
HAL Id: hal-00255910
https://hal.science/hal-00255910

Submitted on 22 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Two-scale approach to the homogenization of membrane
photonic crystals

D. Felbacq, Guy Bouchitté, B. Guizal, A. Moreau

To cite this version:
D. Felbacq, Guy Bouchitté, B. Guizal, A. Moreau. Two-scale approach to the homogenization of
membrane photonic crystals. Journal of Nanophotonics, 2008, 2 (1), pp.023501. �10.1117/1.2884039�.
�hal-00255910�

https://hal.science/hal-00255910
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Two-scale approach to the homogenization of

membrane photonic crystals
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Abstract. Wave propagation and diffraction in a membrane photonic crystal with finite height

were studied in the case where the free-space wavelength is large with respect to the period of

the structure. The photonic crystals studied are made of materials with anisotropic permittivity

and permeability. Use of the concept of two-scale convergence allowed the photonic crystals to

be homogenized.
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1 INTRODUCTION

Photonic crystals, i.e. dielectric or metallic artificial periodic structures, are generally thought

of as strongly scattering devices, displaying photonic band gaps. However, their actual elec-

tromagnetic behavior when the free-space wavelength is large with respect to the period is also

interesting, because it can produce strongly anisotropic behaviors, plasmon frequencies, or even

negative index materials [1]. The study of the properties of these structures in this asymptotic

regime comes under the theory of homogenization [2–4]. A lot of results are by now well

established both for 2D and 3D structures (even for non periodic structures [5–7]).

In this paper, we consider a photonic crystal made of a collection of parallel finite-size

fibers embedded in a matrix. This covers the case of structures made out of a layer of bulk

materials in which holes are made periodically (membrane photonic crystal) but also the case of

structures made out of nanopillars (pillar photonic crystal [8,9]). The fibers are not supposed to

be invariant in the direction of their axis (for instance they can be cone-shaped, see fig. 1). Our

point is to derive the effective permittivity and permeability tensors of this structure when the

ratio between the period of the structure and the free-space wavelength of the incident field is

very small. We had already derived rigorous results for infinitely long cylindrical fibers [3], for

which explicit formulas can be derived in some cases [2,10–12]. Here we shall get homogenized

permeability and permittivity tensors with a dependence along the axis of the fibers. Let us note

that our results hold for dispersive and lossy materials (it applies to imperfect metals as well as

to good insulators).

2 TWO-SCALE APPROACH TO HOMOGENIZATION

2.1 Description of the structure and methodology

We consider a 2D photonic crystal such as that in fig. 1. It is constructed from a basic cell Ỹ
pictured in fig. 2 ( Ỹ = Y × (−L, L), where Y = (−1/2, 1/2)2 ). A contraction ratio η is

applied to obtain a contracted cell in the horizontal directions ( Ỹη = η2Y × (−L, L) ). In the

units of the free-space wavelength, the period of the lattice is thus η. The cells are contained
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in a cylindrical domain Ω ( Ω = O × (−L, L)) (cf. fig.1). The domain Ω is thus periodically

filled with contracted cells. The space coordinates are denoted by x = (x1, x2, x3) and we also

Fig. 1. Schematic of the photonic crystal.

denote x⊥ = (x1, x2). The coordinates in Y are denoted by y = (y1, y2). We consider time

harmonic fields, the time dependence is chosen to be exp (−iωt). For a given monochromatic

incident field
(
Ei,Hi

)
, we denote by (Eη,Hη) the total electromagnetic field.

Our aim is to pass to the limit η → 0 and determine the limit of the couple (Eη,Hη).
In our methodology, we get at the limit a true electromagnetic scattering problem, for a given

free-space wavelength λ and a bounded obstacle Ω characterized by some permittivity and

permeability tensors. This situation is quite different from other homogenization techniques,

making use of periodization conditions, in which the frequency tends to zero, thus not leading

to a diffraction problem but rather to an electrostatic one. Such an approach can sometimes

give useful explicit formulas but generally leads to complicated formulations [10–12, 20, 21].

Moreover, it does not handle the boundary effects which in some cases may lead to some mis-

comprehensions [13]. The relative permittivity tensor εη (x) and relative permeability tensor

Fig. 2. Schematic of the basic cell.

µη (x) are described by:

{
εη (x) = 1 , µη (x) = 1 for x ∈ R

3\Ω

εη (x) = ε0

(
x⊥

η
, x3

)
, µη (x) = µ0

(
x⊥

η
, x3

)
for x⊥ ∈ Ω

(1)
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where at fixed x3, the applications y → ε0 (y, x3) =
(
ε0

ij (y, x3)
)

and y → µ0 (y, x3) =
(
µ0

ij (y, x3)
)

are Y -periodic 3 × 3 matrix functions.

The total electromagnetic field (Eη,Hη) satisfies

{
curl Eη = iωµ0µ

ηHη

curl Hη = −iωε0ε
ηEη

(2)

and (Es,η,Hs,η) =
(
Eη − Ei,Hη − Hi

)
satisfies Silver-Müller radiation conditions:

lim
‖x‖→+∞

‖x‖

(
Z0H

s,η ×
x

‖x‖
− Es,η

)
= 0 (3)

where Z0 is the impedance of vacuum.

2.2 Derivation of the microscopic equations

2.2.1 A short account of the two-scale expansion

In order to describe this problem, we will rely on a two-scale expansion of the fields. That way,

the physical problem is described by two variables: a macroscopic one x and a microscopic one

y representing the rapid variations of the material at the scale of one basic cell, measured by η.

By noticing that there are no rapid variations in the vertical direction x3, the microscopic vari-

able is set to be: y = x⊥/η. Differential operators with respect to variable y are denoted with

a subscript y. The fields are periodic with respect to that microscopic variable (this corresponds

to the neighborhood of the center of the first Brillouin zone). The limit problem obtained by

letting η tend to 0, will then depend on the macroscopic, physical, variable x but also on the

microscopic, hidden, variable y. The total limit fields will read E0(x,y) and H0(x,y) and

the observable, physical, fields will be given by the mean value over the hidden variable y:

E(x) = |Y |
−1

∫
Y

E0(x,y)dy and H(x) = |Y |
−1

∫
Y

H0(x,y)dy, where |Y | is the measure

area of Y . In order to lighten the notations, we denote by brackets the averaging over Y , hence

H(x) =
〈
H0

〉
and E(x) =

〈
E0

〉
.

The main mathematical tool that we use is a mathematically rigorous version of the mul-

tiscale expansion, widely used in various areas of physics. More precisely, for a vector field

Fη in
(
L2 (Ω)

)3
, we say, by definition, that Fη two-scale converges towards F0 if for every

sufficiently regular function φ (x,y), Y -periodic with respect to y, we have:

∫

Ω

Eη (x) · φ (x,x⊥/ε) dx →

∫∫

Ω×Y

E0(x,y) · φ(x,y)dxdy, (4)

as η tends to 0.

The limit field F0 is square integrable with respect to both variables x and y and is Y -

periodic in the y variable (this is the definition of the space L2

(
Ω;

(
L2

per (Y )
)3

)
). A complete

analysis of this new mathematical tool can be found in [14].

We make the physically reasonable assumption that the electromagnetic energy remains

bounded when η tends to 0, which is equivalent to assume that (Eη,Hη) are both locally

square integrable. Then it is known [14] that (Eη,Hη) two-scale converges towards limit fields(
E0,H0

)
. This physical assumption could be justified mathematically, however it seems quite

obvious, from the point of view of physics, that the limit fields exist. The point is then to give

the system of equations that is satisfied by these fields and to derive the effective permittivity

and permeability tensors.
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2.2.2 The equations at the microscopic scale

First of all, we have to determine the set of equations that are microscopically satisfied, that

is, satisfied with respect to the hidden variable y, for that will give the constitutive relations of

the homogenized medium. Multiplying Maxwell-Faraday equation by a regular test function

φ
(
x, x⊥

η

)
, and integrating over Ω, we obtain:

∫

Ω

Eη (x) ·

[
curlx (φ) +

1

η
curly (φ)

]
dx = iωµ0

∫

Ω

µη (x)Hη (x) φ (x,x⊥/η) dx. (5)

Multiplying by η and letting η tend to 0, we get using (4):

∫∫

Ω×Y

E0 (x,y) · curly (φ) dxdy = 0. (6)

This is equivalent to:

∫∫

Ω×Y

curlyE
0 (x,y) · φ (x,y) dxdy = 0 (7)

which is nothing else but the variational form for: curlyE
0 = 0. In a very similar way, but using

now Maxwell-Ampere equation, we get curlyH
0 = 0. On the other hand, since εηEη is diver-

gence free, we have, for every test function φ(x,y),
∫
Ω

εη (x)Eη (x)·
[
∇xφ + 1

η
∇yφ

]
dx = 0.

Multiplying by η and letting η tend to 0, we get:

∫∫

Ω×Y

ε0 (y, x3)E
0 (x,y) · ∇yφ dxdy = 0, (8)

which can be written as (notice that the divy operator acts only on the transverse components):

divy

(
ε0E0

)
= 0. (9)

Similarly, since the magnetic field is divergence free, we derive:

divy

(
µ0H0

)
= 0. (10)

Summing up, we have the following microscopic equations, holding inside the basic cell Y :

{
divy

(
µ0H0

)
= 0

curlyH
0 = 0

,

{
divy

(
ε0E0

)
= 0

curlyE
0 = 0

(11)

2.3 Derivation of the homogenized parameters

The systems in (11) are respectively of electrostatic and magnetostatic types. This means that,

with respect to the hidden variable y, the electric field and magnetic field satisfy the static

Maxwell system. This property is true only at that scale and not at the macroscopic scale.

However, it is these static equations that determine the effective permittivity and permeability.

Indeed let us analyze this system starting with the electric field. From the curl relation, we get

∇yE0
3 = 0, and so E0

3(x,y) ≡ E3 (x). Besides, the basic cell having the geometry of a flat

torus, we get the existence of a regular periodic function wE (y) such that:

E0
⊥ = E⊥ + ∇ywE . (12)
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The function wE is the electrostatic potential associated with the microscopic electrostatic prob-

lem. Inserting (9) in equation (12) and projecting on both horizontal axis, we obtain:

divy

[
ε0

⊥
(ei + ∇ywE,i)

]
= 0, i ∈ {1, 2} (13)

where ε0

⊥
denotes the 2 × 2 matrix extracted from ε0 by removing the last line and last col-

umn. By linearity, denoting E⊥ = (E1, E2), we derive that the potential wE is given by

wE = E1wE,1 + E2wE,2, where wE,i are the periodic solutions of (13). We stress that these

potentials depend upon y but also on x3. In fact, we get a family of homogenization problems

parametrized by the vertical coordinate. By (12) we obtain:

E0 (x,y) = E (y, x3)E (x) (14)

where:

E (y, x3) =

⎛
⎝

1 + ∂y1
wE,1 ∂y1

wE,2 0
∂y2

wE,1 1 + ∂y2
wE,2 0

0 0 1

⎞
⎠ (15)

The magnetic field H0 can be handled in the same way since it satisfies exactly the same kind

of equations as H0 (see (11)). In particular, we may represent its tranversal component in the

form: H0
⊥ = H⊥ + ∇⊥wH , where wH is a periodic magnetic potential (the possibility of

this representation is due to the curl-free condition which means that no microscopic current is

present). Analogously as in (14,15), we find:

H0 (x,y) = M (y, x3)H (x) (16)

where

M (y) =

⎛
⎝

1 + ∂y1
wH,1 ∂y1

wH,2 0
∂y2

wH,1 1 + ∂y2
wH,2 0

0 0 1

⎞
⎠ (17)

where:

divy

[
µ0

⊥
(ei + ∇ywH,i)

]
= 0, i ∈ {1, 2} (18)

and µ0

⊥
denotes the 2×2 matrix extracted from µ0 by removing the last line and last column. Of

course, the same remark as in the case of electric potentials holds: the functions wH,i depend on

the vertical coordinate x3. The above results show that, at the microscopic scale, the limit fields

(E0,H0) are completely determined by the physical fields (E,H). Now that the microscopic

behavior is precised, we are able to determine the macroscopic system satisfied by (E,H). To

that aim, let us choose a regular test function φ (x) independent of variable y. From Maxwell

equations we get

{ ∫
Ω

Hη (x) .curl (φ) dx = −iωε0

∫
Ω

εη (x)Eη (x)φ (x) dx∫
Ω

Eη (x) · curl (φ) dx = iωµ0

∫
Ω

µη (x)Hη (x) φ (x) dx (19)

passing to the limit η → 0, we get:

{ ∫∫
Ω×Y

H0 (x,y) · curl (φ) dxdy = −iωε0

∫∫
Ω×Y

ε0 (y, x3)E
0 (x,y) φ (x) dxdy∫∫

Ω×Y
E0 (x,y) · curl (φ) dxdy = iωµ0

∫∫
Ω×Y

µ0 (y, x3)H
0 (x,y)φ (x) dxdy

(20)

Recalling that 〈E0〉 = E and that 〈H0〉 = H, we get:

{
curl E = iωµ0

〈
µ0H0

〉

curl H = −iωε0

〈
ε0E0

〉 (21)
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which, taking into account (14,16), brings to the limit system:

{
curl E = iωµ0

〈
µ0M

〉
(x3) H

curl H = −iωε0

〈
ε0E

〉
(x3) E

(22)

2.3.1 The special case of a 1D grating

Let us specialize the above results to the case of a one dimensional grating (fig. 3) that is, the

pillars are invariant in the x2 and x3 directions (the basic cell Y is depicted in fig. 3). We assume

also that the pillars are made on a non-magnetic material and that the relative permittivity tensor

is given by:

ε0(y1) =

⎛
⎝

ε1(y1) 0 0
0 ε2(y1) 0
0 0 ε3(y1)

⎞
⎠ (23)

Fig. 3. Schematic of the 1D photonic crystal. The inset shows the basic cell Y .

The invariance of ε0 with respect to y2 and the periodicity condition suggest that we look for

solutions that are y2-independent. Let us first consider wE,2 which satisfies: ∂y1
(ε1∂y1

wE,2) = 0.

This implies that wE,2 = cste. Next, we turn to wE,1. It satisfies: ∂y1
[ε1 (1 + ∂y1

wE,1)] = 0

Therefore ε1 (1 + ∂y1
wE,1) = cste = C. Let us now average this relation, we get: C

〈
1

ε1

〉
=

〈1 + ∂y1
wE,1〉. Due to the periodicity of wE,1, we have: 〈∂y1

wE,1〉 = 0 and finally: C =〈
1

ε1

〉−1

. The homogenized relative permittivity tensor is given by:

〈
ε0E

〉
=

⎛
⎜⎝

〈
1

ε1

〉−1

0 0

0 〈ε2〉 0
0 0 〈ε3〉

⎞
⎟⎠ (24)

We retrieve a well-established result concerning the homogenization of 1D photonic crystals [2].

3 DISCUSSION

The homogenized permeability and permittivity tensors are respectively
〈
µ0M

〉
and

〈
ε0E

〉
.

Both are matrix functions of the coordinate x3. In case of cylindrical fibers (i.e. invariant along

their axis), we would find that the effective tensors coincide with that obtained in the polarized

cases [2, 3, 15]. In fact, because the permittivity and permeability tensors are not renormalized
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with respect to η, the homogenization process is purely local, that is, the effective constitutive

relations are local ones. However, we emphasize that the locality is lost if we change the

scale of the permittivity or permeability coefficients in the obstacles. In particular, the results

obtained in the case of infinite conductivities in the polarized case [3] cannot be transposed to

the case of fibers with finite length, due to the emergence of surprising non local effects which

are studied in [16–18]. In this context, another problem is interesting: it is the study of the

situation where the height L of the pillar is small with respect to the free-space wavelength.

An ansymptotic study can be performed in that case, leading to a simplified formulation of the

diffraction problem [19].

We also note that an approach relying on explicit calculations, for instance using Bloch-

waves theory or Fourier-Bessel expansions, cannot work here, due the lack of an explicit rep-

resentation of the fields in case of finite size fibers. The method that is used here proves to be

particularly efficient, the results are obtained at the cost of very few calculations. Besides, it

gives an interesting physical pictures of the homogenization process in terms of hidden vari-

ables: the homogenized parameters are obtained through clearly defined electrostatic and mag-

netostatic problems with respect to these variables. It should also be noted that the case of

dielectric materials with losses is handled by our result. This result can be straightforwardly ap-

plied to the study of membrane photonic crystal in the low frequency range where phenomena

of birefringence and dichroism are obtained [20, 21].

In our homogenization result, it is clear that the main numerical problem is the solving of

the annex problems (13,18) for they give the effective matrices E and M. In certain simple

cases, for instance that of circular isotropic non magnetic rods and a permittivity constant in

each connected region, it is possible to find an explicit expression for the effective permittivity

(it is in fact a very old problem). However, for more complicated geometries, there is a general

numerical procedure based on fictitious sources, that allows to solve both annex problems at

a low numerical cost. It should also be stressed that if the wavelength is not very large with

respect to the period, the device may still be homogenizable, but then the evanescent fields play

an important role [22] that can make the effective parameters be dependent upon the environ-

nement of the device.
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