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Abstract

Contact of a fluid with a solid or an elastic wall is investigated. The wall

exerts molecular forces on the fluid which is locally strongly nonhomogeneous.

The problem is approached with a fluid energy of the second gradient form

and a wall surface energy depending on the value of the fluid density at the

contact. From the virtual work principle are obtained limit conditions taking

into account the fluid density, its normal derivative to the wall and the curvature

of the surface.

1. Introduction

The phenomenon of surface wetting is a subject of many experiments [1].

Such experiments have been used to determine many important properties of

the wetting behavior for liquid on low energy surface [2]. In fact the wetting

transition of fluids in contact with solid surfaces is an important field of re-

search both for mechanics and physical chemistry. In the recent paper [3], the

1If you have read this paper and wish to be included in a mailing list that I maintain on

the subject, then send e-mail to:

henri.gouin@univ-cezanne.fr
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first author using statistical methods proposed an explicit form for the energy

of interaction between solid surfaces and liquids. This energy yields a bridge

connecting statistical mechanics and continuum mechanics. To obtain boundary

conditions between fluid and solid it is also necessary to know the behaviour of

the fluid as well as the solid.

We propose a mechanical model similar to that used in the mean-field theory

of capillarity that leads to the second gradient theory of continuous media in

fluid mechanics [4]. The theory is conceptually more straightforward than the

Laplace one to build a model of capillarity [5,6]. That theory takes into account

systems in which fluid interfaces are present [7]. The internal capillarity is one

of the simplest cases since we are able to calculate the superficial tension in the

case of thin interfaces as well as in thick ones [8]. It is possible to obtain the

nucleation of drops and bubbles [9].

It seems that the approximation of the mean-field theory is too simple to be

quantitatively accurate. However, it does provide a qualitative understanding.

Moreover, the point of view, that the fluid in interfacial region may be treated

as a bulk phase with a local free energy density and an additional contribu-

tion arising from the nonuniformity which may be approximated by a gradient

expansion truncated at the second order, is most likely to be successful and

perhaps even quantitatively accurate near the critical point [10].

In this paper we connect both the interaction of a solid surface and a fluid

phase by means of the virtual work principle. The distribution of fluid energy in

the volume and the surface density energy on the solid surface yield boundary

conditions. The conditions are different from those obtained for a classical fluid

within the theory of gas dynamics. We obtain an embedding effect for the

density of the fluid; moreover, the conditions take into account the curvature of

the surface. The result is extended to the case of an elastic wall.

A discussion is obtained depending on the value of the density of the fluid at
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the surface.

Let us use asterisk ”*” to denote conjugate (or transpose) mappings or cov-

ectors (line vectors). For any vectors a,b we shall use the notation a∗b for

their scalar product (the line vector is multiplied by the column vector) and

ab∗ or a ⊗ b for their tensor product (the column vector is multiplied by the

line vector). The product of a mapping A by a vector a is denoted by A a.

Notation b∗ A means covector c∗ defined by the rule c∗ = (A∗ b )∗. The

divergence of a linear transformation A is the covector divA such that, for

any constant vector a,

div(A) a = div (A a ).

If f(x) is a scalar function of the vector x associated with the Euler variables

in the physical space,
∂f
∂x is the linear form associated with the gradient of f

and
∂f

∂xi = (
∂f

∂x
)i. Consequently, (

∂f

∂x
)∗ = grad f

2. Continuous mechanical model of capillary layers

We consider a fluid in contact with a solid. The fluid occupies the domain D

and its boundary Σ which is common with the solid wall. Physical experiments

prove that the fluid is nonhomogeneous in the neighbourhood of Σ [10]. It is

also possible to consider the fluid as a continuous medium by taking into account

a capillary layer existing in the vicinity of Σ and a form of its stress tensor

[11]. One way to present the behaviour of such a fluid is to consider the specific

internal energy ε as a function of the density ρ as well as grad ρ. Such an

expression is known in continuum mechanics as internal capillary energy, see

[4,5]. It is related to molecular models of strongly non homogeneous fluids in

the frame of the mean field theory and is equivalent to the van der Waals model

of capillarity (see the review by Rowlinson and Widom [10]). The energy ε is

also a function of the specific entropy. In the case of isothermal media at a given

temperature, the specific internal energy is replaced by the specific free energy.
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In the mechanical case the entropy or the temperature are not concerned by

the virtual variations of the medium. Consequently, for an isotropic fluid, it is

assumed that

ε = f(ρ, β)

where β = (
−−→
grad ρ)2 = gradρ . gradρ (the dot . denotes the scalar product).

The fluid is submitted to external forces represented by a force potential Ω per

unit mass as a function of Euler variables x.

We denote by x ∈ Σ −→ B(x) ∈ R the surface density of energy of the solid

wall. The total energy E of the fluid in D and its boundary Σ is the sum

of the three potential energies: E = Ef + Ep + ES with,

Ef =

∫ ∫ ∫

D

ρ ε(ρ, β) dv , Ep =

∫ ∫ ∫

D

ρ Ω(x) dv , ES =

∫ ∫

Σ

B ds

Let us denote by δ a variation of the position of the fluid as in [12]. The

variation is associated with the virtual displacement

x ∈ D → δx = ζ(x)

We have the following results presented in Appendix,

δEf =

∫ ∫ ∫

D

(− div σ) . ζ dv +

∫ ∫

Σ

{

−A
dζn

dn
+

( 2A

Rm

n + gradtgA + σn
)

. ζ
}

ds (1)

with

σ = −P I− C gradρ ⊗ gradρ = −P I− C(
∂ρ

∂x
)∗

∂ρ

∂x

where C = 2ρε′β and P = ρ2ε′ρ − ρ div(C grad ρ),

ε′ρ denotes the partial derivative of ε with respect to ρ, ζn = n∗ζ where n is

the external unit normal to Σ and A = Cρ
dρ

dn
where

dρ

dn
=

∂ρ

∂x
n.

The scalar Rm is the mean curvature of Σ and gradtg is the tangential part

of grad relatively to Σ.

Moreover,

δEp =

∫ ∫ ∫

D

ρ
∂Ω

∂x
ζ dv =

∫ ∫ ∫

D

ρ gradΩ . ζ dv (2)
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and using the results presented in Appendix,

δES =

∫ ∫

Σ

δB −

( 2B

Rm

n + gradtgB
)

. ζ ds (3)

One assumes that the volume mass in the fluid has a limit value ρs at the wall

Σ. One assumes also that B is a function of ρs only. These hypotheses are

confirmed by results presented in [3]. Then

δB = B′(ρs)δρs = −ρsB
′(ρs) div ζ

Let us denote G = −ρsB
′

ρs

. Consequently,

∫ ∫

Σ

δB ds =

∫ ∫

Σ

G div ζ ds =

∫ ∫

Σ

(G
dζn

dn
−

2G

Rm

n . ζ − gradtgG . ζ ) ds

(see Appendix).

Now, H = B(ρs) − ρsB
′

ρs

(ρs) is the Legendre transformation of B with

respect to ρs. Then,

δES =

∫ ∫

Σ

G
dζn

dn
− ( 2H

n

Rm

+ gradtgH ) . ζ ds (4)

The d’Alembert-Lagrange principle of virtuals works is expressed in the form

[12] :

∀ x ∈ D → ζ(x), δE = 0 (5)

Consequently, from the fundamental lemma of variation calculus, we obtain the

balance equation in the fluid D and the boundary conditions on the solid wall

Σ.

Equilibrium equations :

From any arbitrary variation x ∈ D → ζ(x) such that ζ = 0 on Σ, we take

first
∫ ∫ ∫

D

(

ρ
∂Ω

∂x
− div σ

)

ζ dv = 0

Consequently,

− div σ + ρ
∂Ω

∂x
= 0 (6)
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This equation is the well known equilibrium equation [5,7,9]

Boundary conditions :

a) Case of a rigid (undeformed) wall.

We consider a rigid wall. Consequently, the virtual displacements satisfy on Σ

the condition n∗ ζ = 0 . Then, at the rigid wall

∫ ∫

Σ

(G − A)
dζn

dn
+

{

2(A − H)

Rm

n + gradtg(A − H) + σn

}

. ζ dσ = 0

Hence, we deduce the boundary conditions at the rigid wall

For x ∈ Σ, G − A = 0 (7)

and moreover, there exists a Lagrange multiplier x ∈ Σ → λ(x) ∈ R such that

2(A − H)

Rm

n + gradtg(A − H) + σ n = λ n (8)

b) Case of a elastic (non-rigid) solid wall.

In such a case the equilibrium equation(6) is unchanged. On Σ the condition (7)

is also unchanged. The only different condition comes from the fact that we do

not have anymore the slipping condition for the virtual displacement (n∗ζ = 0).

Due to the possible deformation of the wall, the virtual work of mechanical

stresses on Σ is

δEe =

∫ ∫

Σ

T∗ζ ds

with T = Q n representing the stress (loading) vector, where Q is the value

of the Cauchy stress tensor of the wall on the boundary Σ.

Relation (8) is remplaced by :

2
(A − H)

Rm

n + gradtg(A − H) + σ n = −T (9)
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3. Analysis of the boundary conditions

Relation (7) yields :

C
dρ

dn
+ B′

ρ = 0 (10)

and we obtain,

H − A = B.

Consequently, from the definition of σ,

σ n = P n − C
dρ

dn
gradρ.

The tangential part of equation (8) is always verified and equation (8) yields

the value of the Lagrange multiplier λ.

For an elastic (non-rigid) solid wall we obtain

T ∗

tg = 0 and Tn =
2B

Rm

+ P − B′

ρ

dρ

dn
(11)

where T ∗

tg and Tn are respectively the tangential and the normal components

of T. Taking into account equation (10), Tn = P +
2B

Rm

+
1

C
(B′

ρ)
2 and

equations (11) yield the value of the stresses in the elastic (non rigid) medium.

The only new condition comes from equation (10).

We have the consequences:

In [3] we propose the surface energy in the form B(ρ) = −γ1ρ +
γ2

2
ρ2 with

γ1, and γ2 as two positive constants. We obtain the condition for the fluid

density on the wall

C
dρ

dn
= γ1 − γ2ρ (12)

Denoting again ρs the value of ρ on the wall Σ (the limit value of the volumic

mass of the fluid on the wall Σ ), we obtain that
dρ

dn
is positive (or negative)

in the vicinity of the wall if ρs < ρi (or ρs > ρi ) with ρi =
γ1

γ2

which is the

bifurcation fluid density at the wall.
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If ρs < ρi we have a lack of fluid density at the wall. If ρs > ρi we have a

excess of fluid density at the wall.

Conclusion

For conservative medium, the first gradient theory corresponds to the case

of compressibility. To take into account superficial effects acting between solids

and fluids, we propose to use the model of fluids endowed with capillarity. The

theory interprets the capillarity in a continuous way and contains Laplace’s

theory. The model corresponds for solids to elastic materials with couple stresses

indicated by Toupin in [13].

We notice that the extension to the dynamic case is straightforward: by virtual

work principle, equation (6) takes the form:

ργ∗
− div σ + ρ

∂Ω

∂x
= 0,

where γ denotes the acceleration of the fluid. Equations (10), (11), (12) and

consequences in paragraph 3 are unchanged.
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Appendix

First of all we recall the following fact issued from differential geometry:

Let Σ be a surface in the 3-dimensional space and n its external normal. For

any vector field ζ,

n∗rot(n × ζ) = div ζ +
2

Rm

n∗ζ − n∗
∂ζ

∂x
n.

Then, for any scalar field A, we obtain:

A div ζ = A
dζn

dn
−

2A

Rm

ζn − (grad∗

tgA) ζ + n∗ rot (An × ζ)

= tr
[ (

∂A
∂x (nn∗ − 1) −

2A

Rm

n∗

)

ζ
]

+ A
dζn

dn
+ n∗rot(An × ζ)

(A.1)

Let us calculate δEf : since D is a material volume,

Ef =

∫ ∫ ∫

D

ρ ε dv ⇒ δEf =

∫ ∫ ∫

D

ρ δε dv

with δε =
∂ε

∂ρ
δρ +

∂ε

∂β
δβ.

From δ
∂ρ

∂x
=

∂δρ

∂x
−

∂ρ

∂x

∂ζ

∂x
, we deduce

ρ ε′β δβ = 2ρ ε′β δ(
∂ρ

∂x
)

∂ρ

∂x

∗

= C
(

∂δρ

∂x
−

∂ρ

∂x

∂ζ

∂x

) ∂ρ

∂x

∗

with 2ρ ε′β = C.

In the mean-field molecular theory, the quantity C is assumed constant [10],

but it is not necessary for our calculations. One can suppose the scalar C is a

general function of ρ and even β. Then

ρ ε′β δβ = div(C grad ρ δρ) − div(C grad ρ) δρ − tr
(

C gradρ grad∗ρ
∂ζ

∂x

)

Due to the fact that δρ = −ρ div ζ (see [12]),

ρ δε = div(C grad ρ δρ) −
(

ρ2 ε′ρ − ρ div(C grad ρ )
)

div ζ

− div(C gradρ grad∗ρ ζ) + div(C gradρ grad∗ρ) ζ
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ρ δε = div
(

C gradρ δρ − (C grad ρ grad∗ρ)ζ − Pζ
)

+
∂P

∂x
ζ + div(C grad ρ grad∗ ρ) ζ

Then

δEf =

∫ ∫ ∫

D

(

∂P

∂x
+ div(C gradρ grad∗ρ)

)

ζ dv

−

∫ ∫ ∫

D

div
(

Cρ grad ρ div ζ + C grad ρ grad∗ρ ζ + Pζ
)

dv

=

∫ ∫ ∫

D

−(div σ) ζ dv +

∫ ∫

Σ

(−A div ζ + n∗σ ζ) ds

Taking into account (A.1), we deduce immediately

δEf =

∫ ∫ ∫

D

−(div σ) ζ dv

+

∫ ∫

Σ

(

− A
dζn

dn
+ (

2A

Rm

n∗ + grad∗

tgA + n∗σ) ζ
)

ds +

∫ ∫

Σ

n∗rot(A n× ζ)ds

But

∫ ∫

Σ

n∗rot(A n × ζ) ds =

∫

Γ

At . (n × ζ) dℓ =
∫

Γ
A(t,n, ζ) dℓ

where Γ is the line boundary of Σ and t its tangent unit vector. If n′ = t×n

we obtain the relation

δEf =

∫ ∫ ∫

D

(−div σ) ζ dv +

∫ ∫

Σ

(

− A
dζn

dn
+ (

2A

Rm

n∗ + grad∗

tgA + n∗σ) ζ
)

ds +

∫

Γ

An′∗ζ dℓ (A.2)

In the following we assume that Σ has no boundary and consequently, the term

associated with Γ vanishes.

Let us calculate δES

ES =

∫ ∫

Σ

B ds

Then

δES =

∫ ∫

Σ

δB −

(

n∗
2B

Rm

+ grad∗B (1− nn∗)
)

ζ ds +

∫

Γ

An′∗ζ dℓ (A.3)

We notice that grad∗B(1− nn∗) belong to the tangent plane to Σ.

Let us proof equation (A.3): If we write ES =

∫ ∫

Σ

B det (n, d1x, d2x) , where

d1x and d2x are the coordinate lines of Σ, we may write,

ES =

∫ ∫

Σ0

B det F det (F−1n, d1X, d2X)
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where Σ0 is the image of Σ in a reference space in Lagrangian coordinates X

and F the deformation gradient tensor
∂x

∂X
.

Then,

δES =

∫ ∫

Σ0

δB det F det (F−1n, d1X, d2X) +

∫ ∫

Σ0

B δ
(

det F det (F−1n, d1X, d2X)
)

Moreover,
∫ ∫

Σ0

B δ
(

detF det (F−1n, d1X, d2X)
)

=

∫ ∫

Σ

B div ζ det (n, d1x, d2,x) +B det
(∂n

∂x
ζ, d1x, d2x

)

−B det
( ∂ζ

∂x
n, d1x, d2x

)

=

∫ ∫

Σ

(

div(B ζ) − grad∗B ζ − B n∗
∂ζ

∂x
n

)

ds

From (A.1) we obtain,

div(B ζ) − B (div n) n∗ζ − n∗
∂Bζ

∂x
n = n∗ rot (B n × ζ)

Then,
∫ ∫

Σ0

B δ
(

det F det (F−1n, d1X, d2X)
)

=

∫ ∫

Σ0

(

B (div n) n∗ + grad∗B (nn∗
− 1)

)

ζ ds +

∫ ∫

Σ

n∗ rot (Bn × ζ) ds

and we obtain equation (A.3) with div n = −
2

Rm

.

We assume that Σ has no boundary and consequently, the term associated with

Γ is null.
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