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Abstract - Many works in the literature focus on the definition of evaluation metrics and criteria

that enable to quantify the performance of an image processing algorithm. These evaluation criteria can

be used to define new image processing algorithms by optimizing them. In this paper, we propose a

general scheme to segment images by a genetic algorithm. The developed method uses an evaluation cri-

terion which quantifies the quality of an image segmentation result. The proposed segmentation method

can integrate a local ground truth when it is available in order to set the desired level of precision of

the final result. A genetic algorithm is then used in order to determine the best combination of infor-

mation extracted by the selected criterion. Then, we show that this approach can either be applied for

grey-levels or multi-components images in a supervised context or in an unsupervised one. Last, we



show the efficiency of the proposed method through some experimental results on several gray-levels and

multi-components images.

keywords: image segmentation, segmentation evaluation, multi-components image, genetic algo-

rithm, fusion.

1 Introduction

Segmentation is an essential step in image processing since it conditions the quality of the resulting in-

terpretation. Lots of approaches have been proposed and a dense literature is available [19, 14, 10, 31].

In order to extract as much information as possible from an environment, multi-components images can

be used. In the last decade, multi-components images segmentation has received a great deal of attention

for remote sensing and industrial applications because it significantly improves the discrimination and

the recognition capabilities compared with gray-levels images segmentation methods. To process these

images, there are two types of segmentation methods: the scalar and the vectorial approaches. The

first one consists in merging the segmentation result of each band [13, 24, 14]. The second one tries to

generalize the classical segmentation process of one-component images [27].

Some works have applied genetic algorithms (GA) to image processing [1] and to segmentation par-

ticularly [4, 8, 28, 11]. As segmentation can be seen as a process which finds out the optimal regions

partition of an image according to a criterion, GA are well adapted to achieve this goal. Indeed, GA

are particularly efficient when the search space is really important and when the criterion to optimize is

numerically complicated which is always the case in image processing. The main advantages of using GA

for segmentation lie in their ability to determine the optimal number of regions of a segmentation result

or to choose some features such as the size of the analysis window or some heuristic thresholds.

The GA proposed by Holland [12] are a general-purpose global optimization technique based on ran-

domized search. They incorporate some aspects of iterative algorithm. A genetic algorithm is based

on the idea that natural evolution is a search process that optimizes the structures it generates. An
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interesting characteristic of GA is their high efficiency for difficult search problems without being stuck

in local extremum. In a GA, a population of individuals, described by some chromosomes, is iteratively

updated by applying operators of selection, mutation and crossover to solve the problem. Each individual

is evaluated by a fitness function that controls the population evolution in order to optimize it.

Bhanu and al [4] used GA to optimize the parameters of a segmentation method under various con-

ditions of image acquisition. Another illustration of the interest of GA for image segmentation is given

by Yoshimura and al [29]. They combined GA and Kohonen’s self-organizing map for the clustering of

textured images. The fuzzy C-means algorithm was used to generate a fine segmentation result. Andrey

[2] suggested an original approach as no objective fitness function is needed to evaluate segmentation

results. Li and Chiao [16] proposed a genetic algorithm dedicated to texture images where the fitness

function is based on texture features similarity. Melkemi et al. [17] use genetic algorithms to combine

different segmentation results obtained by different agents. A recent work proposed by Lai et Chang uses

a fitness function that can be considered as an evaluation criterion in a hierarchical process [15]. None

study of the used fitness function has been done in order to quantify its reliability.

The most important components of the proposed methods concern both the modelling of the problem

with GA and the definition of the fitness function. GA can be used to find out the optimal label of each

pixel, to determine the optimal parameters of a segmentation method (number of regions for example),

or to merge regions of a fine segmentation result. Concerning the fitness function, it can be an unsu-

pervised quantitative measure of a segmentation result or a supervised one using some a priori knowledge.

In this paper, we deal with a general scheme for grey-levels and multi-components image segmentation

that involves a GA. GA is used here as an optimization method for the optimal combination of segmen-

tation results whose quality is quantified through an evaluation criterion. We define a general scheme to

define segmentation methods by optimization. Note that we try in this paper to evaluate the reliability

of the fitness functions we used in our method.

We illustrate the proposed method by defining different types of fitness functions in section 2. The
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first one uses the value of an unsupervised evaluation criterion computed on a segmentation result. The

second one uses a semi-supervised evaluation criterion by taking into account a local ground truth when it

is available. The last one shows the generalization for multi-components images. In section 3, we describe

the optimization process with GA. We show the efficiency of the proposed method through experimental

results on gray-levels and multi-components images in section 4. In section 5, we conclude and give some

perspectives.

2 Developed method

The developed method consists in looking for the optimal combination of segmentation results by tak-

ing into account an evaluation criterion and by using a genetic algorithm. We define in the following

subsections some evaluation criteria for different purposes concerning the segmentation process.

2.1 Evaluation principles

Numerous works deal with the problem of the evaluation of a segmentation result [20, 22]. Zhang [32]

presents a possible classification of the evaluation criteria in three groups:

• the ”analytical methods” which permit to characterize an algorithm in terms of principles, needs,

complexity, convergency, stability,... without any reference to a concrete implementation of the

algorithm or testing data,

• the ”empirical goodness methods” also called unsupervised criteria which compute a fitness metric

on a segmentation result. They do not necessitate any knowledge on the segmented images to assess

and their principles consist in an estimation of the quality of a segmentation result according to

some statistics computed on each region, class, texture, fuzzy set... detected, mostly often by using

a statistical point of view (see Figure 1),

• the ”empirical discrepancy methods” also called supervised criteria which compute some measures

of dissimilarity between a segmentation result and the desired segmentation result (see Figure

2). They thus assess the quality of a segmentation result by using an a priori knowledge. This

knowledge can be a segmentation result used as a reference which is called ground truth (GT ) or
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Figure 1: Principle of unsupervised evaluation criteria of an image segmentation result.

some knowledge on the elements to recognize.

Figure 2: Principle of supervised evaluation criteria of an image segmentation result.

Our center of interest is to evaluate the quality of a segmentation result, thus the analytical criteria are

not studied in this paper. Moreover, we have chosen for this study to focus on criteria which assess region

segmentation results because it is a complex problem. In the next section, we study some unsupervised

evaluation criteria.

2.2 Unsupervised evaluation

Unsupervised evaluation criteria give an information on the coherence of a segmentation result quality.

The main objective of a previous work presented in [6] was to determine the supervised evaluation crite-
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rion, within a selection of criteria from the literature, having the best behavior in comparison with human

experts judgement. To achieve this goal, two main steps have been realized. The first one concerns the

ranking of segmentation results of some images by human experts. The second one concerns the creation

of a similarity measure able to compare the evaluation behavior of the experts and of a criterion to study.

Thus, a Similarity Rate of Correct Comparison criterion (SRCC) has been defined [6]. It computes

the similary of judgment given by an evaluation criterion and an expert. From this study, the Vinet’s

criterion has been determined as the one with the best behavior according to the human experts.

In the following part of this paper, we briefly present the results of a comparative study of unsuper-

vised evaluation criteria [7] by using the Vinet’s criterion as a reference in the case of synthetic images

for which the ground truth is well known.

A set of synthetic images including 14 subsets of images having respectively from 2 to 15 classes was

created. The Figure 3 presents some examples of the ground truths used to create the images. Thus,

each subset has a fixed number of classes and is made up of 600 images with a proportion of textures

going from 0 to 100% by step of 25%. The Figure 4 presents some examples of synthetic images created

by using this process.

3 classes 6 classes 9 classes 11 classes 14 classes

Figure 3: Examples of ground truths used for the creation of the synthetic set of images.

We used three segmentation methods: the Fuzzy C Means method (FCM) [3], a relaxation of this

segmentation result and the mean shift algorithm (EDISON) [9]. In addition to these three segmentation

results, an obvious synthetic segmentation result was added: the ground truth used to create the subset of

synthetic images. This result is the best possible one. The Figure 5 presents an example of segmentation

results obtained by using these methods on an image (the number of classes is supposed to be known for

6



3 classes 6 classes 9 classes 11 classes 14 classes

Figure 4: Examples of synthetic images from the images set.

the segmentation method).

Original FCM FCM + EDISON Ground

Image relaxation Truth

Figure 5: Example of an image with 6 classes and its segmentation results with paired grey levels.

We selected, from the state of art [32, 21] six unsupervised evaluation criteria of gray level image

segmentation results into regions or classes:

• Zeboudj’s contrast (Zeboudj) [30]: this measure takes into account the internal and external con-

trasts of the regions measured in the neighborhood of each pixel.

• Levine and Nazif’s inter-class contrast (Inter) [18]: this criterion computes the sum of contrasts of

the regions balanced by their surfaces.

• Levine and Nazif’s intra-class uniformity (Intra) [18]: this criterion computes the sum of the nor-

malized standard deviation of each region.

• Combination of intra-class and inter-class disparities (Intra-inter) [18]: this indicator combines

similar versions of the Levine and Nazif inter-class and intra-class measures.

• Borsotti’s criterion (Borsotti) [5]: this measure is based on the number, the surface and the variance

of the regions.
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• Rosenberger’s criterion (Rosenberger) [21]: the originality of this criterion lies in its adaptive com-

putation according to the type of region (uniform or textured). In the textured case, the dispersion

of some textured parameters is used and in the uniform case, gray levels parameters are computed.

The Vinet’s criterion [25] proved to be the closest one to the human judgement with a similarity rate

of correct comparison (SRCC) of 86% in the supervised case [6]. This criterion was thus selected as our

reference and was computed on the whole set of segmentation results obtained on the images set (the as-

sociated ground truth is always available because we use synthetic images). The similarity rate of correct

comparison with the Vinet’s criterion (SRCCV inet) was computed for the different criteria on different

images subsets. The objective was to compare the classification of the various segmentation results for

each image by the unsupervised evaluation criteria and the one established by the Vinet’s criterion. The

results were computed on the whole images set (Overall SRCCV inet) and on images subsets considering

only uniform images (Uniform SRCCV inet), only textured images (Textured SRCCV inet), uniform and

textured images (Mixed SRCCV inet) and textured images with similar mean grey level between all the

regions (Textured2 SRCCV inet ). The results are presented in the table 1.

In the case of completely uniform images, the Zeboudj’s criterion proves to be the most efficient with

a SRCCV inet superior to 88%. The Inter criterion is recommended in the case of mixed images and

for most textured ones. It has a mean SRCCV inet of more than 71% on the images sets corresponding

to these cases. Finally, the Rosenberger’s criterion is the only discriminating criterion for the study

of segmentation results of images having textured classes with the same average of gray levels with a

SRCCV inet of more than 61%. If one takes into account the whole images set, the Inter criterion appears

to be the most efficient but presents a SRCCV inet of only 66%.

2.3 Supervised evaluation

In order to define the level of precision of the segmentation result, we can use a local ground truth. A

local ground truth is defined as a small set of pixels with a known class. It is used in the optimization

process by computing the correct classification rate (Vinet’s measure) on each cluster of the local ground
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Criteria Inter Rosenberger Zeboudj Intra-Inter Intra Borsotti

Overall SRCCV inet 66.09% 57.75% 49.40% 36.62% 31.32% 24.53%

Uniform SRCCV inet 73.72% 50.70% 88.45% 65.97% 52.18% 65.73%

Mixed SRCCV inet 71.83% 55.80% 54.51% 32.21% 33.51% 29.21%

Textured SRCCV inet 74.61% 64.98% 32.23% 23.46% 20.01% 11.10%

Textured2 SRCCV inet 33.62% 61.33% 15.12% 32.27% 15.68% 11.20%

Table 1: Value of the SRCCV inet of each criterion of the comparative study.

truth. An example of a local ground truth is given in figure 6. In this case, we set some examples of

regions in an image.

(a) original image (b) local ground truth

Figure 6: Example of a local ground truth: 3 sets are defined meaning that pixels in these regions should

belong in the same class.

We call GT the local ground truth used in our method. Given a segmentation result, we can compute

the correct classification rate for each cluster of GT . We define the following criterion:

R(Is, GT ) =
1

NbGT

Nbclass
∑

i=1

Rate(Ci) (1)

where NbGT is the number of pixels in GT . The value Rate(Ci) is the correct classification rate for

the cluster Ci. The correct classification rate for each pixel of GT is integrated into this criterion. The

higher this value is, the more the result corresponds to the needed level of precision. If Nbclass equals

to zero, the segmentation process will be unsupervised. The local ground truth can be seen as local

constraints set by an user. The R(Is, GT ) term evaluates the adequation of the segmentation result to
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GT (that means that all the clusters of GT in the final segmentation result must be as homogeneous as

possible).

A new criterion can be defined by taking into account some constraints on the level of precision of

the segmentation result:

SCR(Is, GT ) = CR(Is) + R(Is, GT ) (2)

where CR(Is, GT ) is one of the unsupervised criteria detailed in the section 2.2. The SCR(Is, GT )

criterion is a semi-supervised one.

2.4 Generalization to the multi-components case

We define in this section the generalization of an unsupervised evaluation criterion for multi-components

images. The objective is to evaluate different segmentation results (obtained by using different parame-

ters) by combining the values of an evaluation criterion by considering each band.

Three simple fusion methods are used: the minimum, the maximum and the average value of the

criterion computed on each band. In order to compare the different evaluation methods in the multi-

components case, we used 20 synthetic images with 5 components. Each image is segmented with the

MLBG method (K-means for the segmentation of multi-components images) [23] using 32 different pa-

rameter settings. Vinet’s measure is used again as an objective function and allows us to sort each

segmentation result. For each unsupervised evaluation method, each fusion method gives a sorting of the

32 segmentation results for each image. So judged, the best evaluation method associated to the best

fusion process is the one corresponding to the best sorting which means that it is the most similar to

the Vinet’s measure for the 20 images. To compare two sorting of segmentation results, we take into

consideration the sum each difference between the position in the sorting obtained by using the Vinet’s

measure and an other evaluation criterion.

Table 2 shows that there is no fundamental difference between the three fusion operators (mean, min-

imum, maximum). The best evaluation criterion in the multi-components case, in sense of our approach,
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is the Rosenberger’s criterion with the fusion method based on the mean.

Mean Minimum Maximum

Zeboudj 187 187 170

Inter 137 143 121

intra 187 187 187

intra-inter 209 209 209

Borsotti 149 145 149

Rosenberger 51 52 56

Table 2: Distance between criteria and Vinet with 3 fusion approaches

We applied this criterion in the multi-components case. Figure 7 presents three segmentation results

of a MRI image with 4 bands obtained by the MLBG method with different parameters (windows size,...).

The Rosenberger’s criterion associated with Mean fusion can sort the different segmentation results. The

presented result 3 is defined as the best one (criterion: 0.731) before result 2 (criterion: 0.66) and finally

result 1 (criterion: 0.649). This sorting of these segmentation results is difficult to validate with the

visual perception even if the last result seems to be more precise.

2.5 Optimization method: a Genetic Algorithm

Genetic algorithms determine the optimal value of a criterion by simulating the evolution of a population

until survival of best fitted individuals [26]. The survivors are individuals obtained by crossing-over, mu-

tation and selection of individuals from the previous generation. We think that GA is a good candidate

to find out the optimal combination of segmentation results for two main reasons. The first one is due

to the fact an evaluation criterion is not very easy to differentiate. GA is an optimization method that

does not necessitate to differentiate the fitness function but only to evaluate it. Second, if the population

11



(a) band 1 (b) band 2 (c) band 3 (d) band 4

(e) result1 (f) result2 (g) result3

Figure 7: Three segmentation results of a MRI image with 4 bands

is enough important considering the size of the search space, we have good guarantees that we will reach

the optimal value of the fitness.

A genetic algorithm is defined by considering five essential data:

1. genotype: the segmentation result of an image I is considered as an individual described by the

class of each pixel,

2. initial population: a set of individuals characterized by their genotypes. It is composed of the

segmentation results to combine,

3. fitness function: this function enables us to quantify the fitness of an individual to the environment

by considering its genotype. The evaluation criteria described in the previous sections can be used

as a fitness function in the unsupervised case or in and in the semi-supervised cases,

4. operators on genotypes: they define alterations on genotypes in order to make the population evolve

during generations. Three types of operators are used:

• individual mutation: individual’s genes are modified in order to be better adapted to the envi-

ronment. We use the non-uniform mutation process which randomly selects one chromosome
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xi, and sets it as equal to a non-uniform random number:

x′

i =















xi + (bi − xi)f(G) if r1 < 0.5

xi − (xi + ai)f(G) if r1 ≥ 0.5

(3)

where

f(G) = (r2(1 −
G

Gmax

))b

r1, r2 : numbers in the interval [0, 1]

ai, bi : lower and upper bound of chromosome xi

G : the current generation

Gmax : the maximum number of generations

b : a shape parameter

(4)

• selection of an individual: individuals that are not adapted to the environment do not survive

to the next generation. We used the normalized geometric ranking selection method which

defines a probability Pi for each individual i to be selected as following:

Pi =
q(1 − q)r−1

1 − (1 − q)n
(5)

where

q : the probability of selecting the best individual

r : the rank of individual, where 1 is the best

n : the size of the population

(6)

• crossing-over: two individuals can reproduce by combining their genes. We use the arithmetic

crossover which produces two complementary linear combinations of the parents:

X ′ = aX + (1 − a)Y

Y ′ = (1 − a)X + aY

(7)

where

X,Y : genotype of parents

a : a number in the interval [0, 1]

X ′, Y ′ : genotype of the linear combinations of the parents

(8)

5. stopping criterion : this criterion allows to stop the evolution of the population. We can consider

the stability of the standard deviation of the evaluation criterion of the population or set a maximal

number of iterations (we used the second one with the number of iterations equals to 1000).
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Given these five informations, the execution of the genetic algorithm is carried out in four steps:

1. definition of the initial population (segmentation results) and computation of the fitness function

(evaluation criterion) of each individual,

2. mutation and crossing-over of individuals,

3. selection of individuals,

4. evaluation of individuals in the population,

5. back to step 2 if the stopping criterion is not satisfied.

3 Experimental results

In this paper, we show the results of two types of experiments. First, we use the previously presented

method to segment gray levels images by combining several segmentation results. Second, we present

some genetic segmentation results of multi-spectral images. These images were acquired with a CASI

(Compact Airborne Spectrographic Imager).

For all the following experimental results, we set the value of the selection probability to 8%, the

crossing-over probability to 60% and the mutation probability to 5%. The unsupervised evaluation

criterion we use in this paper is the Rosenberger’s one because of the presence of textures in test images.

3.1 Genetic segmentation of gray levels images

First of all, we show the unsupervised genetic segmentation results of one gray levels image called CAR

(see Figure 8). This image was segmented using the K-means algorithm with mean and variance as

attributes with different numbers of clusters NC (5, 10, 12, 15) which constitutes the initial population

for the GA. In this case, the genotype of an individual is a vector of size 262144 (the size of each image

is 512× 512 pixels). A gene corresponds to the label of each pixel in the considered segmentation result.

Final result shows the efficiency of the proposed method. If we look at the tree in left of the CAR

image, we see that this textured region is not over-segmented like in the segmentation results we used in
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the initial population. An important point is that we did not specify in this experiment the number of

clusters we wanted. It has been automatically determined (NC=6).

(a) original image CAR (b) segmentation result 1 (NC=5)

(c) segmentation result 2 (NC=10) (d) segmentation result 3 (NC=12)

(e) segmentation result 4 (NC=15) (f) final result (NC=6)

Figure 8: Unsupervised segmentation result of image CAR

Table 3 gives some statistics about the GA for the previous segmentation result. We show here the

ability of the GA to determine the best individual with a few iterations. The value of the evaluation

criterion of the best segmentation result significantly increases. Note that we obtain a good stability of

the results for different executions of this algorithm after 100 iterations.
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Information image CAR

Initial population average value of criterion CR 0.1827

highest value of criterion CR 0.1844

lowest value of criterion CR 0.1809

standard deviation of criterion CR 0.010

Final population average value of criterion CR 0.1986

highest value of criterion CR 0.1986

lowest value of criterion CR 0.1986

standard deviation of criterion CR 5.2e-08

Table 3: Statistics for the initial and final population for the image CAR

We also present the supervised segmentation results of two images by using the developed method

(see figure 9). We define, for each original image, a local ground truth in order to obtain a precise seg-

mentation result. The local ground truth defines some regions which must be present in the final result.

As for example, we define three regions in the figure 9 (a) and two in the figure 9 (c), so we want in the

final result that pixels in these regions belong to the same class. As we can see in the segmentation result

(figure 9 (b)), the sky is represented by a single cluster as the roof of the house and the major part of

the grass. For the image (c) of figure 9, we select some fields in order to make the interpretation of the

culture inside each field easier.

The initial population is composed of segmentation results obtained by using the K-means algorithm

with mean and variance as attributes with different numbers of clusters (5, 10, 12, 15). Segmentation

results are visually correct.

Table 4 gives the values of several optimized criteria. The D and D correspond to intermediate values

used to compute the Rosenberger’s criterion [21]. The D computes the global intra-region disparity and

has to be close to zero (computation of the disparity of statistics inside a region). The second one com-

putes the global inter-region disparity D and must have as high value as possible. Value CR corresponds
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(a) CAR image (b) result

(c) AERIAL image (d) result

Figure 9: Supervised segmentation results of two gray levels images

to the unsupervised criterion which quantifies the global quality of a segmentation result (Rosenberger’s

criterion). Finally, the last criterion gives the correct classification rate if we only consider the local

ground truth. One can notice that the values of each criterion are coherent. The correct classification

rate has a high value which shows the ability of the proposed method to fit the level of precision of a

segmentation result.

Final result D(Is) D(Is) CR(Is) R(Is, GT )

CAR 0.0045 0.3321 0.1638 98.4%

AERIAL 0.0040 0.2803 0.138 93.6%

Table 4: Values of the evaluation criterion for results of figure 9

We compared the supervised approach and the unsupervised one by segmenting the same image

AERIAL. The evaluation results are detailed in Table 5. These results show that the evaluation criterion
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CR is higher in the unsupervised case. This reveals the ability of the unsupervised approach to deter-

mine the optimal value of CR. The use of a ground truth allows us to match the level of precision of the

segmentation result.

Method D(Is) D(Is) CR(Is) R(Is, GT )

supervised 0.004 0.2803 0.138 93.6%

unsupervised 0.003 0.448 0.225

Table 5: Values of the evaluation criterion by using the supervised and unsupervised approaches to

segment AERIAL

3.2 Genetic segmentation of multi-spectral images

In this section, we present the unsupervised segmentation result of a multi-spectral image composed of 9

bands (wavelength in nm: 551.1, 571.5, 600.9, 636.5, 677.7, 696.5, 715.4, 749.5, 799.9) using the proposed

method (see in figure 10). Each component of this image was also segmented using the K-means algorithm

with mean and variance as attributes. The final result is correct and combine well information from each

component. The application for this image was to compute the bio-mass of algae lying on the beach.

The use of multi-spectral data provides us a better discrimination of algae by taking account visible and

also near infra-red information. As for example, the white square detected in the segmentation result in

the figure 10 (c) on the top right is present in the final result while it was not really visible in figure 10 (d).

We present also the supervised segmentation result of two multi-spectral images with a similar pro-

tocol. We show the two most different components of these images (which correspond to components

1 and 9). We define for each original image a local ground truth in order to obtain a precise segmen-

tation result. For the figure 11 (a), the local ground truth corresponds to figure 11 (c). We select 2

types of field and an area corresponding to some hedges. Each component brings an additional piece of

information, the problem for these images is to take them into account in the final result. As we can

see in figures 11 (d) and (h), the segmentation results are visually correct and correctly integrate addi-
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(a) (b) (c)

(d) (e) (f)

Figure 10: Unsupervised segmentation result of a CASI multi-spectral image, (a) image component 1,

(b)-(e) segmentation results of components 1, 6, 7 and 9, (f) Final segmentation result of the multi-

components image by merging with the proposed method the segmentation result of each component.

tional information from the different components. As for example, the dark region in the center of the

segmentation result (d) is correctly detected while it is not visible in the component A9 (but visible in A1).
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(a) band A1 (b) band A9 (c) local ground truth (d) segmentation result

(e) band B1 (f) band B9 (g) local ground truth (h) segmentation result

Figure 11: Supervised segmentation results of two CASI multi-components images

4 Conclusion and perspectives

Many works in the literature focus on the definition of evaluation metrics that enable to quantify the

performance of an image processing algorithm. These evaluation criteria can be used to define new image

processing algorithms by optimizing them. Genetic algorithms can be used for this application.

In this paper, we focused on the interest of genetic algorithms for image segmentation. We showed

that this kind of approach can be applied either for grey-levels and multi-components images. The de-

veloped method uses the ability of GA to solve optimization problems with a large search space (label

of each pixel of an image). The developed method can also integrate some a priori knowledge (such as a

local ground truth) if it is available. Its efficiency was illustrated through some experimental results on

several CASI multi-spectral images.

Prospects for this work concern first of all the definition of some new fitness functions in order to

define edge segmentation methods. Second, some a priori knowledge such as the shape of objects to

detect could be used in order to localize some particular objects in an image.
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