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The Minimal Logically-Defined
NP-Complete Problem

Régis Barbanchon and Etienne Grandjean

GREYC, Université de Caen, 14032 Caen Cedex, France

{regis.barbanchon,etienne.grandjean}@info.unicaen.fr

Abstract. We present an NP-complete problem defined by an existential monadic second-order
formula over functional structures that :
1. is minimal under several syntactic criteria (i.e., any problem defined by an EMSO formula that
further restricts one criterion becomes PTIME or trivial even if all other criteria are relaxed);
2. is unique for such restrictions, up to renamings and symmetries;
Our reductions and proofs are surprisingly very elementary and simple in comparison with some
recent similar results classifying existential second-order formulas over relational structures accord-
ing to their ability either to express NP-complete problems or to express only PTIME ones.

Key words: Computational Complexity, Descriptive Complexity, Finite Model Theory, Second-
Order Logic, NP-Completeness, Parsimonious Reductions.

1 Introduction and main results

1.1 Which formulas express NP-complete problems?

In the line of Fagin’s Theorem [4] which states that ezistential second order logic (ESO) captures
the class NP, this paper studies the following natural question: what is (are) the most simple ESO
sentence(s) that define(s) some NP-complete problem(s)? This question is somewhat related to
two recent papers [6, 3] that completely classified prefix classes of ESO over strings and graphs
(and more generally over relational structures) with respect to their ability to express either
some NP-complete problems or only tractable (i.e., PTIME) ones. For example, it is easy to
express an NP-complete problem over graphs, such as 3-colourability, in ezxistential monadic
second-order logic (EMSO) with only two first-order variables. In contrast, one notices that
ESO formulas that use only relation ESO variables and only one first-order variable can only
define easy (degenerate) properties on relational structures. The situation completely changes
if function symbols are allowed either in the input signature or among the ESO symbols. For
example, ESO formulas with only one first-order variable x of one of the forms (1-2):

(1) 3fVz oz, f, E)
() WVe = 7,0)

where 1) is quantifier-free, f and U are lists of unary function symbols and of monadic relation
symbols respectively, and £ is a binary relation symbol, can express some NP-complete prob-
lems. More precisely, [8] have recently proved that formulas of form (1) exactly define graph
problems (such as the Hamiltonian cycle problem) that are recognizable in nondeterministic lin-
ear time O(n) where n is the number of vertices in the graph, and [1] states that any problem is
linearly reducible to SAT iff it is linearly reducible to some problem expressible by some formula
of the form (2) (see also [11]).

1.2 Minimal formulas for NP-complete problems

In this paper, we study the problem MiN, defined by the very simple EMSO formula (g of the
particular form (2) that follows.



Notation 1. Let ¢y denote the {f, g}-formula in conjunctive normal form (CNF)

wo: 33U Vx po(x), where 1y is the conjunction
vo: (UxVUfx)AN(=UxV -UfzV -Ugz),

and f, g are unary function symbols. Let &y denote the following formula in disjunctive normal
form (DNF) which is logically equivalent to @q:

do: IUVr (UxA-Ufz)V (UzxzA-Ugz)V (~UzAUfzx).
The problem MINg is defined as the set of finite models (D, f,g) of g, or equivalently, of dg.
We shall also study the following subproblems of MiNg:

Notation 2. The problems MINy and MINg are resp. defined as MINy = {(D, f, g) where f,g
are permutations: (D, f,g) € MiNg}, and MiNg = {(D, f,g) such that the graph G(D, f,q) is
planar: (D, f,g) € MIN1}, where G(D, f,q) is the graph (V,E) defined by V. = D and E =
{(z, fz):x € D}U{(z,9z) :x € D}U{(fz,g9x) : x € D}.

Our main results are the following:
Theorem 1. MINy and its subproblems MINy and MINy are NP-complete.

Theorem 2 (Minimality). o (resp. dg) is, for several syntactic criteria enumerated in Table
1, the minimal EMSO formula in CNF (resp. in DNF) of the form 3U VYT < (where ¢ is
quantifier-free and T is a list of first-order variables) that defines an NP-complete problem under
the hypothesis P # NP.

input signature 2 unary functions CNF (¢0) number of clauses 2

number of EMSO symbols 1 length 5
number of FO variables 1 DNF (do) number of anticlauses 3
number of distinct atoms 3 length 6

Table 1. Minimal syntactic criteria of EMSO formulas for NP-complete sets

Notation 3. The atoms of a formula are its atomic subformulas. In particular, the distinct
atoms of @o (or &) are Uz, Ufx and Ugz. The length of a formula is the total number of
occurrences of atoms in it. The disjuncts of a DNF formula are called its anticlauses.

Theorem 3 (Unicity). ¢y (resp. dy) is — up to symmetries detailed below — the unique minimal
EMSO formula in CNF (resp. in DNF) of the form 3U VT 1) that defines an NP-complete
problem.

Remark 1. The symmetrical formulas involved in Theorem & are obtained by any permutation
of terms x, fx and gz and of U and =U in @y (resp. d).

1.3 Minimal formulas for #P-complete problems

Besides NP-completeness, another important concept of the theory of complexity is #P-complete-
ness [14]. It is also natural to look for a minimal logical formula that defines some #P-complete
problem. In this regard, it is well known that the generic reduction from any NP problem to
SAT can (easily) be made parsimonious with a bijective and PTIME-computable correspondence
between solutions. That means that problem SAT not only “simulates” the decision process of
any problem in NP but also “reproduces” the number of its solutions and the “structure” of
this set of solutions.



Notation 4. For any problem M in NP, let us denote by #M the “natural” counting problem
associated to M, i.e., the problem of counting its “natural” solutions. E.g., #SAT is the function
that associates with each SAT instance F' the number of assignments I such that I |= F'; similarly,
#MIN; is the function which associates to each instance S = (D, f,g) of MINy the number
U CD:(S,U) Ve (@)}

We believe that:

Conjecture 1. There exists no parsimonious reduction from #SAT to #MINy (resp. #MINy ).
Nevertheless, we prove in this paper that:

Theorem 4. There is some weakly parsimonious reduction from #SAT to #MINy (resp. #MINs ).

Recall that for two counting problems #A and #B, a weakly parsimonious reduction from
#A to #B is an ordered pair (r,u) where r is a PTIME reduction from A to B and p is a
PTIME-computable function valued in positive integers such that for each instance w of A, we
have #{S : S is a solution of problem A for w} = pu(w) x #{s : s is a solution of problem B for
r(w)}.

In regard to Conjecture 1 concerning Formula ¢y, it is natural to look for another simple
EMSO formula defining a problem to which SAT (and hence any NP problem) parsimoniously
reduces. Let ppang denote the {f, g}-formula:

¢Ynand : 33U Vx  pana(z), where panq is the “NAND” formula
Ynand : Uz <= —~(Ufx ANUgz),

which is equivalent to the conjunction of clauses:
(UxNvVUfx)N(UzVUgx)A(=UzV=UfxV -Ugz).

Clearly, %pand (resp. @nand) implies 9o (resp. ¢p). The formula @9 defines the following
problems:

Notation 5. The problems NAND; and NANDy are resp. defined as NAND; = {(D, f,g) where
[, g are permutations of the finite set D: (D, f,g) = ¢nand }, and NANDe = {(D, f,g) such that
f,g are permutations of the finite set D and the graph G(D, f,g) is planar: (D, f,g) = ¢nand }-

In contrast to Conjecture 1, we can prove that:

Theorem 5. (i) #SAT parsimoniously reduces to #NAND; (resp. #NANDy). (ii) If Conjec-
ture 1 holds and P # NP, then @nang s (up to symmetries) the unique minimal EMSO formula
for which (i) holds, i.e., that defines a problem over permutation structures (D, f,g) to which
#SAT parsimoniously reduces.

Surprisingly, our completeness proofs are rather simple and the reductions involved in The-
orems 1 and 5 are essentially the same one reduction p : F + S(F) described in the next
section.

2 Proof of the completeness results

2.1 The structures involved
Let us recall the three kinds of instances of our problems.

Definition 1. A function structure is a finite structure (D, f,g) where f,g : D — D are
unary functions. A function structure (D, f,g) is a permutation structure (resp. is a planar
permutation structure) if f,g are permutations of D (resp. are permutations of D such that the
graph G(D, f,g) is planar).



Remark 2. A permutation structure is naturally given by its f- and g-circuits.

Definition 2 (Planar formula and PLAN-SAT). Let F' be a propositional formula in CNF.
Let G(F) denote the following bipartite graph (V, E) where V is the disjoint union of the set of
variables and the set of clauses of F, and E is the set of pairs (v, C) such that v is a variable
that occurs in clause C.

F is a planar formula if G(F) is a planar graph, and PLAN-SAT is defined as the satisfiability
problem of planar formulas.

In our proofs of completeness, we will use the NP-complete problem PLAN-SAT [12].

2.2 A gadget

We are going to describe a reduction p : F' — S(F’) that associates to each SAT (resp. PLAN-SAT)
instance F' a permutation structure S(F') that contains many occurrences of the following gadget
denoted True.

Definition 3. True or True(w, 3,7) is the gadget depicted on the left of Fig. 1.

The symbolization means that the gadget True plays the role of the Boolean constant “true”
(or “17). More formally, the following lemma expresses that in any case, U(vy) can and should
be true whereas the value of U(gy) (the “pending” g-edge of ) is free.

Lemma 1. Let True(w, 8,7) be a gadget included in a permutation structure S = (D, f,g) and
U:D — {0,1} be a monadic predicate’.

1. If (8,U) = ¢o then we have U(a) =1, U(B) =0 and U(y) = 1;

2. Conversely: if U(a) = 1, U(B) = 0 and U(y) = 1, then the expanded structure (True,U)
satisfies ppand (and hence @g); in other words, @uand(x) is satisfied by each element r =
a, 3,7 independently of the value of U(gy).

Proof. Easy and left to the reader. O

The gadget True The variable X has 5 occurrences. The occurrence 3 ofxl. occurs positively in the clause Cj

"pending" g—edges

a %
B . nC A3 nC AZ nC A]
J J J J

=0 =0 =0

' ' Chod
o

—I=> f-edge
—» g—edge The clause Cj has length 4

Fig. 1. The gadget True and the reduction around variable z; and clause Cj

! For convenience, we confuse truth values “true” and “false” with 0 and 1 and assimilate a monadic predicate
U C D to its characteristic function U : D — {0,1}.
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2.3 Our reduction

Let us now construct our reduction p : F' +— S(F) where F' is a SAT (resp. PLAN-SAT) instance,
i.e., a conjunction of clauses F' = Ci A Cy A --- A Cy. In the description of the permutation
structure S(F'), we freely make use of the following notation:

Notation 6. Whenever there exists some gadget True(a, 8,7) such that g(x) = v and g(y) =y,
we will often write g(z) = True and g(True) =y by commodity.

Let us now describe the f- and g-circuits of our permutation structure S(F):

— For each variable z; with r occurrences in F', construct the f-circuit:

1 1 .2 2 r—1 r—1
(x; ,nz;,z;,nxi, -,z N

r r)
RS i i LNy ),

where both vertices xf, nmf correspond to the k™" occurrence of z; in F.
— For each clause C; = A\ V--- V Ay in F, construct the f-circuit of odd length:

l l l—1 -1 1 1 0
(nCJ,CJ,an ,C] ,,nCJ,C],nCJ),

where the C’;-“ and nC]"-C are new elements corresponding to the “prefix” of length k£ of the

clause C; defined as prefix;,(Cj) = A1 V- -V A; Also construct the 41 g-circuits (nC]’?, True)
for 0 < k < £ using £ 4 1 new distinct gadgets True.

— If the k' literal of C; is the h'™M occurrence — resp. negation of the A'" occurrence — of z;,
construct the g-circuits (Cf, nz?, True) and (z?, True) — resp. (C’;-“, 2, True) and (nz?, True)
— using two new distinct gadgets True.

This completes the description of S(F) which is represented on the right of Fig. 1. The
following lemma is obvious by the construction of S(F).

Lemma 2. F is a planar formula iff S(F') is a planar permutation structure.

2.4 Properties of the reduction

The following fact whose proof is straightforward will be useful in our study of the f-circuits of
S(F) that correspond to the variables (resp. clauses) of F'.

Fact 1. Let S = (D, f,g) be a permutation structure and U : D — {0,1} be a monadic
predicate such that (S,U) = Vx o(z). Then, for every a € D such that (S,U) = U(ga) (i.e.,
U(ga) =1), it holds U(a) =1 —U(fa).

Lemma 3. If S(F) satisfies @o then F is satisfiable.
In order to prove Lemma 3, we need the following two claims:

Claim 1 (Existence of a witness literal for each clause). Let U be a predicate such that
(S(F),U) =V 9o(z). For each clause Cj, there exists at least one literal X in C; for which it
holds: U(nzl) = 0 if X\ = z;, and U(z?) = 0 if X = —z;, where X is the h'" occurrence of ;.

Claim 2 (Coherence of occurrences of the same variable). Let U be a predicate such
that (S(F),U) |= Yz vo(z). For each variable z; occurring r times, it holds:

U@)=1-Umz}) =U?)=1-Umaz?) =---=U(z}) =1 — U(nzl).

13 13 13

We first prove Claims 1 and 2, and then deduce Lemma 3.



Proof (of Claim 1). Assume that the claim is false. Then there is a clause C; such that for each
literal A, it holds U(na®) = 1 if A = 2; and U(z?) = 1 if A = —z;. This implies U(ga) = 1 for
each element a of the f-circuit of Cj, and hence U(a) = 1—-U(fa) by Fact 1, which is impossible
since the length of this f-circuit is odd. O

Proof (of Claim 2). It is an immediate consequence of Fact 1, applied to each element a of the
f-circuit of x; since we always have g(a) = True, and thus U(ga) = 1. a

Proof (of Lemma 3). Define the assignment I of the variables F as I(z;) = U(z!) = 1 —U(na?),
for each variable x; and any 1 < h < r, which is coherent by Claim 2. Claim 1 ensures that in
each clause C; of F, there is some literal A such that I(A\) = 1. Hence, I = Cjand I = F. O

Lemma 4 states the most precise property of our reduction p : F — S(F).

Lemma 4. There is a bijective correspondence I — Ur of the set of satisfying assignments
{I : I = F} onto the set of monadic predicates {U : (S(F),U) = V& nana(x)}.

For each I such that I |= F, let us construct its associated monadic predicate Uy, on the
domain D of S(F'). The correction will be ensured by Claim 3 and its converse Claim 4:

— Set Ur(a) = 1, Ur(B) = 0 and U;(y) = 1 for each gadget True(w, 3,7) in S(F): this is
justified by Lemma 1;

— For each variable z; of F, set Ur(z!) = I(z;) and Uy(nz?) = 1 — I(x;), for each h;

— For each clause C; = )\} \VARERY, Ag, set U[(nC]O) =1,and for k = 1,---,4, set U[(C’f)
value(prefix, (C}), I), and U[(an) = 1 — value(prefix; (C;),I), where prefix; (C;) = X
SV )\f and in particular C; = prefix,(C}).

1
j \/

In the following, we essentially use the well-known fact that all the Boolean connectives can be
expressed by means of the NAND one only. More precisely, 1 —v = NAND(v, 1) and OR(v,v') =
NAND(1 —wv,1 —2').

Claim 3. (S(F),Ur) = Yz Ynand(z).

Proof. For each element a of the f-circuit of any variable z;, we have Ur(ga) = 1 and Ur(a) =
1 —Ui(fa), and hence (S(F),Ur) = U(a) <= NAND(U(fa),U(ga)).
For every clause C; of length /, one easily obtains the following equalities for 1 < k& < £ if
Ch=cCt 'yl
J J i

— Ur(nC¥) =1 -U;(CF) = NAND(U7(CF), 1), and

— U(CF) = NAND (U (nCE™"), Uy (nah));

and similarly in the case C’f = C]I-c_1 V =z, This proves (S(F),Ur) & %nanda(a) for every
element a # nCJQ in the f-circuit of C}. Finally, this also holds for a = nCJQ since UI(nCJ‘f) =

value(—~Cj,I) = 0 and, as a consequence, UI(nC’]O) =1= NAND(UI(an), 1) as required. This
completes the proof of Claim 3. O

It remains to prove the converse of Claim 3.

Claim 4. Let U be a monadic predicate such that (S(F'),U) = Vx Ypanda(z). Then there is an
assignment I, of course unique, such that U =Uy and I = F.

Proof. 1t is a variant of the proof of Lemma 3 and is left to the reader. This completes the proof
of Lemma, 4. 0

Lemmas 2, 3 and 4 together imply the following;:



Corollary 1. (i) SAT (resp. PLAN-SAT) reduces to problem MINy (resp. MINg) by the reduction
p: F— S(F). (ii) #SAT (resp. #PLAN-SAT) parsimoniously reduces to problem #NAND; (resp.
#NANDg).

So, we have proved Theorems 1 and 5(7), by making use of the known result that #SAT
parsimoniously reduces to #PLAN-SAT [12].

A careful analysis of our reduction p : F' — S(F) from SAT (PLAN-SAT) to MiN; (MINg)
shows that the only part of S(F) where this reduction is not parsimonious are the f-circuits
of the clauses of F' when at least two literals of some clause of F' are true together. On the
other hand, it is known that the problem 3-SAT (also denoted one-in-three-SAT, see [5]) and
its planar restriction PLAN—%—SAT defined below are equivalent to SAT and PLAN-SAT under
parsimonious reductions (see [9]).

Definition 4. Let %—SAT (resp. PLAN—%—SAT) denote the satisfiability problem of a conjunction
of %—clauses (resp. planar %—clauses) of the form %(a,b, c) whose meaning is “exactly one of the
three variables a, b, c is true”.

Theorem 4 is a straightforward consequence of the following lemma:

Lemma 5. #%—SAT (resp. #PLAN—%—SAT) reduces to #MINy (resp. #MINg) under a weakly
parsimonious reduction.

Proof. Let F — F' be the trivial parsimonious and planarity-preserving reduction from %—SAT
(resp. PLAN-3-SAT) to SAT (resp. PLAN-SAT) that replaces every i-clause i(a,b,c) by the
logically equivalent conjunction

(aVbVe)A(—aV=b)A(=bV —c)A (—eV —a).

One notices that in each clause of this conjunction, except one of length two, e.g. C' = —a V —b,
exactly one literal is true and both literals of C are true. Let us now consider the composed
reduction p' : F +— S(F') from §-SAT (PLAN-3-SAT) to MIN; (MINy). If F' contains ¢ 3-clauses
then it holds

H{U : (S(F'),U) |=Var tho(a)} = 29 x #{1: I |= F.

This is easily justified by a careful analysis of the f-circuits of clauses (of F') in S(F’): one sees
that each %—clause of F gives exactly 2 “local configurations” of the (union of four) f-circuits
of the four corresponding clauses of F’. O

3 Proofs of minimality and unicity

3.1 Minimality of ¢ and d¢ in Theorem 2

W.Lg., for the sake of simplicity, we only consider EMSO formulas without equality, and without
composition of functions, of the form: ¢ : U VZ 1), where U (resp. Z) is a list of monadic relation
symbols (resp. first-order variables) and v is quantifier-free.

Proof. We prove the minimality of:

e the input signature (= 2 unary function symbols): A famous theorem of Courcelle [2],
asserts that any MSO property of bounded tree-width structures can be checked in deterministic
linear time. In particular, any EMSO property of o-structures with o = {f,Uy,---, Ui} where
f is a unary function symbol and Uy, - - -, Uy are monadic relation symbols is checkable in linear
time.

e the number of EMSO symbols (= 1): Immediate since any first-order (FO) property is ACy
and thus is PTIME.



e the number of FO symbols (= 1): trivial.

e the number of clauses in @ (= 2): If an ESO formula ¢ in CNF has only one clause then
it defines a trivial “yes”-problem.

e the length of ¢y (= 5): If the length of ¢ in CNF is at most 4 then ¢ either: (i) contains
only clauses of length at most 2, or (i7) contains only one clause (of length 3 or 4), or (4i4)
contains exactly one clause of length 3 and one clause of length 1.

In case (i), ¢ is ESO-Krom and, as a consequence, defines a PTIME problem [7]. In case (i),
¢ defines a trivial “yes-problem”. Finally, in case (ii7), one observes that the clause of length 3
either contains at most one positive literal or contains at most one negative literal. Hence, ¢ is
either ESO-Horn or ESO-Anti-Horn, and thus defines in both cases a PTIME problem [7].

e the number of distinct atoms (= 3): If ¢ in CNF contains at most 2 distinct atoms, then
its clauses are trivially of length at most 2, and ¢ is ESO-Krom.

e the number of anticlauses in 0y (= 3): Notice that any formula ¢ in DNF that contains at
most 2 disjuncts is equivalent to a CNF formula that consists of clauses of length at most 2.

e the length of &g in DNF (= 6): If ¢ in DNF contains an anticlause of length 1, then it is
a trivial “yes-problem”. Thus, if ¢ in DNF defines an NP-complete problem, it consists of at
least 3 anticlauses of length > 2. O

3.2 Unicity up to symmetries of ¢g and dp in Theorem 3

Let us prove the unicity of ¢y (the proof of §y is similar). Let ¢ be an EMSO formula in
CNF, without equality, that satisfies the conditions of Table 1 and defines an NP-complete
problem over permutation structures (D, f, g). (The proof is similar but somehow longer in case
of function structures.) ¢ is of the form U Vz ¢(f,g,U,z), where 1) is a conjunction of two
clauses Cy and Cy with |C1] 4 |C2] =5 and |Cy| < |Cyl.

Proof. One notices that: (i) one clause consists of positive literals and the other one consists
of negative literals: otherwise, ¢ would define a trivial “yes-problem”, and (i7) |C1| = 2 and
|Ca] = 3: otherwise, C; would be unitary and ¢ would define a trivial “no-problem” since
Vz C7 would be equivalent to Vx Uz or Yz ~Uz (because f and g are permutations) and would
contradict Vx Cy by point (7). These two points imply that ¢ should be one of the following two
forms ¢y or ¢f, up to permutations of f and g and of U and —U:

wo(fyg): FUNVx (Uz VUfz)A (=Uz V-UfxV -Ugzx)
oo(fo9): UNVz (UgzVUfx)A(-UgzV -UfzV -Ux).

Formulas ¢y and ¢ essentially define the same problem over permutation structures (resp.
planar permutation structures) (D, f, g): By replacing by ¢ 'z in the matrix of the formula
o, we immediately get the equivalence:

(D, f,9) E wolf,9) <= (D, f'.d) Ewr(f,d),

where f' = ¢! and ¢’ = fg !. This also makes sense for planar permutation structures since

G(D, f,g) is planar iff G(D, f’,¢') is planar. a

It remains to prove Theorem 5(ii), more precisely reformulated as follows: Assume Conjec-
ture 1 and P # NP. Then a4 is (up to permutations of z, fz, gz and of U and —U) the
unique minimal EMSO { f, g}-formula in CNF of the form 3U Vz 1 (x) with atoms Uz, U fz and
U gx that defines a problem over permutation structures to which #SAT parsimoniously reduces.
More precisely, ¢nanqg has a minimal number of clauses (= 3), and a minimal length (= 7).



3.3 Minimality of ¢nang in Theorem 5(ii)

Proof. We proove the minimality of:

e the number of clauses (= 3): Clearly, any EMSO formula of the required form that defines
an NP-complete problem with exactly two clauses has exactly one purely negative clause and
one purely positive clause, and has at least one clause of length 3 and no clause of length 1;
so, the other one has length 2 or 3. This gives only two possible forms: our minimal formula ¢
(and its symmetrical variants), and ¢y, defined as:

Onae : AU Vz  thpae(x), where e is the “not-all-equal” formula
Ynae : (UxNVUfxVUgr) A (=UxV =UfzV-Ugx).

One easily sees that for any function structure S, the number #{U : (S,U) |= V& ¢nae(z)} is
even because 1, is invariant by inversion of U and —U. So, no reduction from SAT to the
problem defined by ¢pae (if such a polynomial reduction exists) can be parsimonious with the
standard way of counting solutions.

e the length (= 7): It is a consequence of the fact that there should be at least two clauses
each of length > 2, and at least one of length 3. O

3.4 Unicity of ¢nana in Theorem 5(ii)

Proof. Clearly, any formula that meets our minimality conditions, i.e., that has three clauses
and length 7, has exactly one clause of length 3 and two clauses of length 2. Moreover, one
notices that:

(i) At least one clause is purely positive and at least one is purely negative;

(#7) No 2-clause subsumes the 3-clause;

(74¢) Each 2-clause must disagree with the 3-clause on the sign of every literal: otherwise, if we
write the 3-clause as (¢1 V £5 V £3), either the 2-clause is of the form (41 V £5) and then its
subsumes the 3-clause, or the 2-clause is of the form (/1 V £5) and then a resolution step over
¢, induces the 2-clause (¢2 V £3) that in turn subsumes the 3-clause. This contradicts (i7);

(iv) The 2-clauses have exactly one atom in common: They clearly have at least one since there
are only three atoms available. Now, if they have two, they disagree on the sign of either one
literal or two literals. If we have (£1 V £3) A (¢1 V £3), then a resolution step over /3 induces
the 1-clause (£1). If we have (¢1 V £3) A (¢1 V £3), then #; <= /5 and the 3-clause reduces
either to a 2-clause or to “true” by replacing £, by /s;

(v) The 3-clause must be monotone. Otherwise, by (i), the two 2-clauses must be monotone
of opposite sign: Let then ¢ be the majoritary sign of the 3-clause. The 2-clause of sign ¢
cannot disagree on the sign of every literal with the 3-clause, since this latter has only one
literal of sign €. This contradicts (747);

(vi) Both 2-clauses are monotone, of the same sign, opposite to the sign of the 3-clause: This is
a direct consequence of (7i7) and (v).

Clearly, Remarks (iv), (v) and (vi) together leave exactly ¢manq and its symmetrical variants
as the only candidates. a

4 Conclusion and open problems

Exhibiting “the” minimal EMSO formula that defines an NP-complete problem over function
structures is the main contribution of this paper. This also hold for restrictions to permutations
structures or even to planar permutation structures. A striking point is the unicity (up to
symmetries) of our formula. This delineates a very neat frontier in logic between NP-complete
problems and tractable ones. There remain several open problems:



The main one is Conjecture 1. Its proof, if true, seems very difficult except if it can be
shown that the counting problem #MIN; (resp. #MINs) has some combinatorial property, to
be compared, e.g., to the known fact that the number of Hamiltonian cycles visiting an arbitrary
edge in a cubic graph is even (see [13]).

Another interesting objective consists in looking for a necessary and sufficient decidable
condition for which any EMSO formula of the form 3U Vz (U, f,Z) and of unary signature
f expresses an NP-complete problem over f-structures (resp. over permutation f-structures, or
over planar permutation f-structures.)

Other problems of less importance are the following: Does the EMSO formula ¢y, of sub-
section 3.3 define a PTIME or NP-complete problem over permutation structures? Notice that
©¥nae defines a trivial a PTIME problem over planar permutation structures since the problem
NAE-SAT is PTIME for planar instances [10].

Analogue of Conjecture 1 for function structures: Is there a parsimonious reduction from
#SAT to #MINg?
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