 we pass directly to the third step.

3. Assume that m1 is on the left. It is well known that for a normal distribution
N (m,σ) we have P (]m − σ,m + σ[) ≃ 0.68. We hope that on the left of supl = mg −σ2

the number of observations generated from N (m2, σ2) is negligible, and on the right of
minr = mg +σ1 the number of observations generated from N(m1, σ1) is also negligible.
Hence, to estimate m1, we consider only the part of observations situated on the left of
mg − σ2, and to estimate m2 we consider the part situated on the right of mg + σ1.

The following example will provide some feel for the accuracy of the procedure.
Example. We consider the case where σ1 = σ2. consider two samples of observations
generated from N(m1, σ1) and N(m2, σ2), where m1 = 1.3 and m2 = 2.4, with known
σ1 = σ2 = 1 and sizes n1 = 300 and n2 = 200. We combine them to obtain a merged
sample of size n = 500. We have chosen the distributions in such a way that the
histogram (Fig.1) of the merged sample does not show directly the existence of a mixture
of two distributions. When the histogram of the merged population is bimodal the
situation is more easier, since when taking a suitably left (or right) part we get more
accurate estimation from the situation that this part will have a negligible number of
observations from the second distribution.

Fig 1. Merged histogram of two normal distributions N(1.3, 1) and N(2.4, 1).
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It should be stressed that the histogram is one modal and does not show at first
glance any mixture situation. Following the steps of the procedure we begin by calcu-
lating the mean of the resulting merged sample and we obtain mg = 1.8046. Since the
standard deviations are assumed to be equal then we compute directly supl = mg−σ2 =
0.8046. By grouping the observations on the left of supl (which constitute the chosen
right truncated part) in 7 classes we obtain the following table:

Table 17.

ui −1.5589 −1.1294 −0.6998 −0.2703 −0.1593 0.5888

ni 1 3 6 17 24 41

Using the distance dv we obtain for all the truncation m̃
(dv)
1 = 1.244 and by deleting

u1 we get the value m̃
(dv)
1 = 1.2516.

The sample mean of the observations on the left of supl is given by ul = 0.1483.
Using the second method we have to solve on m the following formula

u1 × exp
[
−(u1−m)2

2σ2

]
+ u2 × exp

[
−(u2−m)2

2σ2

]
+ ... + uk × exp

[
−(uk−m)2

2σ2

]

exp
[
−(u1−m)2

2σ2

]
+ exp

[
−(u2−m)2

2σ2

]
+ ... + exp

[
−(uk−m)2

2σ2

] = ul. (10)

we obtain the estimation m̃1 = 1.2646. By deleting the first value u1 which has a weak
frequency n1 = 1, that is using the truncation △ = {u2, u3, u4, u5, u6} , (we compute
again ul = 0.1734) we obtain a better estimation m̃1 = 1.3011, which is very close to
the true value m1 = 1.3.

To estimate m2, we consider the part situated on the right of minr = mg + σ1 =
2.8046. Grouping the observations on the right of infd (which constitute the chosen right
part) in 7 classes we obtain the following table:

Table 18.
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ui 2.9791 3.3159 3.6527 3.9896 4.3264 4.6632

ni 38 25 15 9 7 3

Using the distance dv for all the truncation we get m̃
(dv)
2 = 2.3971. The sample mean

of the observations on the right part is given by ud = 3.5227. Using formula (10) with
ud, we obtain the result m̃2 = 2.245. Deleting the extreme values u1 and u6 we obtain
m̃2 = 2.4124.

The mixture proportion α can easily be estimated using the formula α × m̃1 +
(1 − α) × m̃2 = mg.

Considering the estimations obtained, which are close to the true values of m1 and
m2, it is clear that the EM algorithm will converge fastly to the unique solutions.

6.3 Test of Goodness of Fit Based on the New Distance

We can obtain empirical quantile estimations of dv using Montecarlo or Bootstrapping
technics, and use them in a test of goodness of fit for a specified probability distribution.
We simulate N samples of the same size from the specified probability distribution and

calculate the distances d
(1)
v , ..., d

(N)
v . We can then estimate the asymptotic distribution

of dv by

Fdv
(d) =

#d
(i)
v < d

N
. (11)

Consequently, for a sample of the same size we compute d
(obs)
v and we reject the hypoth-

esis that it belongs from the specified distribution if Fdv
(d

(obs)
v ) > (1 − α) for a given

level of significance α.

The values d
(1)
v , ..., d

(N)
v may be obtained from the empirical distribution function

Fn of the sample.

6.4 Quality of Data

The fact that the new measure dv is not equivalent to classical ones means that it treats
other aspects not investigated by the latter. This may open new perspectives such as
making decision about the accuracy of an estimation in cases where the classical and
new estimations are close to each others. In cases where the classical estimation and
the new one using dv are significantly different then we can say that the sample of
observations considered does not restore coherently all necessary information about the
parent distribution from which it emanated.

6.5 Optimum number of classes

We define the optimum number of classes for grouping data in continuous setting as
the one that express the best the variations of the parent distribution. A criterion can
be developed using the minimum of the distance dv. A computer program may easily
be implemented in statistical packages for determining the best number of classes in
continuous case using the new distance.
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7 Concluding Remarks

In the foregoing study, we have presented a new statistical point estimation method
which found be useful in truncated data situations. A new distance between probability
distributions was introduced. It measures the difference between the variations of two
given probability distributions. We introduced an auxiliary distribution based on a
truncation, from a chosen family of probability distributions. This new distribution will
have the same parameters to estimate as the parent one. We use then statistical methods
to estimate the parameters of the random variable under study using the empirical and
new auxiliary distribution in the region that captures the data, from which we determine
the corresponding parent distribution. The later is the estimation by the new method.
Using the new distance introduced we also estimate by the minimum distance approach
and use the resulting estimation as a control on the accuracy of estimation obtained by
the former method. We have obtained a result which states that if we have to estimate
the parameter of a probability distribution from the one parameter exponential family,
then it suffices to have two points with exact ratio of frequencies, that is equal to the
theoretical one expressed by the ratio of the value of the probability distribution on
these two points, to obtain the true value of the parameter. We have conjectured that
if we have in general r parameters, then it suffices to have r + 1 points with exact
ratios of their frequencies to obtain the r true parameters exactly. The later result
need to be proved rigorously in a general setting for other distributions than the class
considered. A large comparative study between the classical and new methods should
also be investigated. We presented some perspectives of the new approach such as model
selection from truncated data using the new distance, estimation of the first trial value
in the celebrate EM algorithm in the case of truncation and for mixture of two normal
populations, a test of goodness of fit based on the new distance, decision making about
the quality of estimations and data, optimum number of classes in grouping data from
continuous distributions. A computer program should be implemented in statistical
packages for determining the best number of classes in continuous case.
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