
HAL Id: hal-00255966
https://hal.science/hal-00255966

Submitted on 14 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Isomorphism Problem for Planar 3-Connected
Graphs is in Unambiguous Logspace

Thomas Thierauf, Fabian Wagner

To cite this version:
Thomas Thierauf, Fabian Wagner. The Isomorphism Problem for Planar 3-Connected Graphs is in
Unambiguous Logspace. STACS 2008, Feb 2008, Bordeaux, France. pp.633-644. �hal-00255966�

https://hal.science/hal-00255966
https://hal.archives-ouvertes.fr

ha
l-

00
25

59
66

, v
er

si
on

 1
 -

 1
4

Fe
b

20
08

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 633-644
www.stacs-conf.org

THE ISOMORPHISM PROBLEM FOR PLANAR 3-CONNECTED

GRAPHS IS IN UNAMBIGUOUS LOGSPACE

THOMAS THIERAUF 1 AND FABIAN WAGNER 2

1 Fak. Elektronik und Informatik, HTW Aalen, 73430 Aalen, Germany
E-mail address: thomas.thierauf@uni-ulm.de

2 Inst. für Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany
E-mail address: fabian.wagner@uni-ulm.de

Abstract. The isomorphism problem for planar graphs is known to be efficiently solvable.
For planar 3-connected graphs, the isomorphism problem can be solved by efficient parallel
algorithms, it is in the class AC

1.
In this paper we improve the upper bound for planar 3-connected graphs to unambigu-

ous logspace, in fact to UL ∩ coUL. As a consequence of our method we get that the
isomorphism problem for oriented graphs is in NL. We also show that the problems are
hard for L.

1. Introduction

The graph isomorphism problem (GI) is one of the most challenging problems today. No
polynomial time algorithm is known for it, even with extended resources like randomization
or on quantum computers. On the other hand, it is not known to be NP-complete and
there are good reasons to conjecture that it is in fact not complete.

For some restricted classes of graphs, efficient algorithms for GI are known. For example
for trees [AHU74] or for graphs with bounded degree [Luk82]. We are interested in planar
graphs and 3-connected graphs. A graph is 3-connected if it remains connected after deleting
two arbitrary vertices. In 1966, Weinberg [Wei66] presented an O(n2)-algorithm for testing
isomorphism of planar 3-connected graphs. This algorithm was improved and extended by
Hopcroft and Tarjan [HT74] to an O(n log n)-algorithm for the planar graph isomorphism
problem (planar-GI). Then Hopcroft and Wong [HW74] showed that it is solvable in linear
time. Since the constant hidden in the linear time bound is very large, the problem has
been reconsidered under a more practical approach [KHC04]. The parallel complexity of
planar-GI has been studied by Miller and Reif [MR91] and Ramachandran and Reif [RR94].
They showed that planar-GI AC1-reduces to the 3-connected case and that 3-connected GI
is in AC1.

Grohe and Verbitsky [GV06] gave an alternative way to show that planar-GI is in AC1.
They proved for a class G of graphs, that if every graph in G is definable in a finite-variable
first order logic within logarithmic quantifier depth, then the isomorphism problem for G

Supported by DFG grants Scho 302/7-2 and TO 200/2-1.

c© T. Thierauf and F. Wagner
CC© Creative Commons Attribution-NoDerivs License

thomas.thierauf@uni-ulm.de
fabian.wagner@uni-ulm.de

634 T. THIERAUF AND F. WAGNER

is in AC1. Later Verbitsky [Ver07] showed that planar 3-connected graphs are definable
with 15 variables and quantifier depth O(log n) which leads to a 14-dimensional Weisfeiler-
Lehman algorithm. With the reduction of [MR91] one obtains a new AC1-algorithm for
planar-GI.

In the above papers on planar-GI, the authors consider first 3-connected graphs. The
reason is a result due to Whitney [Whi33] that every planar 3-connected graph has pre-
cisely two embeddings on a sphere, where one embedding is the mirror image of the other.
Moreover, one can efficiently compute these embeddings. Weinberg [Wei66] used these em-
beddings to compute a code for a graph, such that isomorphic graphs will have the same
code. We call a code with this property a canonical code for the graph.

Some of the subroutines in the above algorithms have complexity below AC1. Allender
and Mahajan [AM00] showed that planarity testing is hard for L and in symmetric logspace,
SL. Since SL = L [Rei05], planarity testing is complete for logspace. Furthermore Allender
and Mahajan [AM00] showed that a planar embedding can be computed in logspace. Also
the connectivity structure of a (undirected) graph can be computed in logspace [NTS95].
Hence a natural question is whether planar-GI is in logspace.

While this question remains open, we considerably improve the upper bound for planar-
GI for 3-connected graphs in Section 3, namely from AC1 to unambiguous logspace, in fact
to UL∩coUL. Like Weinberg, we construct codes for the given graphs. In order to use only
logarithmic space, our code is constructed via a spanning tree, which depends on the planar
embedding of the graph. A crucial tool in the construction of the spanning tree is based
on a recent result by Bourke, Tewari, and Vinodchandran [BTV07] that the reachability
problem for planar directed graphs is in UL ∩ coUL. They built on work of Reinhard and
Allender [RA00] and Allender, Datta, and Roy [ADR96]. We argue in Section 4 that their
algorithm can be modified to not just solve reachability questions but to compute distances
between nodes in UL ∩ coUL.

The embedding of a planar graph can be represented as a rotation scheme. Intuitively
this gives the edges in clockwise or counter clockwise order around each node such that it
leads to a planar drawing of the graph. Rotation schemes have also been considered for
non-planar graphs. We talk of oriented graphs in this case. We extend our results to the
isomorphism problem for oriented graphs. There one has given two graphs G and H and a
rotation scheme for each of the graphs. One has to decide whether there is an isomorphism
between G and H that respects the rotation schemes. In Section 5 we show that the problem
is in NL.

With respect to lower bounds, GI is known to be hard for DET [Tor04], where DET
is the class of problems that are NC1-reducible to the determinant defined by [Coo85]. In
fact, already the isomorphism problem for tournament graphs is hard for DET [Wag07].
We show in Section 6 that the isomorphism problem for planar 3-connected graphs is hard
for logspace.

2. Preliminaries

Basically, L and NL are the classes of languages computable by a deterministic and
nondeterministic logspace bounded Turing machine, respectively. A nondeterministic Tur-
ing machine is called unambiguous, if it has at most one accepting computation on any

THE ISOMORPHISM PROBLEM FOR PLANAR 3-CONNECTED GRAPHS IS IN UL 635

input. The class of languages computable by unambiguous logspace bounded Turing ma-
chines is denoted by UL. NL is known to be closed under complement [Imm88, Sze88], but
it is open for UL.

The functional version of L is denoted by FL. It is known that FL-functions are closed
under composition, i.e. FL ◦FL = FL. The proof goes by recomputing bits of the function
value of the first function each time such a bit is needed by the second function. The same
argument works when we consider functions that are computed by unambiguous logspace
bounded Turing machines. If we call the class FUL, then this says that FUL◦FUL = FUL.
We need a further property of UL:

Lemma 2.1. LUL∩coUL = UL ∩ coUL.

Proof. Let M be a logspace oracle Turing machine with oracle A ∈ UL∩coUL. Let M0,M1

be (nondeterministic) unambiguous logspace Turing machines such that L(M0) = A and
L(M1) = A. An unambiguous logspace Turing machine M ′ for L(M,A) works as follows
on input x:

Simulate M on input x. If M asks an oracle question y, then nondetermin-
istically guess whether the answer is 0 or 1.
• If the guess is answer 0, then simulate M0 on input y. If M0 accepts,

then continue the simulation of M with oracle answer 0. If M0 rejects
then reject and halt.
• If the guess is answer 1, then simulate M1 on input y. If M1 accepts,

then continue the simulation of M with oracle answer 1. If M1 rejects
then reject and halt.

Finally accept iff M accepts.

Note that M ′ is unambiguous because M0 and M1 are unambiguous and of the two guessed
oracle answers always exactly one guess is correct.

Let G = (V,E) be an undirected graph with vertices V = V (G) and edges E = E(G).
Let G − {v} denote the induced subgraph of G on V (G) \ {v}. The neighbours of v ∈ V

are Γ(v) = {u | (v, u) ∈ E }. By Ev we denote the edges going from v to its neighbors,
Ev = { (v, u) | u ∈ Γ(v) }. By d(u, v) we denote the distance between nodes u and v in G,
which is the length of a shortest path from u to v in G.

A graph is connected if there is a path between any two vertices in G. A vertex v ∈ V is
an articulation point if G−{v} is not connected. A pair of vertices u, v ∈ V is a separation

pair if G− {u, v} is not connected. A biconnected graph contains no articulation points. A
3-connected graph contains no separation pairs.

A rotation scheme for a graph G is a set ρ of permutations, ρ = { ρv | v ∈ V }, where ρv

is a permutation on Ev that has only one cycle (which is called a rotation). Let ρ−1 be the
set of inverse rotations, ρ−1 = { ρ−1

v | v ∈ V }. A rotation scheme ρ describes an embedding
of graph G in the plane. We call G together with ρ an oriented graph. If the embedding is
planar, we call ρ a planar rotation scheme. Note that in this case ρ−1 is a planar rotation
scheme as well. Allender and Mahajan [AM00] showed that a planar rotation scheme for a
planar graph can be computed in logspace.

If a planar graph is in addition 3-connected, then there exist precisely two planar
rotation schemes [Whi33], namely some planar rotation scheme ρ and its inverse ρ−1. This
is a crucial property in our isomorphism test.

636 T. THIERAUF AND F. WAGNER

3. Planar 3-Connected Graph Isomorphism

In this section we prove the following theorem.

Theorem 3.1. The isomorphism problem for planar, 3-connected graphs is in UL∩coUL.

In 1966, Weinberg [Wei66] presented an O(n2) algorithm for testing isomorphism of
planar 3-connected graphs. The algorithm computes a canonical form for each of the two
graphs. This is a coding of graphs such that these codings are equal iff the two graphs are
isomorphic. For a 3-connected graph G, the algorithm starts by constructing a code for
every edge of G and any of the two rotation schemes. Of all these codes, the lexicographical
smallest one is the code for G.

For a designated edge (s, t) and a rotation scheme ρ for G, the code is constructed
roughly as follows. Every undirected edge is considered as two directed edges. Now one can
define an Euler tour based on some rules for selecting the next edge. Basically, the rules
distinguish between the case whether a vertex or edge was already visited or not. The next
edge to consider is chosen to the left or right of the active edge according to ρ. Define edge
(s, t) to be the start of the tour. The code consists of the nodes as they appear on the tour,
where the names are replaced by the order of their first appearance on the tour. That is,
the code starts with (1, 2) for the edge (s, t) and every later occurrence of s or t on the tour
is replaced by 1 or 2, respectively.

Weinberg’s algorithm doesn’t work in logspace, because one has to store the vertices
and edges already visited. We show how to construct a different code in UL. Let (s, t) be
a designated edge and ρ be a rotation scheme for G. Our construction makes three steps.

(1) First we compute a canonical spanning tree T for G. This is a spanning tree which
depends on (s, t), ρ, and G, but not on the way these inputs are represented.

(2) Next we construct a canonical list L of all edges of G. To do so, we traverse T and
enumerate the edges of T and their neighbor edges according to ρ. The list L does
not depend on the representation of G, ρ or T .

(3) Finally we rename the vertices depending on the position of their first occurrence
in the list L and get a code word for G with respect to (s, t) and ρ.

We will see that the spanning tree in step 1 can be computed in (the functional version
of) UL∩coUL. The list and the renaming in step 2 and step 3 can be computed in logspace,
L. Therefore the composition of the three steps is in UL ∩ coUL.

The overall algorithm has to decide whether two given graphs G and H are isomorphic.
To do so we fix (s, t) and ρ for G and cycle through all edges of H as designated edge and
the two possible permutation schemes of H. Then G and H are isomorphic iff we find a
code for H that matches the code for G. It is not hard to see that this outer loop is in
logspace. Therefore the isomorphism test stays in UL ∩ coUL.

Step 1: Construction of a canonical spanning tree

We show that the following problem can be solved in unambiguous logspace.

• Input: An undirected graph G = (V,E), a rotation scheme ρ for G, and a designated
edge (s, t) ∈ E.
• Output: A canonical spanning tree T ⊆ E of G.

Recall that by a canonical spanning tree we mean that T does not depend on the input
representation of ρ or G, any representation will result in the same spanning tree T .

THE ISOMORPHISM PROBLEM FOR PLANAR 3-CONNECTED GRAPHS IS IN UL 637

The idea to construct the spanning tree is to traverse G with a breath-first search
starting at node s. The neighbors of a node are visited in the order given by the rotation
scheme ρ. Since the algorithm should work in logspace, we cannot afford to store all the
nodes that we already visited, as in a standard breath-first search. We get around this
problem by working with distances between nodes.

We start with the nodes at distance 1 from s. That is, write (s, v) on the output tape,
for all v ∈ Γ(s). Now let d ≥ 2 and assume that we have already constructed T up to nodes
at distance ≤ d − 1 to s. Then we consider the nodes at distance d from s. Let w be a
node with d(s,w) = d. We have to connect w to the tree constructed so far. We do so by
computing a shortest path from s to w. Ambiguities are resolved by using the first feasible
edge according to ρ. We start with (s, t) as the active edge (u, v).

• If d(u,w) > d(v,w), then (u, v) is the first edge encountered that is on a shortest
path from u to w. Therefore we go from u to v and start searching the next edge
from v. As starting edge we take the successor of (v, u). That is, ρv(v, u) is the new
active edge.
• If d(u,w) ≤ d(v,w), then (u, v) is not on a shortest path from u to w. Then we

proceed with ρu(u, v) as the new active edge.

After d− 1 steps in direction of w the node v of the active edge (u, v) is a predecessor of w

on a shortest path from s to w. Then we write (v,w) on the output tape. The following
pseudo-code summarizes the algorithm.

for all v ∈ Γ(s) do output (s, v)
for d← 2 to n− 1 do

for all w ∈ V such that d(s,w) = d do

(u, v)← (s, t)
for k ← 1 to d− 1 do

while d(u,w) ≤ d(v,w) do (u, v)← ρu(u, v)
(u, v)← ρv(v, u)

output (v,w)

The spanning tree T is canonical because its construction depends only on ρ, edge (s, t),
and edge set E. The following figure shows an example of a spanning tree T for a graph G

with rotation function ρ which arranges the edges in clockwise order around each vertex.

ρv3

ρv2

ρv1

ρt

= ((s, t) (s, v1) (s, v2))
= ((t, s) (t, v3) (t, v1))
= ((v1, s) (v1, t) (v1, v3) (v1, v2))
= ((v2, s) (v2, v1) (v2, v3))
= ((v3, t) (v3, v2) (v3, v1))

ρs

ρ = {ρs, ρt, ρv1
, ρv2

, ρv3
}

v1

v3

t

s

v2

Except for the computation of the distances, the algorithm works in logspace. We
have to store the values of d, k, u and v, and the position of w, plus some extra space for
doing calculations. We show in Theorem 4.1 below that the distances can be computed in
UL ∩ coUL. By Lemma 2.1 the canonical spanning tree can be computed in UL ∩ coUL.

638 T. THIERAUF AND F. WAGNER

Step 2: Computation of a canonical list of all edges

We show that the following problem can be solved in logspace.

• Input: An undirected graph G = (V,E), a rotation scheme ρ for G, a spanning
tree T ⊆ E of G, and a designated edge (s, t) ∈ T .
• Output: A canonical list L of all edges in E.

Recall that by a canonical list we mean that the order of the edges as they appear in
L does not depend on the input representation of ρ, G or T , any representation will result
in the same list.

The idea is to traverse the spanning tree in a depth-first manner. At each vertex visit
all incident edges in breath-first manner according to ρ until the next edge contained in the
spanning tree is reached.

We start the traversal with edge (s, t) as the active edge (u, v). We write (u, v) on the
output tape and then compute the next active edge as follows:

• If (u, v) ∈ T then we walk depth-first in T from u to v, consider the edge (v, u) and
take its successor according to ρv, i.e., ρv(v, u) is the new active edge.
• If (u, v) 6∈ T then we proceed breath-first with ρu(u, v) as the new active edge.

This step is repeated until the active edge is again (s, t). Then we have traversed all edges
in E. Every undirected edge is encountered exactly twice, once in each direction. The
following pseudo-code summarizes the algorithm.

(u, v)← (s, t)
repeat

output (u, v)
if (u, v) ∈ T then (u, v)← ρv(v, u)
else (u, v)← ρu(u, v)

until (u, v) = (s, t)

Clearly, the algorithm works in logspace. The list L is canonical because its construction
depends only on ρ, edge (s, t), and sets E and T . Since T is canonical as well, L depends
actually only on ρ, (s, t), and E. The following figure shows an example for L.

v1

v3

t

s

(s, v2)(v2, v1)(v2, v3)(v2, s)

(s, v1)(v1, t)(v1, v3)(v1, v2)(v1, s)

(s, t)(t, v3)(v3, v2)(v3, v1)(v3, t)(t, v1)(t, s)L =

v2

Step 3: Renaming the vertices

The last step is to rename the vertices in the list L such that they become independent
of the names they have in G. This is achieved as follows: consider the first occurrence (from
left) of node v in L. Let k − 1 be the number of pairwise different nodes to the left of v.
Then all occurrences of v are replaced by k. Recall that L starts with the edge (s, t). Hence

THE ISOMORPHISM PROBLEM FOR PLANAR 3-CONNECTED GRAPHS IS IN UL 639

all occurrences of s get replaced by 1, all occurrences of t get replaced by 2, and so on. Call
the new list code(G, ρ, s, t).

Given L as input, the list code(G, ρ, s, t) can be computed in logspace. We start with
the first node v (which is s) and a counter k, that counts the number of different nodes we
have seen so far. In the beginning, we set k = 1.

• If v occurs for the first time, than we output k and increase k by 1.
• If v occurs already to the left of the current position, then we have to determine the

number, v got at its first occurrence. To do so, we determine the first occurance of v

and then count the number of different nodes to the left of of v at its first occurance.
It is not hard to see that this can be done in logspace.

Then we go to the next node in L. Consider the example from above. The code constructed
from list L for G is as follows.

L = (s, t) (t, v3) (v3, v2) (v3, v1) (v3, t) (t, v1) (t, s)
code(G, ρ, s, t) = (1, 2) (2, 3) (3, 4) (3, 5) (3, 2) (2, 5) (2, 1)

sequel of L (s, v1) (v1, t) (v1, v3) (v1, v2) (v1, s)
sequel of code (1, 5) (5, 2) (5, 3) (5, 4) (5, 1)

sequel of L (s, v2) (v2, v1) (v2, v3) (v2, s)
sequel of code (1, 4) (4, 5) (4, 3) (4, 1)

The renaming algorithm works in logspace. It remains to argue that the new names
of the nodes are independent of their names in G. Let H be a graph which is isomorphic
to G, and let ϕ be an isomorphism between G and H. Note that ρ ◦ϕ is a rotation scheme
for H. Consider the computation of the code for graph H with rotation scheme ρ ◦ ϕ and
designated edge (ϕ(s), ϕ(t)). The spanning tree computed in step 1 will be ϕ(T) and the
list computed in step 2 will be ϕ(L). Now the above renaming procedure will give the same
number to node v in L and to node ϕ(v) in ϕ(L). For example nodes ϕ(s) and ϕ(t) will
get number 1 and 2, respectively. It follows that code(G, ρ, s, t) = code(H, ρ ◦ϕ,ϕ(s), ϕ(t)).
We summarize:

Theorem 3.2. Let G and H be connected, undirected graphs, let ρG be a rotation scheme

for G and (s, t) be an edge in G. Then G and H are isomorphic iff there exists a rotation

scheme ρH for H and an edge (u, v) in H such that code(G, ρG, s, t) = code(H, ρH , u, v).

This completes the proof of Theorem 3.1 except for the complexity bound on computing
distances in planar graphs. This is done in the next section.

4. Computing Distances in Planar Graphs

We show that distances in planar graphs can be computed in unambiguous logspace.

Theorem 4.1. The distance between any two vertices in a planar graph can be computed

in UL ∩ coUL.

Bourke, Tewari, and Vinodchandran [BTV07] showed that the reachability problem for
planar directed graphs is in UL∩coUL. Their algorithm is essentially based on two results:

(1) Allender, Datta, and Roy [ADR96] showed that the reachability problem for planar
directed graphs can be reduced to grid graph reachability. Grid graphs are graphs

640 T. THIERAUF AND F. WAGNER

who’s vertices can be identified with the grid points in a 2-dimensional grid with
the edges connecting only the direct horizontal or vertical neighbors.

(2) Reinhard and Allender [RA00] showed that the NL-complete reachability problem
for directed graphs is in UL∩coUL if there is a logspace computable weight function
for the edges such that for every pair of vertices u and v, if there is a path from u

to v, then there is a unique minimum weight shortest path between u and v.

Bourke, Tewari, and Vinodchandran [BTV07] provide such a weight function for grid graphs.
Therefore the reachability problem for planar directed graphs is in UL ∩ coUL.

We modify this algorithm in order to determine distances between nodes in the given
planar graph G. This is adapted from the Reinhard-Allender algorithm applied to the
weighted grid graph computed from G. Here, we only describe the changes that have to be
made in the cited references.

We start by considering the reduction from reachability for a planar graph G to a grid
graph Ggrid [ADR96]. The reduction from G to Ggrid is a special combinatorial embedding
that introduces only degree 2 nodes, thereby it preserves the exact number of paths between
any two original vertices. Vertices in G are replaced by directed cycles and edges in G are
replaced by paths such that they can be embedded into a grid. For our purpose it suffices
to note that one can modify the construction and mark the original edges of G in Ggrid .
Hence if we consider paths in Ggrid and count only the marked edges, we get distances in G.

The next step is to define a weight function such that shortest paths in Ggrid with
respect to marked edges are unique. Bourke, Tewari, and Vinodchandran [BTV07] defined
the following weight function. For an edge e let

w0(e) =











n4, if e is an east or west edge,

n4 + i, if e is a north edge in column i,

n4 − i, if e is a south edge in column i.

Let p be a path in Ggrid . The weight w0(p) is the sum of the weights of the edges on p

and can be written as a + bn4. Clearly, b is the number of edges on p. Also, it is easy to
see that if another path p′ with weight w0(p

′) = a′ + b′n4 has the same weight as p, i.e..
w0(p) = w0(p

′), then a = a′ and b = b′. This enforces that when we consider shortest paths
between two nodes, these paths must have the same number of edges. The crucial part now
is the value of a. Let p and p′ be different simple paths connecting the same two vertices.
Then Bourke, Tewari, and Vinodchandran [BTV07] showed that a 6= a′. It follows that the
minimum weight path with respect to w0 is always unique.

Now we modify the weight function in order to give priority to the marked edges. That
is, we define

w(e) =

{

w0(e) + n8, if e is marked,

w0(e), otherwise.

Clearly, minimum weight paths must minimize the number of marked edges. The next
parameter to minimize is the number of all edges on a path. Finally, by the same argument
as above, the a-values of different simple paths that connect the same two vertices will be
different. It follows that the minimum weight path with respect to w is always unique.

Reinhard and Allender [RA00] extended the counting technique of Immerman [Imm88]
and Szelepcsényi [Sze88]. In addition to the number of nodes within distance k from some
start node s, they also sum up the length of the shortest paths to these nodes. If the shortest
paths are unique then they show that the predicate d(s, v) ≤ k is in UL ∩ coUL. The

THE ISOMORPHISM PROBLEM FOR PLANAR 3-CONNECTED GRAPHS IS IN UL 641

distance d now refers to Ggrid because this is the input of the algorithm. By augmenting
the algorithm with a counter for marked edges we also can refer to distances in G by
construction of the weight function w. This suffices for our purpose because by several
invocations of this procedure with different k’s we can determine d(s, v) for any s and v in
UL ∩ coUL, where d is the distance in G.

5. Oriented Graph Isomorphism

In the previous sections we have considered planar graphs, where the planar embedding
is provided by a rotation scheme. It is also interesting to consider arbitrary (undirected)
graphs with a rotation scheme that induces some orientation, i.e. cyclic order, on the edges.
In the isomorphism problem for oriented graphs we have given two graphs, each with a
rotation scheme. One has to decide whether there is an isomorphism between the graphs
that respects the orientation.

Miller and Reif [MR91] proved that the isomorphism problem for oriented graphs is in
AC1. We improve the complexity bound to NL. The proof goes along the same lines as for
planar-GI: compute a canonical form for each of the graphs according to the given rotation
schemes such that precisely in the isomorphic case, these canonical forms are equal.

Theorem 5.1. The oriented graph isomorphism problem is in NL.

It suffices to analyse the complexity of computing a canonical form for a graph G and
a rotation scheme ρ. If G is not connected, then we determine the connected components
in logspace [NTS95, Rei05] and compute canonical forms for each of them. Then we sort
these canonical forms lexicographically and write them onto the output tape. Thus, we
may assume that G is connected.

The three steps to compute a canonical form for a planar graph were all in logspace,
except for the subroutine to compute distances, which was in UL ∩ coUL. Without pla-
narity, the best upper bound for computing distances in a graph is NL: to determine if
d(u, v) ≤ k simply guess a path of length ≤ k from u to v. This proves Theorem 5.1.

6. Hardness of Planar 3-Connected GI

Lindell [Lin92] proved that tree isomorphism (TI) is in L. In fact, TI is complete
for L [JKMT03]. Since trees are planar graphs, planar-GI is hard for L. We show that
the problem remains hard for L even when restricted to planar 3-connected graphs. All
the hardness and completeness results in this section are with respect to AC0-many-one
reductions.

Theorem 6.1. Planar 3-connected graph isomorphism is hard for L.

We reduce from the known L-complete problem Ord which is defined as follows.

Order between Vertices (Ord)
Input: a directed graph G = (V,E) that is a line, and s, t ∈ V .
Decide whether s < t in the total order induced on V by G.

We first describe the reduction from Ord to TI [JKMT03]. Let v1, . . . , vn be the nodes
of G in the order they appear on the line in G. In particular, v1 is the unique node with
in-degree 0 and vn is the unique node with out-degree 0. Let s = vi and t = vj . W.l.o.g.
assume that i 6= n (otherwise map the instance to a non-isomorphic pair of trees). The

642 T. THIERAUF AND F. WAGNER

(undirected) tree T constructed from G has two copies u1, . . . , un and w1, . . . , wn of the line
of G, and there is an additional node r that is connected to u1 and w1. Up to this point,
we have constructed one long line. Now the trick is to interrupt this line: take out the edge
(ui, ui+1) and instead put the edge (wi, ui+1). Let T be the resulting tree.

u1 u2 ui ui+1 un

r

w1 w2 wi wi+1 wn

v1 v2 vi vi+1 vn

TG

Note that there is a unique non-trivial automorphism for T : exchange ui+1 and wi+1,
. . . , un and wn, and map the other vertices onto themselves. We construct two trees T1

and T2 from T . With respect to T , tree T1 has two extra nodes x0, x1 which are connected
with node uj, and T2 has extra nodes y0, y1 which are connected with node wj. The extra
edges enforce that an isomorphism between T1 and T2 has to map uj to wj, because these
are the only nodes of degree 4 (for j < n). Now, if vi < vj, then the above automorphism
of T yields an isomorphism between T1 and T2. On the other hand, if vi ≥ vj , then there is
no isomorphism between T1 and T2.

We modify T to a graph H that is no longer a tree, but planar and 3-connected. Split
each node v of degree 1 or 2 in T into three nodes v0, v1, v2. Connect these nodes via edges
(v0, v1) and (v1, v2). If v has degree 1, then additionally put the edge (v0, v2). Now, if (u, v)
is an edge in T , where u and v have degree 1 or 2, then we have edges (u0, v0), (u1, v1), and
(u2, v2) in H. The following picture illustrates the situation. In (a), node v has degree 2,
in (b), node v has degree 1.

u0

u1

u2

v0

v1

v2

u0

u1

u2

v0

v1

v2

u v

(a) (b)

A special case is node wi which has degree 3. For wi we need a gadget with 9 nodes
which are connected as a 3 × 3 grid. The connections from this graph gadget (bold lines)
to the other nodes are shown in the following picture.

u0
n

u1
n

u2
n

u2
i+1

u1
i+1

u0
i+1

w1
n

w2
n

w0
n

w1
i+1

w0
i+1

w2
i+1

w1
i−1

w2
i−1

w0
i−1

w2
1

w1
1

w0
1

r1 r2r0

u2
1

u1
1

u0
1

u2
i

u1
i

u0
i

H

THE ISOMORPHISM PROBLEM FOR PLANAR 3-CONNECTED GRAPHS IS IN UL 643

Now it suffices again to mark the nodes corresponding to vj . That is, define graph H1

as graph H plus the edge (u0
j , u

2
j), and H2 as H plus the edge (w0

j , w
2
j). Note that H1

and H2 are planar and 3-connected. Furthermore, any isomorphism between H1 and H2

has to map u0
j to w0

j , u1
j to w1

j , and u2
j to w2

j . Again, this is only possible iff vi < vj. This
completes the proof of Theorem 6.1.

A final observation is about oriented trees. An oriented tree is a tree with a planar
rotation scheme. It is not hard to see that one can adapt Lindell’s algorithm to work for
oriented trees, so that the corresponding isomorphism problem is in L. We show that it is
also hard for L.

Theorem 6.2. Oriented tree isomorphism is complete for L.

We reduce Ord to the oriented tree isomorphism problem. Let G be the given line
graph and consider again the trees T1 and T2 from above constructed from G in the proof
of Theorem 6.1. For nodes of degree 1 or 2 there is only one rotation scheme. Therefore we
only have to take care of the nodes of degree 3 and 4, i.e. wi, wj , and uj .

• The rotation scheme for wi is easy to handle: output the edges around wi for T1 in
an arbitrary order, and choose the opposite order for wi in T2. This definition fits
together with the only possible isomorphism that should exchange ui+1 and wi+1.
• In the rotation scheme for wj the order of edges to the neighbors can be chosen as

wj−1, y0, wj+1, y1, and around uj in order uj−1, x0, uj+1, x1. Because of the
symmetry of the parts (uj, x0) and (uj , x1) in T1 and of (wj , y0) and (wj , y1) in T2

an isomorphism mapping wj to uj can be defined respecting the rotation schemes
for these nodes.

Now the same argument as for Theorem 6.1 shows that the oriented trees T1 and T2 are
isomorphic iff vi < vj . This proves the theorem.

Open Problems

The most challenging task is to close the gap between L and UL∩coUL for the planar
3-connected graph isomorphism problem. Another goal is to extend the isomorphism test
to arbitrary planar graphs. If the graph is not connected, we can compute the connected
components and consider them separately. Hence, we may assume that the graph is con-
nected. Then we can determine the articulation points and the separating pairs and get
the 1- and 2-connected components of the graph. For sequential algorithms to compute a
canonical form for these graphs see for example [KHC04]. Miller and Reif [MR91] provide
an AC1-reduction from planar graphs to planar 3-connected graphs. We ask whether one
can compute a canonical form for planar graphs in (unambiguous) logspace.

Acknowledgment

We thank Jacobo Torán and the anonymous referees for helpful comments on the man-
uscript.

644 T. THIERAUF AND F. WAGNER

References

[ADR96] E. Allender, S. Datta, and S. Roy. The directed planar reachability problem. In Proc. 16th
FST&TCS, Lect. Notes in Comp. Science 1180, pp. 322–334, Springer, 1996.

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison-
Wesley, Reading, Mass, 1974.

[AM00] E. Allender and M. Mahajan. The complexity of planarity testing. In Proc. 17th STACS, Lect.
Notes in Comp. Science 1770, pp. 87–98, Springer, 2000.

[BTV07] C. Bourke, R. Tewari, and N.V. Vinodchandran. Directed planar reachability is in unambiguous
logspace. In 22nd Annual IEEE Conference on Computational Complexity, pp. 217–221, 2007.

[Coo85] S. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control, 64:2–22,
1985.

[GV06] M. Grohe and O. Verbitsky. Testing graph isomorphism in parallel by playing a game. In Proc.
33rd ICALP, Lect. Notes in Comp. Science 4051, pp. 3–14, Springer, 2006.

[HT74] J.E. Hopcroft and R.E. Tarjan. Efficient planarity testing. Journal of the ACM, 21, 1974.
[HW74] J.E. Hopcroft and J.K. Wong. Linear time algorithm for isomorphism of planar graphs. In 6th

ACM Symposium on Theory of Computing (STOC), 1974.
[Imm88] N. Immerman. Nondeterministic space is closed under complement. SIAM Journal on Computing,

17:935–938, 1988.
[JKMT03] B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph isomorphism.

Journal of Computer and System Sciences, 66:549–566, 2003.
[KHC04] J.P. Kukluk, L.B. Holder, and D.J. Cook. Algorithm and experiments in testing planar graphs

for isomorphism. Journal of Graph Algorithms and Applications, 8(2), 2004.
[Lin92] S. Lindell. A logspace algorithm for tree canonization (extended abstract). In 34th Annual ACM

Symposium on Theory of Computing (STOC), pp. 400–404. ACM, 1992.
[Luk82] E.M. Luks. Isomorphism of graphs of bounded valance can be tested in polynomial time. Journal

of Computer and System Sciences, 25, 1982.
[MR91] G.L. Miller and J.H. Reif. Parallel tree contraction, part 2: Further applications. SIAM Journal

on Computing, 20, 1991.
[NTS95] N. Nisan and A. Ta-Shma. Symmetric logspace is closed under complement. Chicago Journal of

Theoretical Computer Science, 1995(Article 1), 1995.
[RA00] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM Journal on Com-

puting, 29(4):1118–1131, 2000.
[Rei05] O. Reingold. Undirected ST-connectivity in log-space. In ACM, editor, Proceedings of the 37th

Annual ACM Symposium on Theory of Computing(STOC), pp. 376–385. ACM Press, 2005.
[RR94] V. Ramachandran and J.H. Reif. Planarity testing in parallel. Journal of Computer and System

Sciences, 49, 1994.
[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Infor-

matica, 26(3):279–284, 1988.
[Tor04] J. Torán. On the hardness of graph isomorphism. SIAM Journal on Computing (SICOMP),

33(5):1093–1108, 2004.
[Ver07] O. Verbitsky. Planar graphs: Logical complexity and parallel isomorphism tests. In 24th Annual

Symposium on Theoretical Aspects of Computer Science (STACS), pp. 682–693, 2007.
[Wag07] F. Wagner. Hardness results for tournament isomorphism and automorphism. In Proc. 32nd

MFCS, Lect. Notes in Comp. Science 4708, pp. 572–583, Springer, 2007.
[Wei66] H. Weinberg. A simple and efficient algorithm for determining isomorphism of planar triply

connected graphs. Circuit Theory, 13:142–148, 1966.
[Whi33] H. Whitney. A set of topological invariants for graphs. Amer. J. Mathematics, 55:321–235, 1933.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

http://creativecommons.org/licenses/by-nd/3.0/

