
HAL Id: hal-00255983
https://hal.science/hal-00255983

Submitted on 14 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparative study of contour detection evaluation
criteria based on dissimilarity measures

Sébastien Chabrier, Hélène Laurent, Christophe Rosenberger, Bruno Emile

To cite this version:
Sébastien Chabrier, Hélène Laurent, Christophe Rosenberger, Bruno Emile. Comparative study of
contour detection evaluation criteria based on dissimilarity measures. EURASIP Journal on Image
and Video Processing, 2008, pp.1-10. �hal-00255983�

https://hal.science/hal-00255983
https://hal.archives-ouvertes.fr


1

Comparative study of contour detection
evaluation criteria based on dissimilarity measures
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Abstract— We present in this article a comparative study
of well-known supervised evaluation criteria that enable the
quantification of the quality of contour detection algorithms.
The tested criteria are often used or combined in the literature
to create new ones. Though these criteria are classical ones,
none comparison has been made, on a large amount of data, to
understand their relative behaviors. The objective of this article is
to overcome this lack using large test databases both in a synthetic
an a real context allowing a comparison in various situations and
application fields and consequently to start a general comparison
which could be extended by any person interested in this topic.

After a review of the most common criteria used for the
quantification of the quality of contour detection algorithms, their
respective performances are presented using synthetic segmenta-
tion results in order to show their performance relevance face to
under-segmentation, over-segmentation or situations combining
these two perturbations. These criteria are then tested on
natural images in order to process the diversity of the possible
encountered situations. The used databases and the following
study can constitute the ground works for any researcher who
wants to confront a new criterion face to well-known ones.

Index Terms— segmentation evaluation, contour detection, su-
pervised evaluation.

I. I NTRODUCTION

ONE of the first steps in image analysis consists in image
segmentation. This stage, which requires homogeneity

or dissimilarity notions, leads to two main approaches based
respectively on region or contour detection. The purpose is
to group together pixels or to delimit areas that have close
characteristics and thus to partition the image into similar
component parts. Many segmentation methods based on these
two approaches have been proposed in the literature [1]–[3]
and this subject still remains a prolific one if we consider
the quantity of recent publications in this topic. Nobody has
already completely mastered such a step. Depending on the
acquisition conditions, the applied basic image processing
techniques (such as contrast enhancement, noise removal, etc)
and the aimed interpretation objectives, different approaches
can be efficient. Each of the proposed methods lays the
emphasis on different properties and therefore reveals itself
more or less suited to a considered application. This variety
often makes it difficult to evaluate the efficiency of a proposed
method and places the user in a tricky position because no
method reveals itself as being optimal in all cases.

That is the reason why many works have been recently
performed to solve the crucial problem of the evaluation of

image segmentation results [4]–[10]. The proposed evaluation
criteria can be split into two major groups. The first one gath-
ers the so called unsupervised evaluation criteria which consist
in the computation of different statistics upon the segmentation
result to quantify its quality [11]–[13]. These methods are
based on the calculation of numerical values from some chosen
characteristics attached to each pixel or group of pixels. These
methods have the major advantage of being easily computable
without requiring any expert assessment. Nevertheless, most of
them are not very robust while using textured images and can
also present some important shift if the evaluation criterion
and the tested segmentation method are both based on the
same statistical measure. In such a case, the criterion will
not be able to invalidate some erroneous behaviors of the
tested segmentation method. The second group is composed
of supervised evaluation criteria which are computed from a
dissimilarity measure between a segmentation result and a
ground truth of the same image. This reference can either
be obtained according to an expert judgement or set during
the generation of a synthetic test database: in the case of
evaluating contour detection algorithms, the ground truth can
either correspond to a manually made contour extraction or,
if synthetic images are used, to the contour map from which
the data set is automatically computed. Even if these methods
inherently depend on the confidence in the ground truth,
they are widely used for real applications and particularly
for medical ones [14]–[16]. In such a case, the ability of a
segmentation method to favor a subsequent interpretation and
understanding of the image is taken into account.

We focus in this communication on evaluation criteria ded-
icated to the contour approach and based on the computation
of dissimilarity measures between a segmentation result and
a reference contour map constituting the ground truth. All
the criteria presented in this study do not therefore require
the continuity of the contours. For that reason, they are
particularly adapted for the evaluation of the usual first step
of background/foreground segmentation algorithms which are
commonly composed of a preliminary contour detection algo-
rithm followed by some edge closing method. But they are also
essential when applications requiring segments detection and
not closed contours are pursued. It can for example concern
the detection of rivers or roads in aerial images or the detection
of veins in palms images for biometric applications. Until
now, none comparative study of classical evaluation criteria
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has been made on a large amount of data. Generally, when
a new evaluation criterion is proposed, its performances are
either tested on a few examples (four or five different images)
or on several images corresponding to a single application.
Moreover, the performance study is rarely completed by the
use of synthetic images. However, a preliminary study in a
synthetic context can be very useful to test the behaviors of
the evaluation criteria face to often encountered situations like
under-segmentation, over-segmentation affecting the contour,
presence of noise, etc. Working in a controlled environment
often allows to more precisely understand the way how a
criterion evolves in some specific situations. We try in this
article to overcome this lack using large test databases both in a
synthetic and a real context allowing a comparison of classical
evaluation criteria in various situations and application fields.
These databases and the following study could be the ground
works for any researcher who wants to confront a new criterion
face to well-known ones.

After a first part devoted to a review of evaluation metrics
dedicated to contour segmentation and based on dissimilarity
measures, several classical criteria are compared. We first
tested the evaluation criteria on synthetic segmentation results
we created. We also tested them on three hundred images
extracted from thec©Corel database which contains various
real images corresponding to different application fields such
as medicine, aerial photography, landscape images, etc and
corresponding experts contour segmentations [4]. The con-
ducted study shows how these databases can be useful to
compare the performances of several criteria and put into
obviousness their specific behaviors. Finally, we conclude this
study and give different perspectives of works in this topic.

II. SUPERVISED EVALUATION CRITERIA FOR CONTOUR

SEGMENTATION METHODS

The different methods presented in this section can either
be applied with synthetic or experts ground truths. In the case
of synthetic images, the ground truths are of course totally
reliable and have an extreme precision, but are not always real-
istic. For real applications, the expert ground truth is subjective
and the confidence attached to this reference segmentation
has to be known. Figure 1 presents the supervised evaluation
procedure on a real image extracted from thec©Corel database
[4].

The next paragraphs present a review of some classical
available metrics used in this supervised context for contour
segmentation methods. These criteria have often been the basis
for the proposal of new ones, either by being modified or
combined.

Let Iref be the reference contours corresponding to a
ground truth,IC the detected contours obtained through a
segmentation result of an imageI.

A. Detection errors

Different criteria have initially been proposed to measure
detection errors [17], [18]. Most of them are based on the
following expressions or on various definitions issued from
them.

Fig. 1. Supervised evaluation of a segmentation result

The over-detection error (ODE) corresponds to detected
contours ofIC which do not matchIref :

ODE(IC , Iref ) =
card(IC/ref )

card(I) − card(Iref )
(1)

wherecard(I) is the number of pixels ofI, card(Iref ) the
number of contour pixels ofIref and IC/ref corresponds to
the pixels belonging toIC but not toIref .
The under-detection error (UDE) corresponds toIref pixels
which have not been detected:

UDE(IC , Iref ) =
card(Iref/C)

card(Iref )
(2)

whereIref/C corresponds to the pixels belonging toIref but
not to IC .
Last, the localization error (LE) takes into account the per-
centage of non-overlapping contour pixels:

LE(IC , Iref ) =
card((Iref/C) ∪ (IC/ref ))

card(I)
(3)

A good segmentation result should simultaneously minimize
these three types of error.

Extensions of these detections errors have also been pro-
posed combining them with an additional term taking into
account the distance to the correct pixel position [7].

B. Lq and divergence distances

Another idea to compare two imagesIC and Iref is to
compute between the two images some distance measures [19],
[20]. A well-known set of such distances is constituted by the
Lq distances:

Lq(IC , Iref ) =

[
∑

x∈X |IC(x) − Iref (x)|q

card(X)

]

1

q

(4)

whereIi(x) is the intensity of pixelx in imageIi and with
q ≥ 1. X corresponds to the common domain ofIC andIref ;
in our case,X is the complete image. These distances which
are initially defined to deal with the intensities of the pixels
can also be used for binary images. Note that, among these
distances, the classical Root Mean Squared error (RMS) can



3

be obtained withq = 2. For the comparative study,q has been
chosen in{1, 2, 3, 4} defining theL1, L2, L3 andL4 distances.

The considered measures can be completed by different
distances issued from probabilistic interpretations of images:
the Küllback and Bhattacharyya (DKU andDBH) distances
and the ”Jensen-like” divergence measure (DJE) based on
Rènyi entropies [21].

DKU(IC , Iref ) =

∑

x∈X

(

IC(x) − Iref (x)
)

× Log

(

IC (x )

Iref (x )

)

card(X)
(5)

DBH(IC , Iref ) = −Log

(

∑

x∈X

√

IC(x) × Iref (x)

card(X)

)

(6)

DJE(IC , Iref ) = J1

(

IC(x) + Iref (x)

2
, IC(x)

)

(7)

with

J1

(

IC(x), Iref (x)
)

=

Hα

(

√

IC(x) × Iref (x)

)

−
Hα

(

IC(x)
)

+ Hα

(

Iref (x)
)

2
(8)

where Hα corresponds to the R̀enyi entropies parametrized
by α > 0. This parameter is set to3 in the comparative study
[22].

If these measures permit to obtain a global comparison
between two images, they are often described in the literature
as not correctly transcribing the human visual perception and
more particularly the topological transformations (translations,
rotations, etc). The concerned gray-level domain is indeed not
taken into account. If gray-level images are used, a same
intensity difference will then be equally penalized whatever
the domain can be. In our case, these distances are used with
binary images, this drawback does therefore not exist anymore.
In the same way, the global position information does not
intervene in distance computation. Thus, if the same object
appears in the two images with a simple translation, the dis-
tances will increase in an important way. If this evolution can
be disturbing with an object detection objective for example, it
becomes an advantage in our case where a contour translation
is a mistake.

C. Hausdorff distance

The Hausdorff distance between two pixels sets is computed
as follows [23]:

HAU(IC , Iref ) = max

(

h(IC , Iref ), h(Iref , IC)

)

(9)

where

h(IC , Iref ) = max
a∈IC

(

min
b∈Iref

‖ a − b ‖

)

(10)

HAU(IC , Iref ) = d then means that all the pixels belonging
to IC are not farther thand from some pixels ofIref . Although
this measure is theoretically very interesting and can give
a good similarity measure between the two images, it is
described as being very noise sensitive.

Several extensions of this measure, like the Baddeley dis-
tance, can be found in the literature [24].

D. Pratt’s figure of merit

This criterion [25] corresponds to an empirical distance
between the ground truth contoursIref and those obtained
with the chosen segmentationIC :

PRA(Iref , IC)=
1

max{card(Iref ), card(IC)}

card(IC)
∑

k=1

1

1 + d2(k)

(11)
whered(k) is the distance between thekth pixel belonging
to the segmented contourIC and the nearest pixel of the
reference contourIref .

This measure has no theoretical proof but is however one
of the most used descriptors. It is not symmetrical and does
not express under-segmentation or shape errors. Moreover,
it is also described as being sensitive to over-segmentation
and localization problems. To illustrate some limits of this
criterion, we present in figure 2 different situations with an
identical number of misclassified pixels and leading to the
same criterion value.

Fig. 2. Different situations with an identical number of misclassified pixels
and leading to the same criterion value

The three depicted situations are very dissimilar and should
not be equally marked. The misclassified pixels should belong
to the object in figure 2(C) and to the background in figure
2(A). The proposed criterion considers these situations as
equivalent although the consequences on the object size and
shape are totally different. Moreover, this criterion does not
discriminate between isolated misclassified pixels (figure 2(B))
or a group of such pixels (figure 2(A)) though the last situation
is more prejudicial.

Modified versions of this criterion have been proposed in
the literature [26].

E. Odet’s criteria

Different measurements have been proposed in [27] to es-
timate various errors in binary segmentation results. Amongst
them, two divergence measures seem to be particularly inter-
esting. The first one (OCO) evaluates the divergence between
the over-segmented contour pixels and the reference contour
pixels:

OCO(IC , Iref ) =
1

No

No
∑

k=1

(

d(k)

dTH

)n

(12)

whered(k) is the distance between thekth pixel belonging
to the segmented contourIC and the nearest pixel of the
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reference contourIref . No corresponds to the number of over-
segmented pixels.dTH is the maximum distance, starting from
the segmentation result pixels, allowed to search for a contour
point. If a pixel of the segmentation result is farther thandTH

from the reference, the criterion value is highly penalized (all
the more sincen is big), the quotientd(k)/dTH exceeding
one. n is a scale factor which permits to weight the pixels
depending on their distance from the reference contour.

The second one (OCU ) estimates the divergence between
the under-segmented contour pixels and the computed contour
pixels:

OCU(IC , Iref ) =
1

Nu

Nu
∑

k=1

(

du(k)

dTH

)n

(13)

wheredu(k) is the distance between thekth non-detected pixel
and the nearest one belonging to the segmented contour.Nu

corresponds to the number of under-segmented pixels.
These two criteria take into account the relative position

for the over- and under-segmented pixels. The thresholddTH ,
which has to be set according to each application precision
requirement, permits to take the pixels into account differently
with regard to their distance from the reference contour. These
criteria also allow, thanks to exponentn, to differently weight
the estimated contour pixels that are close to the reference
contour and those whose distance to the reference contour
is close to dTH . With a small value of n, the first ones
are privileged, which leads to a precise evaluation. For the
comparative study,n is set to1 anddTH equals 5.

F. Discussion

As previously exposed, most of the presented criteria are
based on the computation of distance measures between a seg-
mentation result and a ground truth. Even if the principles are
often quite similar, no comparison has been realized in the lit-
erature to evaluate the relative performances of these proposed
criteria. The problem lies in the fact that the reference is not
always easily available. Though a few databases of assessed
real images exist, a preliminary study on synthetic images
seems to be a powerful manner to make a reliable comparison.
Working in a controlled environment indeed allows to more
precisely understand the way how a criterion evolves in some
specific situations like under-segmentation, over-segmentation
affecting the contour, presence of noise, etc.

III. C OMPARATIVE STUDY

When new evaluation criteria are proposed in the literature,
the definitions and principles on which they are based are
of course exposed. Thereafter, their behaviors are generally
illustrated by a few examples, often on some segmentation
results of a chosen image. A comparative study with clas-
sical existing methods is sometimes conducted on a limited
test database. However, a comparative study of the principal
evaluation criteria, made on a large amount of data and
enabling to determine their relative relevance and their favored
application contexts, is not systematically done. We try to
fill this lack in this section. The main supervised evaluation
criteria defined for contour segmentation results and previously

exposed are here tested. They mainly rely on the computation
of distances between an obtained segmentation result and a
ground truth. The tested criteria areODE, UDE, LE, L1,
L2, L3, L4, DKU , DBH, DJE, HAU , PRA, OCO and
OCU . In order to make the comparison easier for the reader,
we made all the criteria evolve in the same way. They all
are positive, growing with the amplitude of the perturbations.
The value 0 corresponds therefore to the best result. We
first studied the criteria on synthetic segmentation results.
Afterwards, we tested the chosen criteria on a selection of
real images extracted from thec©Corel database for which
manual segmentation results provided by experts are available
[4]. Contrary to synthetic cases, this database allows us to
process the diversity of the possible encountered situations
in natural images. Indeed, it contains images corresponding
to different application fields such as aerial photography or
landscape images.

A. Preliminary study on synthetic segmentation results

In order to study the behaviors of the previously presented
criteria in the face of different perturbations, we first generated
some synthetic segmentation results corresponding to several
degradations of a ground truth we created. Some of the
obtained results were described in [28]; we present in this
article the complete study.

The used ground truth is composed of five components:
a central ring and four external contours (see figure 3). The
tested perturbations are the following:

• under-segmentation: one or several components of the
ground truth are missing,

• over-segmentation affecting the complete image: noisy
ground truth with impulsive noise (probability from 0.1%
to 50%),

• over-segmentation affecting the contour area: from 1 to
5 dilatation processes,

• over- and under-segmentation affecting the contour area:
impulsive noise (probability of 1%, 5%, 10% or 25%) in
the contour area (width from 1 to 5 pixels),

• localization error: synthetic segmentation results obtained
by contour shifts from 1 to 5 pixels in the four cardinal
directions.

Different examples of the considered perturbations are pre-
sented in figure 3.

Figure 4 presents the evolution of four criteria (L1,
HAU , OCO, OCU ) in the face of under-segmentation.
The Y −coordinates of the curves present the criteria values,
the X−coordinates correspond to the different segmentation
results to assess. Four of them (results4, 11, 15 and 28)
are presented in figure 4 and are put into obviousness on
the curves thanks to bold or dotted lines.OCO is equal to
zero whatever case is considered. AsOCO only measures
over-segmentation, it equivalently grades a segmentation result
with one or several components missing.ODE has the same
behavior.L1 presents different stages allowing to gradually
penalize under-segmentation. This behavior corresponds to
the expected one and the majority of the criteria evolves in
that way (UDE, LE, L1, L2, L3, L4, DKU , DBH, DJE,
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Fig. 3. Ground truth and examples of perturbations

PRA). HAU also presents a graduated evolution but seems
to suffer from a lack of precision. It equivalently grades some
segmentation results even if the number of detected compo-
nents is completely different (see for example the segmentation
results11 and 15). Finally, OCU , which normally measures
under-segmentation, does not allow to correctly differentiate
the synthetic segmentation results. For example, it better
grades result15 than result28.

Figure 5 presents the evolution of three criteria (DKU ,
PRA, OCO) in the face of over-segmentation correspond-
ing to the presence of impulsive noise.OCO penalizes too
strongly the presence of over-segmentation: for example, it
equivalently grades the segmentation results with impulsive
noise of probability 0.2% and 25%. Moreover, the evolution
of this criterion is not monotonic.HAU has the same kind
of behavior.DKU really penalizes over-segmentation only
when it reaches a high level.ODE, LE, L1, L2, L3, L4,
DBH, DJE have the same kind of behavior.OCU and
UDE, that only measure under-segmentation, equivalently
grade segmentation results with a small or high presence of
noise. They are equal to zero whatever case is considered.
Finally, PRA permits to penalize the presence of impulsive
noise as soon as it appears. This criterion is the only one with
a behavior that is close to the human decision: an expert will
notice the presence of noise even for a small proportion and
will immediately penalize it. On the other hand, an expert will
not grade too noisy segmentation results very differently.

Concerning over-segmentation due to the dilatation of con-
tours, exceptUDE and OCU which are equal to zero
whatever case is considered, the other criteria present quite the
same behavior which is the expected one: figure 6 presents as
an example the evolution ofLE andL2.

In order to test the influence of combined over- and under-
segmentation, we first added, in the contour area, an impulsive
noise with a probability of 1%, 5%, 10% and 25%. The noise

Fig. 4. Evolution of four evaluation criteria in the face of under-segmentation

was respectively added in a neighborhood of the contour with
a window width from 1 to 5 pixels. Figure 7 presents the
evolution of three criteria (DJE, HAU , PRA) in the face of
this perturbation. We can notice that, as expected,HAU ranks
the segmentation results with respect to the width of the noisy
area around the contour. Nevertheless, it does not seem to take
into account the probability of apparition of noise: the three
examples presented in figure 7 are equivalently graded.HAU
andOCO, that evolve in the same way, seem to suffer from
a lack of precision in that case. On the other hand,DJE and
PRA correctly evolve penalizing in a more important way a
high probability and a large noisy area around the contour.
Most of the other criteria:LE, ODE, DBH, DKU , L1, L2,
L3 andL4 have the same behavior.

Last, we studied the influence of localization error. For these
synthetic segmentation results, the contours have been moved
from 1 to 5 pixels in the four cardinal directions. Figure 8
presents the evolution of three criteria (ODE, UDE, PRA) in
the face of this perturbation. In this figure, the original contour
appears dotted to make the perturbation remarkable. We can
observe that all the criteria penalize more a segmentation result
if it corresponds to an increasing shifting. Whatever,UDE and
PRA are more precise (OCO, OCU andHAU evolve in a
similar way).

As a result of this preliminary study, we can conclude
that most of the studied criteria have a global correct be-



6

Fig. 5. Evolution of three evaluation criteria in the face of over-segmentation
corresponding to the presence of impulsive noise

Fig. 6. Evolution of two evaluation criteria in the face of over-segmentation
due to the dilatation of contours

havior, that is a behavior corresponding in general to the
expected one. However, some of them turned out not to be
appropriate to characterize some situations. Table I sums up
the performances of the different criteria in the face of the
considered perturbations. TheOCO and OCU criteria were
computed with the parameters advocated in [27] (n=1 and
dTH=5). Fitted parameters seem to be essential to obtain
the optimal performances for each situation. This shows that
these criteria are less generic thanODE or UDE. These
conclusions could be useful to make the necessary choices

Fig. 7. Evolution of three evaluation criteria in the face of combined over-and
under-segmentation localized in the contour area

Under-seg Over-segmentation Over-/under- Localization
mentation Noise Dilatation segmentation error

ODE ** *** *** **
UDE *** ***
LE *** ** *** *** **
L1 ** ** *** *** **
L2 ** ** *** *** **
L3 ** ** *** *** **
L4 ** ** *** *** **

DKU *** ** *** *** **
DBH *** ** *** *** **
DJE *** ** *** *** **
HAU * * *** * ***
PRA *** *** *** *** ***
OCO * *** * ***
OCU * ***

TABLE I

RELEVANCE OF THE DIFFERENT CRITERIA FOR EACH CONSIDERED

PERTURBATION (THE MORE STARS, THE BETTER CRITERION).

to propose a new measure combining two criteria dedicated
respectively to under- and over-segmentation.HAU revealed
itself as being not relevant to precisely characterize under-
segmentation or localization errors. Finally,LE, L1, L2, L3,
L4, DKU , DBH, DJE andPRA have a correct behavior in
the face of the considered perturbations,PRA giving in this
preliminary study the most clear-cut decision.
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Fig. 8. Evolution of three evaluation criteria in the face of combined over-and
under-segmentation due to contours shifting

B. Complementary study on real segmentation results

In order to complete this preliminary study, we tested the
different criteria on segmentation results issued from real
images to process the diversity of the possible encountered sit-
uations. Our database was composed of 300 images extracted
from the c©Corel database for which manual segmentation
results provided by experts are available [4]. Figure 9 presents
two examples of the available images and corresponding
ground truths established by different experts. For each image
of the database, 5 to 8 experts ground truths are available.

We can notice that these ground truths can be quite dis-
similar. Some experts only attach to put into obviousness the
main objects in the image. Others are more sensitive to the
objects present in the background. We then decided to make a
fusion of the different expert ground truths in order to obtain a
more representative one. The following method was applied to
create the fused ground truths: for each expert ground truth, a
widened one was created. The pixels belonging to the contour
were set to 3, their direct neighbors (4-connected) were set to
2 and the following ones, connected to direct neighbors, were
set to 1. For one real image, all the available widened ground
truths were added and a pixel was considered as belonging to
the contour if its score strictly exceeded twice the number of
experts. Figure 10 presents the principle on which the fused
ground truths were established and figure 11 presents the fused
ground truths obtained for two real images.

Fig. 9. Examples of real images extracted from thec©Corel database and
corresponding experts ground truths

In order to test the different evaluation criteria, we seg-
mented the image database with 10 segmentation algorithms
based on threshold selection [29]:

• color gradient, • brightness gradient,
• texture gradient, • first moment matrix,
• second moment matrix, • color/texture gradients,
• brightness/texture gradients, • gradient magnitude,
• gradient multi-scale magnitude,• Canny filter.

These filters generate fuzzy contour maps. Figure 12
presents examples of the maps obtained for two images with
the Canny filter.

As we need binary contour maps, we thresholded the
fuzzy contour maps to obtain various segmentation results.
The threshold value (Th) was set from 5 to 255. For each
segmentation result, the 14 studied criteria were computed
using the fused ground truth. Figures 13 and 14 present the
different curves obtained with the Canny filter on two images
of the c©Corel database. TheY -coordinates of the curves
present the criteria values. TheX-coordinates correspond to
the different chosen values (Th ∈ [5, 255]) to threshold the
fuzzy contour map; a very small threshold value conducting
to a high over-segmented segmentation result. In order to
make the comparison easier for the reader, we normalized the
criteria: they all evolve between 0 and 1, 0 being the best
result.

A relevant criterion should be able to detect a compro-
mise between under- and over-segmentation and consequently
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Fig. 10. Principle on which the fused ground truths are created

Fig. 11. Examples of obtained fused ground truths

Fig. 12. Example of the fuzzy contour map obtained for two original images
of the c©Corel database with the Canny filter

present a minimum. This approach is similar to the one
proposed in [7]. A criterion which evolves in a monotonic way
is indeed not satisfactory. If it always increases (respectively
decreases) that means that the over-segmented (resp. the under-
segmented) case is too much favored. Similarly, even it is not

monotonic, a criterion which systematically selects the first
tested threshold value:Th = 5 (resp. the last tested threshold
value:Th = 255) as being the best, must be rejected.

Figures 13 and 14 present, for two images of thec©Corel
database, the evolution of the 14 studied criteria for segmen-
tation results obtained with the Canny filter using different
thresholds.
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Fig. 13. Evolution, for one image of thec©Corel database, of the 14 studied
criteria for segmentation results obtained with the Canny filter using different
thresholds.
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Fig. 14. Evolution, for one image of thec©Corel database, of the 14 studied
criteria for segmentation results obtained with the Canny filter using different
thresholds.

We can observe, on both figures 13 and 14, that theLE,
L1, L2, L3, L4, DJE, DKU criteria are always decreasing,
preferring the under-segmentation. As a result of their defini-
tions,OCO andODE also privilege the under-segmentation.
Similarly UDE and OCU privilege the over-segmentation.
We can also notice thatDBH is not relevant. First of all,
it evolves in a monotonic way and the obtained values are
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very similar whatever case is considered, high over- or under-
segmentation. These results allow to balance the conclusions
resulting from the preliminary study using synthetic segmen-
tation results. It shows the interest to complete the study
with real segmentation results. Finally, only two criteria allow
to detect a compromise:PRA and HAU . We can however
notice, as previously mentioned in the preliminary study on
synthetic segmentation results, thatHAU seems to suffer from
a lack of precision. It equivalently grades some segmentation
results even if a different threshold value always conducts to
slightly different situations (see for example figure 14: for a
threshold value growing from 5 to 90,HAU is constant).

Figure 15 presents the binary images obtained using the
optimal threshold selected by the criterionPRA for the two
original images of figures 13 and 14 with the Canny filter.

Fig. 15. Binary images obtained using the optimal threshold selected by
the criterionPRA for the two original images of figures 13 and 14 with the
Canny filter.

Figure 16 presents the mean curves obtained on the 300
images of the c©Corel database using for each image the
10 segmentation algorithms. If these curves only present the
global trends of the criteria behaviors, they are nevertheless
revealing. Some of them are very similar with those presented
in the single cases of figures 13 and 14 expressing repetitive
behaviors. The two criteria presenting a minimum arePRA
and HAU . These two criteria allow in almost all cases to
detect a compromise.

Table II sums up the situation mostly favored by the
different criteria in the face of segmentation results issued from
real images of thec©Corel database.

Under-segmentation Compromise Over-segmentation

ODE
√

UDE
√

LE
√

L1

√

L2

√

L3

√

L4

√

DKU
√

DBH
√

DJE
√

HAU
√

PRA
√

OCO
√

OCU
√

TABLE II

SITUATION MOSTLY FAVORED BY THE CRITERIA FOR SEGMENTATION

RESULTS ISSUED FROM REAL IMAGES OF THEc©COREL DATABASE.
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Fig. 16. Mean evolution, for the 300 images of thec©Corel database, of
the 14 studied criteria for segmentation results obtained with 10 segmentation
algorithms based on threshold selection.

IV. CONCLUSION

We presented in this article a review of classical available
metrics used for the evaluation, in the supervised context,
of contour detection methods. The studied criteria compute
a dissimilarity measure between a segmentation result and
a ground truth. We tested their relative performances on
synthetic and real segmentation results. Thanks to the first part
of the comparison, done on synthetic results, we concluded
that different criteria (LE, L1, L2, L3, L4, DKU , DBH,
DJE and PRA) had a global correct behavior.PRA stood
out as the most interesting one, giving more discriminated
results and allowing a most clear-cut decision. The second part
of the comparative study, done on real segmentation results,
confirmed this conclusion.

This article permitted to start a general comparison which
could be extended by any person interested in this topic. The
used databases are at everyone’s disposal at the following
addresses:

• http://www.ecole.ensicaen.fr/∼rosenber/ressources.html
for the synthetic segmentation results

• http://www.eecs.berkeley.edu/Research/Projects/CS/vision
/grouping/segbench/ for the real segmentation results
extracted from thec©Corel database.

This study concerned criteria which do not require the
continuity of the contours, we plan to first of all complete
it using criteria dedicated to the evaluation of region detection
algorithms when segmentations presenting closed contours are
available (at least closed by the image edges). In these cases,
the correspondence between contours and regions can be easily
obtained.

Secondly, we plan to combine different criteria in order to
obtain a new one taking advantage of their relative specifici-
ties. It could be for example interesting to combineOCO
and OCU which are respectively dedicated to the detection
of over- and under-segmentation.
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We are also interested in assessing if a criterion is able to
reflect the subjective evaluation of a human expert or not. We
plan to realize a psychovisual study for the comparison of
contour segmentation results. The goal of this experiment will
be first of all to know if the comparison of multiple contour
segmentation results of a single image can be made easily and
can provide a similar judgement for different experts. This
psychovisual study could also be used to check if evaluation
criteria are able to reproduce the human judgment.

These evaluation criteria could finally be applied in medical
contexts when comparisons with expert diagnostics are re-
quired. When new segmentation methods are proposed in this
context, their behaviors are often illustrated by few examples
and generally visually assessed. An evaluation criterion will
permit to overcome this subjective step or to confirm it.
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