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Abstract

We formulate the ten-dimensional super-Yang–Mills theory in a twisted super-

space with 8+1 supercharges. Its constraints do not imply the equations of motion
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superspace, we give a superspace path-integral formulation of the N = 2, d = 4

super-Yang–Mills theory without matter. The action is the sum of a Chern–Simons
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1 Introduction

Superspace formulations of supersymmetric theories are often very efficient for prac-

tical computations and proofs of non-renormalization theorems. However, a complete

superspace path-integral formulation requires that the supersymmetry algebra admits a

functional representation on the fields, but the latter is believed not to exist for maxi-

mal supersymmetry. This has lead to several proposals for restricting the whole super-

Poincaré algebra to subalgebras that admit a functional representation on the fields. For

instance, the maximally supersymmetric Yang–Mills theory has been formulated within

N = 3 harmonic superspace [1]. There are in fact severe restrictions for getting such

off-shell closed representations. In six dimensions, to maintain the full Poincaré invari-

ance, one must reduce the N = 2 super-Poincaré symmetry to the N = 1 one. From

dimension seven and above, there is no non-trivial subalgebra that includes the whole

Poincaré algebra. As a consequence, a superspace path-integral formulation of maxi-

mally supersymmetric Yang–Mills theories in higher dimensions must presumably give

up manifest Lorentz invariance.

In [2] we have shown that SO(1, 1) × Spin(7) ⊂ SO(1, 9) is the biggest subgroup of

the ten-dimensional Lorentz group that can be preserved for obtaining an off-shell closed

supersymmetric algebra of the N = 1, d = 10 supersymmetric theory. We introduced

for this theory SO(1, 1) × Spin(7) ⊂ SO(1, 9) invariant constraints for the curvatures

of superfields depending of 1 + 8 fermionic coordinates, as a hint for a possible off-shell

superspace description. A superspace action was also proposed, which is reminiscent

of harmonic superspace formulations. Part of this paper is devoted to solve these con-

straints.

The maximally supersymmetric theory in ten dimensions is a chiral model with a

gauge anomaly that spoils its quantization. A consistent approach implies in fact its

coupling to supergravity at the quantum level. However, its chiral anomaly often dis-

appears after dimensional reduction to lower dimensions. A better understanding of the

Yang–Mills supersymmetry in ten dimensions could be also helpful for improving that of

supergravity. It is thus a relevant question to investigate a possible superspace off-shell

formulation of the pure ten-dimensional supersymmetric Yang–Mills theory. It is admit-

ted that the most efficient way for describing the extended supersymmetry in superspace

is by using harmonic superspace formulations, which depend on the harmonics of a com-

pact homogenous space G/H [3]. In these formulations of supersymmetric theories, the

group G acts linearly on the harmonic variables. The latter must therefore be a subgroup
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of Spin(7) in order to permit a functional representation of 8+1 supersymmetry charges

on the fields. This group admits compact cossets, if one chooses the invariant subgroup

H as an invariant subgroup of Spin(7). As a matter of fact, power counting forbids

that the action be a SO(1, 1) × Spin(7) covariant integral over full superspace, and the

introduction of an harmonic superspace formulation is required. Its status is yet quite

unclear when one uses twisted representations of the Lorentz group. Thus, for defining

a complete twisted superspace path-integral formulation, we will reduce ourselves to the

case of the N = 2, d = 4 theory, which does not require the introduction of harmonics

variables.

The SO(1, 1)×Spin(7) invariant formulation of the ten-dimensional Yang–Mills the-

ory is closely related to its formal dimensional reduction down to eight euclidean di-

mensions [2]. The latter is formally very close to the twisted SU(2) × SU(2) invariant

formulation of the N = 2 super-Yang–Mills theory without matter in four dimensions. In

this case the gauge-invariant action can be written in term of the super-connections, and

this model is thus very interesting to understand path-integral on a twisted superspace.

In this publication, we study this four-dimensional case in great details. We extend our

results to the ten-dimensional case, whenever it does not require important conceptual

modifications. We will ignore through the paper the problems associated with unitar-

ity and the doubling of fermions in four and eight-dimensional euclidean space. This is

justified within the context of describing the ten-dimensional structure.

For describing the twisted super-Yang–Mills theory, three types of superfields are

involved, namely the super-connection, the super-ghosts, and Lagrange multipliers su-

perfields for the superspace constraints. Interestingly, there is no need to introduce a

prepotential in the four-dimensional case, and the theory can be formulated in terms

of the geometrical superspace connections, which have strictly positive canonical dimen-

sions. This property indicates a close link between the superspace and the components

formulations of the theory. Moreover, the gauge-fixing in superspace is a rather simple

superfield generalization of the usual Landau gauge-fixing action. Its decomposition in

components turns out to be equivalent to a supersymmetric gauge-fixing involving shadow

fields, which generalize those introduced in [4]. This results hold true in any dimensions.

The gauge-fixing action involves super-antighosts fields with negative canonical dimen-

sions. However, in four dimensions, antighost Ward identities in superspace ensure the

stability of the action and imply that these fields are multiplicatively renormalized with

the same factor as the super-gauge field along the ordinary space directions.

The part of the action that implements the constraints turns out to be a source of new
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technical questions. It is similar to a BF system, where F stands for the components

of the super-curvature that define the constraints. Because of Bianchi identities, the

auxiliary superfields B possess a set of zero modes that must be taken into account

in the super-Feynman rules. The complete gauge-fixing of the BF component of the

action requires the introduction of an infinite tower of ghosts and ghosts for ghosts. This

problem is reminiscent of the infinite set of auxiliary fields required in the harmonic-

superspace formulation of the theory. We will solve these technical subtleties in a more

detailed forthcoming publication [5].

The classical action is a Chern–Simons-like action for the superspace connection along

the scalar odd coordinate. It reduces to the gauge-invariant action after integration over

the auxiliary fields.

Our superspace construction followed a determination of twisted scalar and vector

supersymmetric transformations that close without the use of equations of motion and

gauge transformations, using scalar and vector shadows directly in component formal-

ism [5]. The latter construction helped us to select a convenient gauge in superspace for

solving the covariant constraints.

The paper is organized as follows. In the first section we define the N = 2 twisted

superspace, and its generalization in higher dimensions. Then we define and solve the

twisted super-Yang–Mills constraints in four dimensions and generalize the results in ten

dimensions, with an obvious application in eight dimensions. In the last section, we

construct the action for the N = 2, d = 4 theory. We explain the problem associated to

the gauge invariance of the Lagrange multipliers that enforce the covariant constraints

on the supercurvature, but postpone to a forthcoming publication the definition of the

corresponding gauge-fixing action.

Let us end this introduction with earlier references for the idea of twisted super-

space. A superspace for the N = 2, d = 4 twisted super-Yang–Mills vector multiplet is

constructed in [6] for matter couplings to the Donaldson–Witten theory and topological

symmetry breaking. It involves the full set of supersymmetry generators so that one can-

not get the action as an integral over the whole superspace. Its projection in components

gives the Donaldson–Witten action by using a Wess–Zumino gauge. Analogous results

are in [9], with a truncation of an N = 4 twisted algebra using a Dirac–Kähler twist. A

generalization that involves central charges is presented in [10], together with a coupling

to a twisted hypermultiplet. All twisted formulations, including ours, have been inspired

by the methodology of [7, 8] for superspace constraints in extended supersymmetry. No

path-integral formulation in twisted superspace had been proposed so far.
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2 Twisted superspace set-up

2.1 The N = 2, d = 4 case

Let us recall the basic features of the twisted formulation of N = 2 super-Yang–Mills

theory [11]. It is defined in a four-dimensional euclidean space with the manifest in-

variance reduced to L′ = SU(2)′ × SU(2)R, where SU(2)′ is the diagonal subgroup of

SU(2)L×SU(2)I , and SU(2)I is the internal symmetry group associated to N = 2 super-

symmetry. The vector multiplet in representations of L′ is made of the gauge field Aµ, two

commuting scalar fields Φ and Φ̄, an anticommuting vector Ψµ, an anticommuting anti-

selfdual 2-form χµν− , an anticommuting scalar η, and a commuting auxiliary field Gµν− .

These fields transform under the scalar and vector anticommuting generators δ ≡ ǫαıQαı

and δµ ≡ iσα̇ı
µ Qα̇ı. The invariance under the action of these 5 generators completely

determines the classical action of the theory, which is nothing but the super-Yang–Mills

action, in twisted form [4]. In order to recover the complete super-Poincaré symmetry

with 8 generators, one must introduce the anti-selfdual generator δµν− ≡ σαı
µνQαı. The

δµν− invariance is an additional symmetry of the action, which is obtained for free from

the requirement of δ and δµ symmetry. Moreover the absence of trivial anomalies for the

tensor symmetry shows that forgetting about the tensor symmetry does not introduce

ambiguities in the renormalization program [5]. Therefore, as long as we only consider

correlation functions of the fields, the scalar and vector supersymmetry generators un-

ambiguously determine the theory to be invariant by the action of all the supersymmetry

generators, including the tensor generator δµν− .

To express the scalar and vector supersymmetry in terms of superspace derivatives,

we complete the four-dimensional space by five anticommuting coordinates, a scalar one

θ and a vector one ϑµ (µ = 1 · · ·4). We define as follows the superspace differential

operators Q and Qµ, whose action on superfields provide component by component a

linear realization of the scalar δ and vector δµ supersymmetry generators

Q ≡
∂

∂θ
+ ϑµ∂µ, Qµ ≡

∂

∂ϑµ

Q2 = 0, {Q, Qµ} = ∂µ, {Qµ, Qν} = 0 (1)

A general superfield SA is a polynomial expansion in (θ, ϑµ)

SA = S0
A + θSθ

A = SA + ϑµSAµ + ϑµϑνSAµν + · · ·+ θSθ
A + θϑµSθ

Aµ + · · · (2)

Here the index A stands for the L′ representation of the superfield and SA carries ♯(A)×25

components, where ♯(A) is the dimension of the corresponding L′ representation.
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The covariant superspace derivatives and their anticommuting relations are

∇ ≡
∂

∂θ
∇µ ≡

∂

∂ϑµ
− θ∂µ

∇2 = 0 {∇,∇µ} = −∂µ {∇µ,∇ν} = 0 (3)

They anticommute with the supersymmetry generators.

A connection superfield (C, Γµ, Aµ) valued in the adjoint of the gauge group of the

theory can be defined in correspondence with the set of the superspace derivatives

(∇,∇µ, ∂µ). This provides the following gauge covariant superderivatives

∇̂ ≡ ∇ + C, ∇̂µ ≡ ∇µ + Γµ, ∂̂µ ≡ ∂µ + Aµ (4)

and the corresponding covariant superspace curvatures

Fµν ≡ [∂̂µ, ∂̂ν ]

Ψµ ≡ [∇̂, ∂̂µ]

χµν ≡ [∇̂µ, ∂̂ν ]

Φ ≡ ∇̂2

Lµ ≡ {∇̂, ∇̂µ} + ∂̂µ

Φ̄µν ≡ 1
2
{∇̂µ, ∇̂ν}

(5)

so that

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν]

Ψµ = ∇Aµ − ∂µC − [Aµ, C]

χµν = ∇µAν − ∂νΓµ − [Aν , Γµ]

Φ = ∇C + C2

Lµ = ∇Γµ + ∇µC + {Γµ, C} + Aµ

Φ̄µν = ∇{µΓν} + Γ{µΓν}

(6)

These different objects can be assembled into an extended exterior differential

∆ ≡ d + ∇dθ + ∇dϑ ≡ dxµ∂µ + dθ∇ + dϑµ∇µ (7)

and the extended connection

A ≡ A + Cdθ + Γ ≡ Aµdxµ + Cdθ + Γµdϑµ (8)

Since (d + ∇dθ + ∇dϑ + dθidϑ)2 = 0, (where i is the Cartan contraction operator, e.g.

idϑdxµ ≡ dϑµ), we define the following extended curvature superfield 2-form F

F ≡ (d + ∇dθ + ∇dϑ + dθidϑ)A + A2 = F + Ψdθ + χ + Φdθdθ + Ldθ + Φ̄ (9)

where F ≡ 1
2
Fµνdxµdxν , Ψ ≡ Ψµdxµ, χ ≡ χµνdϑµdxν , L ≡ Lµdϑµ, Φ̄ ≡ Φ̄µνdϑµdϑν .

The Bianchi identity implies the following constraints on the components of F

(d + dθ∇ + ∇dϑ + dθidϑ)(F + Ψdθ + χ + Φdθdθ + Ldθ + Φ̄)+

[A, F + Ψdθ + χ + Φdθdθ + Ldθ + Φ̄] = 0 (10)
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The super-gauge transformations of the extended connection A and curvature F are

A → e−α(∆ + A)eα, F → e−αFeα (11)

where the gauge superparameter α can be any given general superfield valued in the Lie

algebra of the gauge group. The “infinitesimal” gauge transformation is δA = ∆α+[A, α].

2.2 Higher dimensions

The formalism for the scalar and vector supersymmetry generalizes directly to the eu-

clidean eight-dimensional case, by extending the eight-dimensional space-time with nine

fermionic coordinates and considering a reduction of the Wick rotated Lorentz group

SO(8) to Spin(7), with all previous equations remaining formally identical. One can

further “oxidise ” the eight-dimensional theory into the N = 1, d = 10 theory. This

has already been described in [2], and we shall only summarise the equations that are

relevant for the following. (One can go from four to six dimensions in an analogous way).

The N = 1, d = 10 superspace is made of ten bosonic coordinates xm and nine

fermionic ones θ and ϑi. The xm (m = 0, · · ·9) split into euclidean eight-dimensional

coordinates xi and light-cone coordinates x+ and x−, so that a general ten-dimensional

form splits as Amdxm = Aidxi + A+dx+ + A−dx−. The Grassmann coordinates θ and

ϑi are scalar and vector, the latter being identified with the spinorial representation 8

of Spin(7). The covariant superspace derivatives are defined as ∇ ≡ ∂
∂θ

− θ∂+ and

∇i ≡
∂

∂ϑi − θ∂i − ϑi∂−, with

∇2 = −∂+, {∇,∇i} = −∂i, ∇{i∇j} = −δij∂− (12)

Super-curvatures are defined by the analogue of Eq.(9) for ten dimensions

(d + dθ∇ + ∇dϑ + dθi(∂++dϑ+|dϑ|2∂
−

))(A + Cdθ + Γ) + (A + Cdθ + Γ)2

= F + Ψdθ + χ + Φdθdθ + Ldθ + Φ̄ (13)

where F ≡ 1
2
Fmndxmdxn, Ψ ≡ Ψmdxm, χ ≡ χindϑidxn, L ≡ Lidϑi and Φ̄ ≡ Φ̄ijdϑidϑj .

One has in particular1

Φ ≡ ∇̂2 + ∂̂+, Li ≡ {∇̂, ∇̂i} + ∂̂i, Φ̄ij ≡ ∇̂{i∇̂j} + δij ∂̂−. (14)

1We have analogous notations Φ and Φ̄αβ for the curvatures of the different N = 1 and N = 2 cases,

in six (respectively four) dimensions (α, β=̂µ, ν), and ten (respectively eight) dimensions (α, β=̂i, j).

However, after dimensional reduction and once the constraints ΦN=1 = Φ̄N=1
ij = 0 are imposed, we have

the correspondence A+ → ΦN=2 and A− → Φ̄N=2.
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3 Constraints and their resolution

3.1 The N = 2, d = 4 case

To eliminate superfluous degrees of freedom and to make contact with the component

formulation, we must impose superspace gauge covariant constraints, as follows

Lµ = 0, Φ̄µν =
1

4
δµνΦ̄ σ

σ ≡ δµνΦ̄, χ[µν]+
= 0. (15)

The super-gauge symmetry defined in Eq.(11) allows us to simplify the resolution of the

constraints. We partially fix super-gauge invariance by setting to zero all antisymmetric

components ( ∂
∂ϑ[µ · · · ∂

∂ϑσ Γρ])|0 and ( ∂
∂θ

∂
∂ϑ[µ · · · ∂

∂ϑσ Γρ])|0 of Γµ, including Γµ|0, as well as

the first component C|0 of C.2 In this gauge, the remaining gauge invariance reduces to

that of the component formalism (α = α|0). The details of the procedure will be found

in [5]. After solving the constraints in this particular super-gauge, we will reintroduce

the super-gauge invariance by a general gauge transformation depending on new fields

that stand for the longitudinal components.

We start with Γµ. The constraint Eq.(15) on Φ̄µν and its Bianchi identity leave

its ϑµ independent trace components unconstrained. We define them as Φ̄|0 ≡ Φ̄ and

( ∂
∂θ

Φ̄)|0 ≡ η. Using the definition of Φ̄µν in terms of Γµ and its Bianchi identity, we then

obtain

Γµ = ϑµΦ̄ + θ(ϑµη + ϑµϑ
ρ∂ρΦ̄), Φ̄ = Φ̄ + θ(η − ϑµ∂µΦ̄) (16)

The constraint Lµ = 0 allows us to express Aµ in terms of Γµ and C. It is convenient to

parametrize the superfield C as

C ≡ Ã + θ(Φ̃ − Ã2) → Φ = Φ̃ + θ[Φ̃, Ã] (17)

where Φ̃ and Ã are general functions in ϑ variables, except that Ã|0 = 0 as it is required

by our special gauge choice. Moreover, we define ( ∂
∂ϑµ Ã)|0 ≡ Aµ and Φ̃|0 ≡ Φ. We can

then determine Aµ as

Aµ =
∂

∂ϑµ
Ã + · · · − θ

( ∂

∂ϑµ
Φ̃ + · · ·

)

(18)

The explicit content of Φ̃ and Ã is determined through the resolution of the anti-selfdual

constraint on the χµν curvature. We first observe that the Bianchi identities and the

constraint Lµ = 0 imply

χµν = −δµν

(

∇Φ̄ + [C, Φ̄]
)

+ χ[µν] ≡ −δµνη + χ[µν] (19)
2We use the standard notation |0 for expressing that all fermionic coordinates are set to zero.
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This allows one to express η and χ[µν] in terms of Φ̃, Ã and Φ̄ and η,

η = η + ϑµ∂µΦ̄ + [Ã, Φ̄] + · · ·

χ[µν] =
∂

∂ϑµ

∂

∂ϑν
Ã + · · · + θ

(

∂

∂ϑµ

∂

∂ϑν
Φ̃ + · · ·

)

(20)

The component ( ∂
∂ϑµ Φ̃)|0 is not constrained. We define ( ∂

∂ϑµ Φ̃)|0 ≡ −Ψµ and we solve the

constraint χ[µν]+
= 0, component by component. From the θ-independent part, we get

Ã = ϑµAµ −
1

2
ϑµϑνχµν +

1

3!
ϑµϑνϑρǫ σ

µνρ DσΦ̄ −
1

4!
ϑµϑνϑρϑσǫµνρσ[Φ̄, η] (21)

and the part proportional on θ gives us that

Φ̃ = Φ − ϑµΨµ −
1

2
ϑµϑν(Fµν + Gµν) +

1

3!
ϑµϑνϑρ

(

3Dµχνρ − ǫ σ
µνρ (Dση − [Φ̄, Ψσ])

)

−
1

4!
ϑµϑνϑρϑσ

(

2ǫµνρσDλD
λΦ̄ − 6χµνχρσ + 2ǫµνρση2 − ǫµνρσ[Φ̄, [Φ̄, Φ]]

)

(22)

where χ, G are anti-selfdual 2-forms and F = dA + A2. As a result, the general solution

of the constrained superfields in the chosen Wess–Zumino-like gauge can be written in

term of the known component fields of the theory, with the auxiliary field required for

the functional representation of the supersymmetry algebra.

The general solution to the constraints (15) can now be obtained by application of a

general super-gauge transformation, which we parametrize as follows3

eα = eθϑµ∂µeγ̃eθc̃ = eγ̃
(

1 + θ(c̃ + e−γ̃ϑµ∂µe
γ̃)

)

(23)

where γ̃ and c̃ are respectively commuting and anticommuting functions of ϑµ and the

coordinates xµ, with the condition γ̃|0 = 0. The superfield connections C, Γ and their

curvatures then have the following expressions

C = c̃ + e−γ̃
(

ϑµ∂µ + Ã
)

eγ̃ + θ

(

e−γ̃Φ̃eγ̃ −
(

c̃ + e−γ̃
(

ϑµ∂µ + Ã
)

eγ̃
)2

)

Φ = e−γ̃Φ̃eγ̃ + θ
([

e−γ̃Φ̃eγ̃, c̃
]

+ e−γ̃
[

Φ̃, ϑµ∂µ + Ã
]

eγ̃
)

Γµ = e−γ̃

(

∂

∂ϑµ
+ ϑµΦ̄

)

eγ̃ + θ

(

e−γ̃
(

ϑµη + ϑµϑ
ρ∂ρΦ̄

)

eγ̃

−

[

e−γ̃

(

∂

∂ϑµ
+ ϑµΦ̄

)

eγ̃, c̃ + e−γ̃ϑµ∂µe
γ̃

])

Φ̄ = e−γ̃Φ̄eγ̃ + θ
(

e−γ̃
(

η − ϑµ∂µΦ̄
)

eγ̃ +
[

e−γ̃Φ̄eγ̃ , c̃ + e−γ̃ϑµ∂µe
γ̃
])

(24)
3The gauge transformation is chosen in such a way as to recover the transformation laws computed

in components.
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and

Aµ = e−γ̃

(

∂µ +
∂

∂ϑµ
Ã − ϑµ

(

η − ϑν∂νΦ̄ −
[

Ã, Φ̄
])

)

eγ̃ + θ(· · · ) (25)

One can check that the supersymmetry transformations of the connection superfields

reduce in components to the known twisted transformation laws of the N=2 super-

Yang–Mills theory in the Wess–Zumino gauge. This is obtained for γ̃ = c̃ = 0 and

redefining the supersymmetry transformations by adding appropriated field-dependent

super-gauge transformations such that these fields are left invariant.

3.2 Higher dimensions

We now consider the N = 1, d = 10 theory, which also encodes the case N = 2, d = 8.

The constraints Eq.(15) become

Φ = Li = Φ̄ij = 0, χij − χji +
1

3
Ω kl

ij χkl = 0. (26)

where Ωijkl is the octonionic eight-dimensional Spin(7)-invariant 4-form [2]. Proceeding

along the same line as for the resolution of the constraints in four dimensions, we get the

gauge-fixed solution (once again we refer the reader to [5] for more details)

A− = A− + θ(η − ϑi∂iA−) (27)

which gives the solution to ∇dϑΓ+Γ2 = −|dϑ|2A− as Γi = −ϑiA−. Then, by introducing

the functions Ã and Ã+ of ϑi to parametrize C, and by using the constraints Φ = Li = 0

and the Bianchi identities, one can write A+, Ai and χij in terms of C and Γi. Eventually,

the anti-selfdual constraint on χ[ij] permits one to completely determine the component

field content of each superfield. The expansion of Ã and Ã+ is in fact

Ã =ϑiAi −
1

2
ϑiϑjχij −

1

3!
ϑiϑjϑkΩ l

ijk Fl− + · · · ,

Ã+ =A+ − ϑiΨi −
1

2
ϑiϑj(Fij + Gij) + · · · . (28)

By introducing the fields c̃ and γ̃, one can reenforce the super-gauge invariance and get

the following expression for the ten-dimensional superfield C

C = c̃ − e−γ̃(ϑi∂i + Ã)eγ̃ − θe−γ̃(∂+ + Ã+)eγ̃ − θ(c̃ − e−γ̃(ϑi∂i + Ã)eγ̃)2. (29)

The supersymmetry transformation laws of the ten-dimensional super-Yang–Mills in com-

ponents in the Wess–Zumino gauge [2] are then recovered in an analogous way as in the

four dimensional case.
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4 Action in superspace

4.1 The gauge invariant part

The action for N = 2, d = 4 super-Yang–Mills can be written as an integral over the

twisted superspace in terms of superfields, with the above covariant constraints, which

can be imposed by mean of Lagrange multipliers.

To get its equivariant part, we observe from the Bianchi identity ∇Φ + [C, Φ] = 0

that the gauge invariant function Tr Φ2 is θ independent. Therefore, its components of

highest order in ϑµ can be used to write the equivariant part of the action. The latter

can be expressed as a full superspace integral of a Chern–Simons-like term

SEQ =

∫

d4ϑ Tr Φ2 =

∫

d4ϑ dθ Tr
(

C∇C +
2

3
C3

)

(30)

One can check that this action reproduces the known action for super-Yang–Mills in

components. Notice that the superfield C has a positive canonical dimension, which is

an interesting point for its renormalization properties.

Unfortunately this formula does not generalize to higher dimensions. However, the

one-loop invariant counter-terms involved in the eight-dimensional theory can be ex-

pressed as simple integrals over superspace
∫

d8ϑ Tr Φ4

∫

d8ϑ Tr Φ2 Tr Φ2 (31)

The constraints can be covariantly implemented by the following superspace integral

depending on auxiliary Lagrange multipliers superfields

SC =

∫

d4ϑ dθ Tr
(

B(µν)Φ̄µν + Ψ̄[µν]+χµν + K̄µLµ

)

=

∫

d4ϑ dθ Tr
(

B(µν)
(

∇µΓν + ΓµΓν

)

+ Ψ̄[µν]+
(

∂µΓν + ∇µAν + [Aµ, Γν ]
)

+ K̄µ
(

∇Γµ + ∇µC + {Γµ, C} + Aµ

)

)

(32)

where B(µν) is symmetric traceless and Ψ̄[µν]+ is antisymmetric selfdual. The superfields

K̄µ and Aµ can be trivially integrated, giving rise to a simple substitution of Aµ by minus

∇Γµ+∇µC+{Γµ, C}. The resolution of the constraints is such that the formal integration

over the auxiliary superfields B(µν) and Ψ̄[µν]+ leads to the non-manifestly supersymmetric

formulation of the theory in components, without introducing any determinant contri-

bution in the path-integral. However, B(µν) and Ψ̄[µν]+ admit a large class of zero modes
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that must be considered in the manifestly supersymmetric superspace Feynman rules.

They can be summarized by the following invariance of the action

δzeroB(µν) = ∇̂σ

(

λ(σµν) −
1

3
∇̂ϕσ(µ,ν)

)

− ∂̂σϕσ(µ,ν)

δzeroΨ̄[µν]+ = ∇̂σϕ[µν]+,σ (33)

where λ(σµν) is a superfield in the rank three symmetric traceless representation and

ϕ[µν]+,σ is in the irreducible representation defined by firstly taking the symmetric trace-

less component in the two last indices and then projecting on the antisymmetric selfdual

component on the two first indices. These gauge transformations are themselves invariant

by a redefinition of the superfields λ(σµν) and ϕ[µν]+,σ by a gauge transformation involv-

ing a superfield in the rank four symmetric traceless representation and another one in

the rank four irreducible representation defined by firstly taking the symmetric traceless

component in the three last indices and then projecting on the antisymmetric selfdual

component on the two first indices. As a matter of fact, the gauge-fixing of this gauge

invariance requires the introduction of an infinite set of ghosts including the ghosts for

ghosts, the ghosts for ghosts for ghosts and so on.

4.2 The BRST symmetry and the gauge-fixing action in super-

space.

To fix the super-gauge invariance, one first introduces a Fadeev–Popov ghost superfield

Ω and a BRST differential s that anticommutes with ∆. As indicated by the super-gauge

transformations (11) and their infinitesimal version, the BRST symmetry is defined as

s A = −∆Ω − [A, Ω], s F = −[Ω,F ], s Ω = −Ω2, (34)

One also needs a Fadeev–Popov antighost superfield Ω̄ and its Lagrange multiplier su-

perfield B. In fact, the BRST transformation laws of the super-connection, super-ghost

and super-antighost follow from the following generalization of the horizontality equation

Eq.(9), which involves both the anti-BRST operator s̄ and the BRST operator s

(∆ + dθ idϑ + s + s̄ )(A + Ω + Ω̄) + (A + Ω + Ω̄)2 = F , (35)

This equation implies the degenerate equation s Ω̄ + s̄ Ω +[Ω, Ω̄] = 0. It is solved by the

introduction of the Lagrange multiplier superfield B, so that one gets

s Ω̄ = B, s B = 0, s̄ Ω = −B − [Ω, Ω̄] (36)
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A fully invariant gauge-fixing action can then be written as

SGF = s s̄

∫

d4ϑ dθ Tr
(

AµAµ
)

= s

∫

d4ϑ dθ Tr
(

Ω̄ ∂µAµ

)

=

∫

d4ϑ dθ Tr
(

−B∂µAµ + Ω̄∂µ∂̂µΩ
)

(37)

We will display in [5] the precise component fields content of the above superfields.

Going down to the components formalism and considering only Green functions with no

external legs of the additional fields, we can integrate them out from closed loops by

formal gaussian integrations that compensate each other. These formal integrations can

be shown to be rigourously exact by the use of antighost like Ward identities. Even-

tually, no interactions occurring from the gauge-fixing contribute except for the b, Aµ

and Ω̄, Ω terms, and Eq.(37) shrinks in component formalism to the usual gauge-fixing

term in components, involving the Fadeev–Popov ghost, the anti-ghost and its Lagrange

multiplier

SGF ≈

∫

d4x Tr
(

−b ∂µAµ + Ω̄ ∂µDµΩ
)

(38)

where b ≡ 1
24

εµνσρ( ∂
∂θ

∂
∂ϑµ

∂
∂ϑν

∂
∂ϑσ

∂
∂ϑρ B)|0, Ω̄ ≡ 1

24
εµνσρ( ∂

∂θ
∂

∂ϑµ

∂
∂ϑν

∂
∂ϑσ

∂
∂ϑρ Ω̄)|0 and Ω ≡ Ω|0.

One has also to write a gauge-fixing action for the action of constraints. The gauge

invariance (33) can be written in terms of the BRST operator, thanks to the introduc-

tion of the ghosts Ψ̄(1,0)µν,σ
and B(1,0)µνσ. As discussed in the previous section, the BRST

transformations are themselves subject to a gauge invariance and one has to introduce an

infinite tower of ghosts for ghosts to correctly gauge-fix the theory. We define the com-

muting ghosts Ψ̄(n,0)µν,···
in the rank n+2 irreducible representation obtained by applying

the symmetric traceless projector on the n + 1 last indices and then the antisymmetric

selfdual projector to the two first indices, as well as the anticommuting ghost B(n,0)µν··· in

the rank n + 2 symmetric traceless representation. The BRST transformations are the

following

s Ψ̄(n,0)µν,···
= ∇̂σΨ̄(n+1,0)µν,···σ

− [Ω, Ψ̄(n,0)µν,···
]

s B(n,0)µν··· = ∇̂σ

(

B(n+1,0)µν···σ − 1
n+3

∇̂Ψ̄(n+1,0)σ(µ,ν,··· ))
− ∂̂σΨ̄(n+1,0)σ(µ ν,··· )

− {Ω, B(n,0)µν···}

s K̄µ = ∇̂ν∇̂µΨ̄(1,0)µν,σ
− {Ω, Kµ} (39)

where Ψ̄(0,0)µν
and B(0,0)µν are simply Ψ̄µν

and Bµν . The BRST operator is nilpotent

modulo the constraints, that is modulo the equations of motion of the fields Ψ̄µν
, Bµν and
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K̄µ. The Batalin–Vilkovisky formalism permits one to solve this problem, by introducing

antifields as sources for the BRST transformations.4

We have not yet worked out the gauge-fixing of this BF system. Even if it shares

similarities with a standard bosonic BF model, the choice of gauge-functions cannot be

defined by naively replacing the space derivative of the bosonic case by the anticommut-

ing vector covariant derivative ∇µ. It seems that the free case can be worked out, by

introducing transverse projectors for the auxiliary fields, but more work is yet required

for a complete procedure. It will be described in the forthcoming publication [5], as well

as a practical way for doing computations that takes into account the existence of the

infinite tower of ghosts in loops.

Despite our present ignorance of the gauge-fixing of the BF system that enforces

the covariant constraints, we thus propose as a defining superspace action the following

integral over the twisted superspace

S = SEQ + SC + SGF + SCGF (40)

The four-dimensional expressions (32) and (37) of SC and SGF can be extended to

eight and ten dimensions. It is not clear however if these expressions are relevant in

higher dimensions, where the introduction of a prepotential is required in order to write

the equivariant part of the action.

5 Conclusion

By using twisted variables, one can reexpress the N = 2 supersymmetry algebra in such a

way that the theory is determined by a subalgebra of the super-Poincaré algebra. We have

seen the existence of a corresponding twisted superspace, with coordinates (xµ, θ, ϑµ).

The result generalizes in higher dimensions. Quite interestingly, the constraints on the

super-curvatures are such that they donnot imply the equations of motion. This prop-

erty makes it plausible that one can obtain a superspace path-integral formulation of

maximally supersymmetric theories. We have shown in this publication that a twisted

superspace path-integral formulation of the N = 2 super-Yang–Mills theory does exist

in four dimensions.

This theory is formulated as a Chern–Simons term for the classical action plus a

BF term for expressing the covariant constraints in superspace. Despite the fact that

4However, we have not yet determined the rank of the system, that is the maximal order at which

the antifields have to appear in the action.
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the gauge-fixing of the BF part requires the introduction of an infinite tower of ghosts

and ghosts for ghosts, we hope that it will exhibit a general structure for a compact

resumation of the ghost contributions. Here, we have solved explicitly the constraints

and verified that the theory reduces to the usual Yang–Mills theory in components, after

integration of the superspace longitudinal components of the super-gauge fields and their

corresponding Faddeev–Popov ghosts.

These superspace longitudinal components and the corresponding ghost fields will be

interpreted in a forthcoming more detailed publication [5] as shadow fields that are re-

quired to write a manifestly supersymmetric gauge-fixing action in components, without

introducing supersymmetry gauge parameters. As a matter of fact, the direct introduc-

tion of these shadows in component formalism was our starting point for the study of

the full superfields content. These properties make the twisted superspace formulation

of the theory very close to that in components.

We will also define in [5] the superspace path-integral and its Feynman rules, which

implies a BRST invariant breaking of the gauge invariance of the Lagrange multipliers

fields for the constraints and their infinite tower of ghosts, with suitable choices of gauge

functions. The definition of transverse projectors in superspace will permit one to define

perturbation theory in the free abelian case. The construction of the gauge-fixing func-

tions from the knowledge of these projectors will then permit a well-defined gauge-fixing

procedure in the non-abelian case.

Finally, it must be understood that the construction of a twisted superspace for the

N = 2 supersymmetric theory is not an attempt for an alternative to its harmonic

superspace formulation. Rather, it is a preliminary construction, as an example of a

non-manifestly Lorentz invariant superspace-path-integral that can be generalized in ten

dimensions, but must be completed within an harmonic superspace path-integral formu-

lation for a complete description of the ten-dimensional super-Yang–Mills theory. Even-

tually, one expects the full Lorentz invariance to be recovered for the on-shell amplitudes.
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