Autoionization of N^{q+} (q=1-3) Rydberg states produced in high energy collisions with He <u>K. Kawatsura¹</u>, K. Takahiro¹, M. Sataka², M. Imai³, H. Sugai², K. Ozaki¹, H. Shibata³, K. Komaki⁴ ¹Kyoto Institute of Technology, Sakyo, Kyoto 606-8585, Japan; ²Japan Atomic Energy Agency, Tokai, Ibaraki 319-1119, Japan; ³Kyoto University, Sakyo, Kyoto 606-8501, Japan; ⁴ National Center for University Entrance Examination, Meguro Tokyo 153-8501, Japan. In the present, we have measured Coster-Kronig (C-K) electrons from high-Rydberg states produced in 21 MeV N^{3+} + He collisions with high resolution to compare with double electron capture (DEC) and dielectronic recombination (DR) processes. We have extended our measurements from N^{3+} to N^{2+} and N^{+} ions. The measured spectra have been compared to our results obtained from 1-2 MeV/u O^{q+} (q = 2-4) + He [1,2]. For Be-like N³⁺ projectiles, a series of $1s^22pnl - 1s^22sel$ ' (n = 5-10) C-K transitions is assigned. The high resolution spectrum in the low-energy region, where the $1s^22p5l$ state contributes, shows that the line intensity due to the low angular momentum l = 1 is the most intense peak, which obeys dipole selection rules. This result for the l distributions is very similar to that for high-energy O⁴⁺ projectiles, but different from those of the DEC spectrum and also of the DR spectrum where the radiative stabilization is necessary [3]. For B-like N^{2+} projectiles, a series of $1s^22s2p(^3P)nl - 1s^22s^2el$ ' (n = 4-8) C-K transitions is assigned. In this case, C-K transitions from $1s^22s2p(^3P)4l$ (l = 0,1) states are energetically forbidden, but those from the states of l = 2,3 are clearly observed. For the higher n, the angular momenta of l = 0-3 states are populated. For C-like N^+ projectiles, the C-K electron spectra are more complicated than those from B- N^{2+} and Be-like N^{3+} projectiles. A detailed analysis for this collision system is underway. - [1] K. Kawatsura et al., Nucl. Instr. and Meth. **B205** (2003) 528. - [2] K. Kawatsura et al., Nucl. Instr. and Meth. **B245** (2006) 44. - [3] P. Glans et al., Phys. Rev. A44 (2001) 043609.