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Abstract

In the present paper, we discuss one of the many processes arising in the context
of supply chain management, namely production planning. We focus on one type
of production planning models called capacitated lot sizing models. These models
appear to be well suited for the usually rather inflexible production resources found
in the process industries. We review the literature on single-level single-resource
lot sizing models as well as their extensions to multi-level and/or multi-resource
problems.

Introduction

Production planning is the process of determining a tentative plan for how much
production will occur in the next time periods, during an interval of time called
planning horizon. It is an important challenge for industrial companies because
it has a strong impact on their performance in terms of customer service quality
and operating costs. However, production planning often proves itself to be a very
complex task, mainly for the following reasons:
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e Most often a production resource is not fully dedicated to the production
of a single product but is rather used to produce different types of product.
In the context of process industries, the production resources available are
usually not very flexible and can produce only one type of product at at
time with a given production rate. Thus a production planner is faced with
a competition between products sharing the same production facility and has
to decide which products should be produced, when and in which quantities,
while taking into account all constraints arising from the production system.
In some cases, these constraints can be so tight that even finding a feasible
production plan can be very difficult.

e A production plan has to meet several conflicting objectives, namely guar-
anteeing an excellent customer service level and minimizing production and
inventory costs. Thus basic policies like not satisfying the demand exceed-
ing the production capacity or keeping high levels of inventory to be able to
meet any demand are usually not commercially acceptable or much too ex-
pensive. A good production plan is therefore the result of a trade-off between
conflicting objectives.

e A production plan is never fixed for ever. Its validity is restricted to a
predefined planning horizon so that at the latest, when reaching the end
of the planning horizon, a new plan has to be designed that reflects the
current status of the production system. Moreover reality will nearly always
deviate from the plan and if the discrepancy between the plan and the actual
situation is too large, the plan has to be revised before the end of the planning
horizon.

Production planning is thus a difficult and recurring problem for industrial
companies and there is a strong need for decision support systems. The devel-
opment of such decision support systems has been the focus of a large body of
the operations research literature for the last fifty years and there is now a wide
variety of models available for production planning and inventory management.

In the present paper, we focus on one type of production planning models that
appear especially suitable for process industries: capacitated dynamic lot sizing
models. Capacitated lot sizing models are based on the following assumptions:

e Production resources have a limited capacity, can produce only one type of
product at a time and are not very flexible. This means that a significant
amount of setup is required to change production from one type of products
to another.

e Demand for all products is deterministic and time varying. It has to be



satisfied without backlogging, i.e. the production plan should be built so
that a perfect customer service level is achieved.

e There are two type of costs to be taken into account:

— setup costs. Setup costs are the costs incurred when changing the re-
source configuration from one type of products to another one. They
account for the loss of potential production during the duration of the
setup, the additional workforce needed, the additional raw material con-
sumed during the setup...

— inventory holding costs. Inventory holding costs account for the oppor-
tunity costs of capital as well as for the direct costs of storing goods
(warehousing, handling...).

To minimize setups costs, production should be run with large batches but at
the expense of high inventory costs. On the contrary, inventory levels can be kept
low if production of a product is run in frequent and small batches, but at the
expense of high setup costs. Thus capacitated lot sizing models aim at finding a
production schedule achieving an optimal trade-off between setup and inventory
holding costs, while complying with given capacity constraints and insuring that
demand for all products is satisfied without backlogging. Recent overviews on the
lot sizing literature can be found among others in [DK97|, [Wol02|, [JDO07| and
[JDO8.

The practical relevance of capacitated lot sizing is supported by the numerous
examples of their application in various industries: tile manufacturing ([dMG94|),
tire industry ([JDO04]), plastic injection molding ([DNO05]), textile industry ([DV00],
[SMO06])), paper production (|JGMO05|), metallic alloy moulding (|[dSMdSA02|, pack-
aging lines in process industries (|[SDSD86|, |[MNSO07])... Moreover, multi-level
multi-resource lot sizing models are promising candidates to replace the traditional
MRPII logic which provides only suboptimal production schedules.

The purpose of this paper is to present a general survey on capacitated lot
sizing models. We will review the main contributions to this long standing but
active research field, focusing particularly on recent developments.

The complexity of lot sizing models depends on the features taken into account
in the model. As a first step for classification, we use the following characteristics
because they strongly impact the complexity of lot sizing decisions:

o number of resources. The products can be made on one single machine
(single-resource models) or on multiple machines (multi-resource models).
The use of parallel machines complicates the problem as we not only have
to determine the timing and level of production, but we also have to assign
production lots to machines.



o number of levels. Production systems may be single-level or multi-level. In
single-level systems, the final products are obtained directly from raw materi-
als after processing by a single operation with no intermediate subassembly.
Demand on products is assessed directly from customer orders or market
forecasts. In multi-level systems, there is a parent-component relationship
between items. Raw materials after processing through several operations
change to end products. The output of an operation (level) is an input for
another operation. Therefore the demand at one level depends on the lot
sizing decisions made at the parents’ level. As a consequence, multi-level
problems are more difficult to solve than single-level problems.

e planning horizon discretization. Lot sizing problems can be either big bucket
or small bucket problems. Big bucket problems are those where the time
period is long enough to produce multiple type of items while for small
bucket problems the time period is so short that only one type of item can
be produced in each time period.

The paper is organized as follows. Section 1 provides a general review on
established single-level single-resource models. In section 2, we then discuss single-
level multi-resource models. Finally, section 3 deals with multi-level extensions of
lot sizing models.

1 Single-level single-resource models

In this section, we deal with single-level single-resource models: all products to be
made are end items and make use of the same resource with a limited production
capacity.

1.1 Big bucket models
1.1.1 The capacitated lot sizing problem (CLSP)

The capacitated lot sizing problem (CLSP) is a typical example of a big bucket
problem, where many different items can be produced on the same resource in
one time period. The classical CLSP consists in determining the amount and
timing of the production of products in the planning horizon: the outcome is a
production plan giving for each planning period the quantity (lot size) of each item
that should be produced. However detailed scheduling decisions are not integrated
in the CLSP. The usual approach is therefore to solve the CLSP first and to solve
a scheduling problem for each period separately afterwards.

In the CLSP, it is required that the resource is setup for a given item in each
period where it is produced. The resulting setup costs and times may vary for
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each item and each period but, as the exact sequence of production within each
time period is not defined, they should be sequence-independent , i.e. they should
not depend on the exact sequence followed to make the products on the resource.

Before going on with the literature review, we briefly present the mixed-integer
programming (MIP) formulation for the basic CLSP with zero setup times. We
wish to optimize the production schedule for a set of N items over an horizon
featuring T planning periods. A period is indexed by ¢ = 1,...,7", an item by
1=1,..,N.

We use the following notation for the parameters:

e D;;: deterministic demand (in units) for item 7 in period ¢,

e P available production capacity (in time units) on the resource in period ¢,
e v;: capacity needed (in time units) to produce one unit of 7 in period ¢,

e h;: holding costs per unit and period for item i,

e ¢;;: setup costs for item ¢ in period ¢.

In the CLSP, the items to be produced can have different production rates on
the resource. This is why the production capacity is not expressed as the number of
items that can be produced in a planning period, but rather as an available amount
of time (F;) that will be consumed by the produced items with an item-specific
production rate (v;).

Decision variables are defined as follows:

e [;: inventory level corresponding to item ¢ at the end of period ¢,
e 1;;: production quantity for item ¢ in period ¢,

e y;;: binary setup variables. y; = 1 if the resource is setup for item 4 in period
t, and 0 otherwise.

Using this notation, the CLSP can be formulated as a MIP model:
(CLSP)

N T
min Z Z(hit[it + citYit) (1)

i=1 t=1
Vi, Vt, Iiy = Lip1 + Ty — Dy (2)
Vi, Vi, vy < Py (3)



N

v, Zvitxz’t <P (4)
i=1

Vi, Vt, I;; > 0 (5)

Vi,Vt,xit Z 0 (6)

Vi, Yty € {0,1} (7)

The objective, to minimize the sum of inventory holding costs and setup costs,

is expressed by (1). Constraints (2) express the inventory balance. Due to re-
strictions (3), production of an item can only take place if the resource is setup
for that particular item. Constraints (4) are the capacity constraints. The set
of constraints (2) and (5) ensure that demand for each item is fulfilled without
backlogging. Inequalities (6) are the non negativity conditions on the production
quantities. The binary character of the setup variables is expressed by (7).

A recent review on the literature about the CLSP can be found in [KFGWO03|.
The authors classify solution methods into three main categories: exact meth-
ods, common-sense or specialized heuristics and mathematical programming-based
heuristics.

The use of exact methods to solve the CLSP is described among others in
[BVRWS&4|, [EM87|, [BW00|, [BWO01] and [Wol02]. The goal of this line of research
is to improve the MIP formulation of the problem using reformulations and valid
inequalities so that commercial solvers like CPLEX or XPRESS-MP are able to
solve practical instances using a standard Branch & Bound type procedure.

Common-sense or specialized heuristics can be found for instance in [DS81] and
[KK94]. In [DS81], a first production plan is built using a greedy period-by-period
heuristic based on the single-item Silver-Meal approach ([SM73|). In a second
step, this initial plan is modified so that feasibility is guaranteed and costs are
reduced. [KK94] have developed a heuristic algorithm using an iterative item-by-
item strategy for generating solutions to the problem. In each iteration, a subset of
items from those not already scheduled is selected and production schedules over
the planning horizon for this set of items are determined. To ensure feasibility of
the overall problem, each item is scheduled by solving a bounded single item lot
sizing problem where production capacity is restricted to take into account the
production of already scheduled items.

A general drawback of common-sense heuristics is that they can be rather
difficult to adapt for different variants or extensions of the problem because in
most cases we have to alter the heuristic completely. On the contrary, mathemat-
ical programming-based heuristics which use an optimum seeking mathematical
programming procedure to generate a solution are more general and allow for
extensions to different problems. Another advantage is that many of these heuris-



tics provide lower bounds on the optimal solution cost, thus providing guidance
for the assessment of the quality of the obtained solution. However they usu-
ally require much more computational effort for real-world problems and due to
their technical concepts cannot be implemented easily by practitioners. Many
mathematical programming-based procedures used to solve the CLSP rely upon
a Lagrangian relaxation of the capacity constraints. By dualizing capacity con-
straints into the objective function, the problem decomposes into a series of single
item uncapacitated problems, each of which can be solved using an efficient single-
item algorithm. This approach is applied among others by [TvW85]|, [TTM89] and
[DBKZ92|. Some other heuristic solution approaches based on different methods
like column generation or metaheuristics can also be found in the literature. The
reader is referred to [KFGWO03| for more details.

1.1.2 Extensions of the CLSP

As mentioned above, in the CLSP, the decision variables are the production quan-
tities of every item in every period, which can be considered as production orders
to be released and submitted to the shop floor. This type of model does not in-
volve the sequence of the lots within a period: this decision has to be determined
by an additional scheduling step. However the need for simultaneous lot sizing
and scheduling arises in the case of sequence-dependent setup costs which is fre-
quently encountered in process industries. Therefore recent research has focused
on extending the CLSP to incorporate scheduling decisions and deal with sequence-
dependent setup costs. This problem is called General Lot Sizing Problem (GLSP)
in some papers.

The integration of scheduling decisions in the CLSP formulation can be done in
several ways. In [Haa96] and [GMO5], the production sequence within a period is
defined through the use of setup state variables giving the resource configuration at
the beginning of each period and a series of setup transition variables linked by flow
conservation constraints. In both papers, the resulting problem is solved thanks to
a specialized heuristic. [FM97| and [Mey00| use a different approach where each
period of the planning horizon is divided into a fixed number of micro-periods
with variable length. The production sequence within each period is obtained by
assigning an item to each micro-period. Their solution method is based on the
use of a local search algorithm called threshold accepting. Finally, in [HKO00], the
authors build a predetermined sets of efficient production sequences. In this case,
the production planning problem consists in selecting for each planning period a
production sequence among those already identified as efficient and in determining
the corresponding lot sizes. A tailored enumeration method of the branch-and-
bound type is used to optimally solve medium-size instances of the problem.



1.2 Small bucket models

In small bucket models, the assumption is made that during each time period, at
most one type of item can be produced on the resource. Thanks to this assumption,
lot sizing and scheduling decisions can be made simultaneously: namely a unique
item is assigned to each planning period and the resulting sequence of item-period
assignments naturally defines the production schedule. Note that in small bucket
models, the production of a lot may last several periods and setup costs should be
incurred in a period only if the production of a new lot begins. To model this, new
decision variables often called start-up variables or changeover variables are used.
In the sequel, we use the binary variable z;; to indicate whether the production of
a new lot of item ¢ is beginning in period ¢ (z;; = 1) or not (z;; = 0).

A first small bucket model is the so-called Continuous Setup Lot sizing Problem
(CSLP). In the CSLP, only one item can be produced by period and the quantity
produced can be any value between 0 and the resource capacity.

Using the same notation as in section 1.1.1, a MIP model of the CSLP can be
stated as follows:

(CSLP)

N T
man Z Z(hztjzt + Citzit) (8)

i=1 t=1
Vi, Vt, Iiy = Liy—1 + @y — Dy 9)
Vi, Vt, vy < Prya (10)
N
VEY ya <1 (11)
i=1
Vi, Vi, zie 2 Yie — Yig—1 (12)
Vi Vt, Iy > 0 (13)
Vi, Vt, x; > 0 (14)
Vi, Vt, i € {0,1} (15)
Vi, Vi, 2 € 0,1} (16)

The objective, to minimize the sum of inventory holding costs and startup costs,
is expressed by (8). Constraints (9) express the inventory balance. (10) guarantee
that production of an item can only take place if the resource is setup for that
particular item and that capacity limits are respected. Constraints (11) ensure
that only one item may be produced per period. The beginning of a new lot is
defined by means of inequalities (12). The set of constraints (9) and (13) ensure
that demand for each item is fulfilled without backlogging. Inequalities (6) are the
non negativity conditions on the production quantities. The binary character of



the setup and startup variables is represented by (15) and (16).

[KS85] try to solve the CSLP using Lagrangian relaxation applied to the capac-
ity constraints. More recently, [Con96| presents a cutting plane approach based
on several families of valid inequalities derived for the single-item version of the
problem. [Van98| develops an integer programming column generation algorithm
to solve the same problem and uses the cutting-planes proposed by [Con96| to
tighten the formulation of the master linear program at each node of the branch-
and-bound tree.

The Discrete Lot sizing and Scheduling problem (DLSP) is another small
bucket model. The difference with the CSLP is that a discrete production policy
is assumed, implying that an item, if assigned to a planning period, must be
produced at full capacity. This "all-or-nothing" assumption gives the problem
some additional properties that make efficient implementation of mathematical
programming approaches somewhat easier. It is enforced by replacing in the CSLP
formulation the inequalities (10) by the equalities:

Vi, Vt, vy = Py (17)

The first contributions on the DLSP used sequence-independent setup costs.
[F1le90] solve medium-size instances using a branch-and-bound procedure where
the lower bounds are determined by means of Lagrangian relaxation. [CSKvW93]
describe a heuristic for the DLSP with positive setup times based on dual ascent
and column generation techniques.

The DLSP with sequence-dependent setup costs is addressed in |[Fle94| and
[SSYWT97] who both reformulate the problem as as Travelling Salesman Problem
with Time Windows. Studying the same variant, [JD98| show the equivalence
between the DLSP with a single resource and a scheduling problem named Batch
Sequencing Problem (BSP) and present a specific branch-and-bound type algo-
rithm to solve the resulting BSP.

There is also a rather large amount of polyhedral results for the DLSP. Strong
valid inequalities for the single-item variant can be found in [MV90|, [vEvH97],
[MS02] and [MWO3]. These valid inequalities can be used to tighten the for-
mulation of multi-item instances, thus improving the efficiency of the standard
branch-and-bound procedure embedded in commercial solvers. A good overview
on polyhedral results for the DLSP can be found in [Wol02] and [PWO06].



2 Single-level multi-resource models

The lot sizing models presented in the previous section assume that the products
are processed on a single machine. However in many cases a manufacturer has
access to multiple machines or production lines, which can be used in parallel.
In this section, we focus on the single level, parallel resources problem. A recent
review on lot sizing problems involving parallel resources can be found in [Jan06].
As mentioned above, parallel resources further complicate the production planning
problem. Namely, as an item can be produced on several machines, there is an
additional decision to be made: the assignments of production lots to resources.
As for the single-resource models, a distinction can be made between big bucket
and small bucket models.

2.1 Big bucket models

We first consider extensions of the classical CLSP described in section 1.1.1 to the
case of parallel resources. |[OB98| consider a capacitated lot sizing problem with
parallel machines. They assume that a lot can not be split among several machines
so that in one specific period, an item can be produced on one machine at most.
They develop hybrid heuristics combining local search techniques such as tabu
search and a genetic algorithm to deal with the resulting problem. [TA06] address
the same problem and propose a heuristic based on the Lagrangian relaxation of
the capacity constraints and subgradient optimization: at each iteration, a series
of single-item multi-resource problems are solved using a dynamic programming
algorithm. Finally, [Jan06] focuses on the CLSP with parallel identical machines:
all the resources have the same available capacity and the setup and production
costs are identical on each of the resources. In this case, there exist a large number
of equivalent solutions with the same total cost that differ only by the numbering
of the machines. As this degeneracy will slow down the branch-and-bound algo-
rithm, he proposes to add symmetry breaking constraints to the mixed integer
programming formulation in order to obviate this problem.

There are also some papers extending the big bucket models with sequence-
dependent setup costs presented in section 1.1.2 to the case of several parallel
resources. Among them, [KMT98| propose an original model where the sequence
of products produced on a machine in a period is modelled as a collection of sub-
sequences. Each subsequence is made of at most 5 items and by enumeration,
an optimal ordering for these items can be found. The lot sizing problem is then
formulated as the problem of assigning a subsequence chosen among those prede-
termined to a position in the global production schedule on each resource. The
authors propose a column-generation approach combined with a branch-and-bound
procedure to solve the resulting problem. [CCO00| use a model similar to the one
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presented in [Haa96| to solve a variant of the CLSP with heterogenous parallel re-
sources and sequence-dependent setup times. The problem is solved heuristically
using a rolling-horizon method. While planning production on a rolling horizon
basis, only the lot sizing and sequencing decisions regarding the first periods of the
horizon will be actually implemented in the production system. Namely after a few
periods, the horizon is rolled forward and the model is applied once more with up-
dated demand, inventory and capacity information. [CC00| propose to determine
precisely the lot sizing and sequencing decisions only for the first planning periods.
The other production decisions for the end of the planning horizon (which will not
be actually implemented) are only approximately evaluated, without considering
explicitly setup costs and times. This enable them to reduce the size of the mixed
integer program to be solved and thus to save a significant amount of computing
time while avoiding some drawbacks arising from a purely myopic approach. In a
recent paper, [Mey02| extends his GLSP model to the case of parallel production
lines and uses a solution procedure combining local search strategies with dual
reoptimization to solve real problems gathered from the consumer goods industry.

2.2 Small bucket models

We now present extensions of the small bucket models to the case of multiple
parallel resources.

In [SDSD86|, a first extension of the CSLP is used to plan production on several
packaging lines in a process industry. In their model, the authors consider that an
item is a combination of a package size and a product to be filled into the packages.
They assume that items can be grouped into families: a family can be either a
package size or a product according to the industrial application. A major setup
will occur if a transition between items belonging to different families has to be
carried out whereas the transitions between two items belonging to the same family
will lead only to a minor setup. In their model, they impose that only one family
can be produced per planning period and focus on defining the exact sequence of
family-period assignment. They use a standard branch-and-bound procedure to
solve small instances involving 4 products, 5 periods and a single production line.
Industrial applications of the CSLP with multiple parallel resources can be found
in [DNO5] for the planning of injection molding operations and [MNS07| for the
planning of a yoghurt-packaging facility. In both papers, specialized heuristics are
used to solve industrial instances of the problem.

[dMG94] consider production planning for the curing stage in a tile manufac-
turing facility. The problem is formulated as a DLSP with heterogenous parallel
resources (the curing kilns). They apply Lagrangian relaxation to the inventory
balance constraints to decompose the problem into a series of single-resource inde-
pendent subproblems. Combining this with a subgradient optimization method,
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they are able to obtain strong lower bounds on the optimal cost. Feasible pro-
duction schedules are generated from every Lagrangian solution using a so-called
product-line assignment heuristic. Another industrial extension of the DLSP can
be found in [JD04] who propose a production planning model for an international
tire manufacturer. The problem involves multiple capacitated resources of differ-
ent types: the molds and the heaters needed to build and cure the tires. It is
solved by a column-generation-based algorithm combined with Lagrangian relax-
ation to reduce the degeneracy of the master problem. [SM06]| solve a DLSP with
multiple parallel machines arising in a company producing acrylic fibres using a
problem-specific heuristic.

3 Multi-level multi-resource models

In a multi-level lot sizing problem, the production planning is not only consid-
ered for the final level (i.e. the end products), but also for the components and
subassemblies that are needed to make the end products. Because of the parent-
component relationship between items, production at one level leads to demand for
components at a lower level (dependent demand). At the highest level, production
is triggered by market demand (independent demand).

The parent-component relationship between items, also known as the bill of
materials, is usually represented by an acyclic directed network where every node
in the network is an item, an arc represents the assembly or distribution relation
between items and the weight of an arc is the quantity relation (also called the
"gozinto factor") between the two terminal nodes of the arc. Different kinds of
product structures can be distinguished:

e serial product structure: each item has a single predecessor and a single
successor in the network.

e assembly product structure: each item can be made from several predecessors
(i.e. components) but has a single successor (i.e. parent).

e general product structure: each item can be made from several predecessors
and can have several successors. Thus there may be several end products
that have some components in common: this situation is sometimes referred
to as component commonality.

Most contributions on multi-level lot sizing problem use big bucket models and
a general product structure. They can thus be seen as extensions of the classical
CLSP described in section 1.1.1 to the multi-level case. This is why we chose to
classify the literature with respect to the type of solution approach used rather
than with respect to the planning horizon discretization.
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We classify solution methods into four main categories: exact methods, special-
ized heuristics, mathematical programming-based heuristics and metaheuristics.

3.1 Exact methods

Most single-level capacitated lot sizing problems are NP-hard. The multi-level
extension makes them even harder because of the interdependency between levels
created by the parent-component relationship between items. The demand at
lower levels is namely the result of the lot sizing decisions made at highest levels.
Most practical instances are too difficult to be optimally solved with a commercial
integer optimization software. Therefore most existing solution approaches are
based on heuristic techniques and the literature on exact solution methods to
solve multi-level capacitated lot sizing problems is rather sparse.

Noticeable exceptions can be found in [PW91|, [BW00|, [BW01], [Wol02| and
[PWO06]. All these papers are based on the concept of echelon stock. The echelon
stock of an item in a given period can be defined as the total stock of this item
within the system, whether held directly as stock or as the stock of other items
containing one ore more units of this item. The problem can be reformulated
using echelon stock variables and the obtained reformulation can be seen as a
series of single-item lot sizing subproblems linked by capacity constraints. Thanks
to this, valid inequalities available for single-item problem can be used. Some
computational experiments based on a branch and cut procedure using these valid
inequalities can be found in [BWO00| and [BWO1] but they are limited to instances
involving a single resource.

3.2 Specialized heuristics

Several dedicated heuristics have been proposed for solving multi-level extensions
of the CLSP. They mainly aim at building a good feasible solution for the problem,
but without assessing the quality of the found solution with respect to some lower
bounds on the optimal cost.

Most of them follow a level-by-level approach but modify the setup and in-
ventory costs at lower levels to model the interdependencies. [BBM194| study
a multi-level CLSP with a serial product structure. They solve the problem by
applying sequentially a multi-item single-level specialized heuristic to each level
of the problem, beginning with the end products and proceeding trough the raw
materials. To compensate with this level-by-level myopic approach, before solving
the lot sizing problem at a given level, they modify the setup and inventory costs
following the procedure described in [BM82]. This cost-adjustment approach en-
ables them to (approximately) model the impact of the lot sizing decisions made
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at the given level on the lowest levels. A similar approach is used in [TH94| for
general product structures.

Another type of special-purpose heuristic can be found in [CA95]. The authors
study a multi-level CLSP with multiple resources and a general product structure.
The starting point for their heuristic is a feasible production plan for the uncapaci-
tated problem. It is obtained by applying sequentially the optimal Wagner-Whitin
algorithm to solve single-item single-level problems, beginning with the end items
and proceeding to items at the lowest levels. Afterwards, they try to achieve a fea-
sible production plan for the capacitated problem by moving production backwards
in time from overloaded periods to earlier underloaded ones while maintaining the
feasibility of the plan with respect to demand satisfaction and component avail-
ability. With their heuristic, they were able to find good solutions for instances
involving 40 items, 2 resources and 12 planning periods.

3.3 Mathematical programming-based heuristics

As already mentioned for the single-level single-resource CLSP, mathematical pro-
gramming based heuristics make use of an optimum seeking mathematical pro-
gramming methodology and adapt it to generate good feasible solutions for prac-
tical instances.

A first example of such an approach can be found in [TD96]. They propose to
solve the multi-level multi-resource CLSP with a general product structure by La-
grangian relaxation applied to both the multi-level inventory balance constraints
and the resource capacity constraints. Thanks to this relaxation, the overall prob-
lem is decomposed into single-level single-item lot sizing subproblems. They use
subgradient optimization to update the Lagrangian multipliers and obtain good
lower bounds on the cost of an optimal production plan. This procedure is com-
bined with a sophisticated forward and backward scheduling heuristic to transform
the obtained unfeasible solutions into good feasible solutions for the initial prob-
lem.

A second family of mathematical programming-based approaches involves vari-
ous Linear Programming relaxations of a MIP formulation of the multi-level multi-
resource CLSP. [MMvW91]| solve a multi-level CLSP with an assembly product
structure and several resources, each of them being dedicated to a specific product
level. They reformulate the problem using extended production variables and solve
the linear programming relaxation of the obtained tightened formulation. They try
to build a feasible solution for the initial problem by applying a number of round-
ing heuristics on the linear programming solution. Their heuristic was tested on
instances involving only serial product structures with up to 3 levels. [HL96| and
[KLH98| describe a coefficient-modification heuristic where small LP restrictions of
the original problem are repeatedly solved. At each iteration, capacity constraints
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and objective function coefficients are modified in the linear program to account
for the capacity consumed and the costs incurred by the setups on the resource.

[Sta03] proposes to reduce the complexity of the overall MIP model by using
a time-oriented decomposition approach leading to the resolution of a series of
reduced-size mixed integer programs. In this approach, lot sizing decisions are
not made altogether for the entire planning horizon but sequentially, each time
for a limited time interval called the lot sizing window. In each step, setup de-
cisions are made only for the periods within the lot sizing windows while setup
decisions already made for previous periods are taken into account and setup de-
cisions for periods following the lot sizing window are only approximated through
continuous variables. The resulting sub-model whose size is drastically reduced is
solved by a commercial solver. Lot sizing windows are then deployed in internally
rolling schedules up to the end of the planning horizon given by the initial decision
problem so that a production schedule for the entire horizon is obtained. Their
computational experiments show that the heuristic they propose provides a better
solution quality than the heuristic found in [TD96].

3.4 Metaheuristics

In the past decade, meta-heuristics such as tabu search, simulated annealing and
genetic algorithms have become more and more popular for solving complex com-
binatorial problems. One of the main reasons for their success is their flexibility
and ability to handle large and complex problems. Thus these methods seem espe-
cially adapted for multi-level extensions of the standard lot sizing problems. But
a major disadvantage is the fact that they do not provide a lower bound to assess
the solution quality: it has to be calculated separately. Moreover, although their
basic principle are easy to understand, this type of algorithms are in fact fairly
complex because of all the special adaptations that are needed to make them work
better.

Applications of metaheuristics to solve multi-level lot sizing problems can be
found among others in [Kim99|, [OB99], [OB00], [HC00|, [XD02], [BR04| and
[BFAO05]. A detailed review on this subject can be found in [JDO07].

Conclusion

In the present paper, we reviewed the literature on single-level single-resource
lot sizing models as well as their extensions to multi-level and/or multi-resource
problems. Although research on capacitated lot sizing started some fifty years ago,
lot sizing problems are still challenging because many extensions are very difficult
to solve. This research field thus remains very active.
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As mentioned by [JDO08|, the research on lot sizing is currently evolving towards
two directions:

e Whereas the early models were usually more compact and captured only the
main trade-off, there is now an increased attention to model into more detail
specific characteristics of the production system such as sequence-dependent
costs, multiple resources, backlogging... The objective is to better represent
real life production planning problems and to provide more valuable decision
support to managers. As a rider to this, [Poc01] indicates that modelling
production planning problems in the process industries is a promising area
for new research. Namely some distinguishing characteristics of process in-
dustries such as the use of flexible recipes, the existence of by-products,
additional storage constraints... influence the planning and scheduling prob-
lem.

e Another new interesting research area deals with the integration of lot sizing
models into more global models in order to better coordinate production
and distribution decision. Examples of integrated production-distribution
planning models can be found in [FV99|, [OY99], |TKO00|, |CFO01]|, [dMMO04],
[SYO05], [Par05] and [EER07|. A literature review on these integrated models
is currently underway.

Finally, solution approaches for such difficult extensions of the lot sizing prob-
lems should be based on previous research. Hybrid optimization procedures com-
bining the strength of different methodologies like MIP formulation strengthening
and meta-heuristics seem to be a promising research direction.

16



References

[BBM 94

[BFAO5|

[BMS2]

[BRO4]

|IBVRWS&4]

[BW0O]

[BWO1]

[CA95]

[CC00]

[CFO1]

[Con96|

PB. Billington, J. Blackburn, J. Maes, R. Millen, and L.N.
Van Wassenhove. Multi-item lotsizing in capacitated multi-stage se-
rial systems. IIE Transactions, 26(2):12-18, 1994.

R. Beretta, P.M. Franca, and V.A. Armantano. Metaheuristic ap-
proaches for the multilevel resource-constrained lot-sizing problem
with setup and lead times. Asia-Pacific Journal of Operational Re-
search, 22(2):261-286, 2005.

J. Blackburn and R. Millen. Improved heuristics for multi-stage
requirements planning systems. Management Science, 28(1):44-56,
1982.

R. Beretta and L..F. Rodrigues. A memetic algorithm for a multistage
capacitated lot-sizing problem. International Journal of Production
Economics, 87:67-81, 2004.

I. Barany, T.J. Van Roy, and L.A. Wolsey. Strong formulations for
multi-item capacitated lot sizing. Management science, 30(10):1255-
1261, 1984.

G. Belvaux and L. Wolsey. bc-prod: A specialized branch-and-cut
system for lot-sizing problems. Management Science, 45(5):724-738,
2000.

G. Belvaux and L. Wolsey. Modelling practical lot-sizing problems
as mixed-integer programs. Management Science, 47(7):993-1007,
2001.

A.R. Clark and V.A. Armentano. A heuristic for a resource-oriented
multi-stage lot-sizing problem with lead times. Journal of the Oper-
ational Research Society, 46:1208-1222, 1995.

A.R. Clark and S.J. Clark. Rolling-horizon lot-sizing when set-up
times are sequence-dependent. International Journal of Production
Research, 38(10):2287-2307, 2000.

Dhaenens-Flipo C. and G. Finke. An integrated model for an indus-
trial production-distribution problem. IIE Transactions, 33:705-715,
2001.

Constantino. A cutting plane approach to capacitated lot-sizing with
start-up costs. Mathematical Programming, 75:353-376, 1996.

17



|CSKvW93|

[DBKZ92]

[DK97]

[AMGO4]

[AMMO4]

[DNO5]|

[DS81]

[dSMdSA02]

|[DVO0O|

[EER07]

[EMS7]

D. Cattrysse, M. Salomon, R. Kuik, and L. N. van Wassenhove. A
dual ascent and column generation heuristic for the discrete lotsiz-
ing and scheduling problem with setup times. Management Science,
39(4):477-486, 1993.

M. Diaby, H.C. Bahl, M.H Karwan, and S. Zionts. Capacitated lot-
sizing and scheduling by lagrangean relaxation. European Journal of
Operational Research, 59:444-458, 1992.

A. Drexl and A. Kimms. Lot sizing and scheduling - survey and
extensions. Furopean Journal of Operational Research, 99:221-235,
1997.

R. de Matta and M. Guignard. Dynamic production scheduling for
a process industry. Operations Research, 42(3):492-503, 1994.

R. de Matta and T. Miller. Production and inter-facility transporta-
tion scheduling for a process industry. Furopean Journal of Opera-
tional Research, 158:72-88, 2004.

S.G. Dastidar and R. Nagi. Scheduling injection molding operations
with multiple resource constraints and sequence dependent setup
times and costs. Computers € Operations Research, 32:2987-3005,
2005.

P.S. Dixon and E.A. Silver. A heuristic solution procedure for the
multi-item, single-level, limited capacity, lot-sizing problem. Journal
of Operations Management, 2(1):23-39, 1981.

E. dos Santos-Meza, M. dos Santos, and M. N. Arenales. A lot-sizing
problem in an automated foundry. Furopean Journal of Operational
Research, 139:490-500, 2002.

A. Dumoulin and C. Vercellis. Tactical models for hierarchical ca-
pacitated lot-sizing problems with set-ups and changeovers. Inter-
national Journal of Production Research, 38(6):51-67, 2000.

S.D. Eksioglu, B. Eksioglu, and H.E. Romeijn. A lagrangean heuristic
for integrated production and transportation planning problems in
a dynamic, multi-item, two-layer supply chain. IIE Transactions,
39:191-201, 2007.

G.D. Eppen and R.K. Martin. Solving multi-item capacitated
lot-sizing problems using variable definition. Operations Research,
35(6):832-848, 1987.

18



[F1e90]

[Fle94]

[FM97]

[FV99]

[GMO5]

|Haa96|

[HCO0]

[HKOO]

[HLO6]

[Jan06]

[7D9g]

[ID04]

B. Fleischmann. The discrete lot sizing and scheduling problem.
FEuropean Journal of Operational Research, 44:337-348, 1990.

B. Fleischmann. The discrete lot sizing and scheduling problem with
sequence-dependent set-up costs. Furopean Journal of Operational
Research, 75:395-404, 1994.

B. Fleischmann and H. Meyr. The general lotsizing and scheduling
problem. OR Spektrum, 19:11-21, 1997.

F. Fumero and C. Vercellis. Synchronized development of produc-

tion, inventory, and distribution schedules. Transportation Science,
33(3):330-340, 1999.

D. Gupta and T. Magnusson. The capacitated lot-sizing and schedul-
ing problem with sequence-dependent setup costs and setup times.
Computers € Operations Research, 32:727-747, 2005.

K. Haase. Capacitated lot-sizing with sequence dependent setup
costs. OR Spektrum, 18:51-59, 1996.

Y.F. Hung and K.L. Chien. A multi-class multi-level capacitated lot
sizing model. Journal of the Operational Research Society, 51:1309—
1318, 2000.

K. Haase and A. Kimms. Lot sizing and scheduling with sequence-
dependent setup costs and times and efficient rescheduling opportu-
nities. International Journal of Production Economics, 66:159-169,
2000.

T.P. Harrison and H.S. Lewis. Lot sizing in serial assembly systems
with multiple constrained resources. Management Science, 42(1):19~
36, 1996.

R. Jans. Solving lotsizing problems on parallel identical machines
using symmetry breaking constraints, 2006. Erasmus Research In-
stitute of Management, Rotterdam, Netherlands. Working paper.

C. Jordan and A. Drexl. Discrete lotsizing and scheduling by batch
sequencing. Management Science, 44(5):698-713, 1998.

R. Jans and Z Degraeve. An industrial extension of the discrete
lot-sizing and scheduling problem. IIE Transactions, 36:47-58, 2004.

19



1JD07]

1JD08]

[KFGW03|

[Kim99]

[KK94|

[KLH98|

[KMT98]

[KS85)

[Mey00]

[Mey02]

[MMvWO1|

[MNS07]

R. Jans and Z Degraeve. Meta-heuristics for dynamic lot sizing: a
review and comparison of solution approaches. Furopean Journal of
Operational Research, 177:1855-1875, 2007.

R. Jans and Z. Degraeve. Modeling industrial lot sizing problems:
a review. International Journal of Production Research, 46(6):1619—
1643, 2008.

B. Karimi, S.M.T. Fatemi Ghomi, and J.M. Wilson. The capaci-
tated lot sizing problem: a review of models and algorithms. Omega,
31:365-378, 2003.

A. Kimms. A genetic algorithm for multi-level, multi-machine lot
sizing and scheduling. Computers ¢ Operations Research, 26:829—
848, 1999.

O. Kirka and M. Kokten. A new heuristic approach for the multi-
item dynamic lot sizing problem. FEuropean Journal of Operational
Research, 75:332-341, 1994.

E. Katok, H.S. Lewis, and T.P. Harrison. Lot sizing in general assem-
bly systems with setup costs, setup times, and multiple constrained
resources. Management Science, 44(6):859-877, 1998.

S. Kang, K. Malik, and L.J. Thomas. Lotsizing and scheduling on
parallel machines with sequence-dependent setup costs. Management
Science, 45(2):273-289, 1998.

U. Karmarkar and L. Schrage. The deterministic dynamic product
cycling problem. Operations Research, 33(2):326-345, 1985.

H. Meyr. Simultaneous lotsizing and scheduling by combining local
search with dual reoptimization. FEuropean Journal of Operational
Research, 120:311-326, 2000.

H. Meyr. Simultaneous lotsizing and scheduling on parallel machines.
European Journal of Operational Research, 139:277-292, 2002.

J. Maes, J.O. McClain, and L.N. van Wassenhove. Multilevel capaci-
tated lotsizing complexity and LP-based heuristics. European Journal
of Operational Research, 53:131-148, 1991.

F. Marinelli, M.E. Nenni, and A. Sforza. Capacitated lot sizing and
scheduling with parallel machines and shared buffers: a case study in

20



[MS02]

[MV90]

[MWO03|

|0BYS]

[0B9Y]

[0B00]

[0Y99]

[Par05)

[Poc01]

[PWO1]

a packaging company. Annals of Operations Research, 150:177-192,
2007.

T.L. Magnanti and T. Sastry. Facets and reformulations for solving

production planning with changeover costs. Operations Research,
50(4):708-719, 2002.

T.L. Magnanti and R. Vachani. A strong cutting plane algorithm for
production scheduling with changeover costs. Operations Research,
38(3):456-473, 1990.

A.J. Miller and L.A. Wolsey. Tight MIP formulations for multi-item
discrete lot-sizing problems. Operations Research, 51(4):557-565,
2003.

L. Ozdamar and S.I. Birbil. Hybrid heuristics for the capacitated lot
sizing and loading problem with setup times and overtime decisions.
European Journal of Operational Research, 110:525-547, 1998.

L. Ozdamar and G. Barbarosoglu. Hybrid heuristics for the multi-
stage capacitated lot sizing and loading problem. Journal of the
Operational Research Society, 50:810-825, 1999.

L. Ozdamar and G. Barbarosoglu. An integrated lagrangean
relaxation-simulated annealing approach to the multi-level mult-item
capacitated lot sizing problem. International Journal of Production
Economics, 68:319-331, 2000.

L. Ozdamar and T. Yazgac. A hierarchical planning approach for a
production-distribution system. International Journal of Production

Research, 37(16):3759-3772, 1999.

Y.B. Park. An integrated approach for production and distribution
planning in supply chain management. International Journal of Pro-
duction Research, 73(6):1205-1224, 2005.

Y. Pochet. Mathematical Programming Models and Formulations for
Deterministic Production Planning Problems, pages 57-111. Com-
putational Combinatorial Optimization, Springer Lecture Notes in
Computer Science 2241. Springer, Berlin, 2001.

Y. Pochet and L.A. Wolsey. A strong cutting plane algorithm for
production scheduling with changeover costs. Management Science,
37(1):53-67, 1991.

21



[PWO6|

[SDSDS6|

[SM73]

[SMO6]

[SSYWT97]

[Sta03]

[SY05]

[TAO6]

[TD96|

| TH94]

Y. Pochet and L.A. Wolsey. Production planning by mized integer
programming. Springer Science, New York, USA, 2006.

V.L. Smith-Daniels and D.E. Smith-Daniels. A mixed integer pro-
gramming model for lot sizing and sequencing packaging lines in the
process industries. I[IE Transactions, 18:278-285, 1986.

E.A. Silver and H.C. Mear. A heuristic for selecting lot size quan-
tities for the case of a deterministic time varying demand rate and
discrete opportunities for replenishment. Production € Inventory
Management, 14(2):64-74, 1973.

C. Silva and J.M. Magalhaes. Heuristic lot size scheduling on un-
related parallel machines with applications in the textile industry.
Computers € Industrial Engineering, 50:76-89, 2006.

M. Salomon, M. Solomon, L. van Wassenhove, Y. Dumas, and
S. Dauzere-Pérés. Solving the discrete lotsizing and scheduling prob-
lem with sequence dependent set-up costs and set-up times using the
travelling salesman problem with time windows. FEuropean Journal
of Operational Research, 100:494-513, 1997.

H. Stadtler. Multilevel lot sizing with setup times and multiple con-
strained resources: internally rolling schedules with lot-sizing win-
dows. Operations Research, 51(3):487-502, 2003.

M. Sambavisan and S. Yahya. A lagrangean-based heuristic for multi-
plant, multi-item, multi-period capacitated lot-sizing problems with
inter-plant transfers. Computers € Operations Research, 32:537-555,
2005.

F.M.B. Toledo and V.A. Armentano. A lagrangian-based heuristic
for the capacitated lot-sizing problem in parallel machines. Furopean
Journal of Operational Research, 175:1070-1083, 2006.

H. Tempelmeier and M. Derstroff. A lagrangean-based heuristic for
dynamic multilevel multiitem constrained lotsizing with setup times.
Management Science, 42(5):738-757, 1996.

H. Tempelmeier and S. Helber. A heuristic for dynamic multi-item
multi-level capacitated lotsizing for general product structures. Eu-
ropean Journal of Operational Research, 75:296-311, 1994.

22



|TK00|] C.H. Timpe and J. Kallrath. Optimal planning in large multi-site
production networks. FEuropean Journal of Operational Research,
pages 422-435, 2000.

[TTM89] W. Trigeiro, L. Thomas, and J. McClain. Capacitated lot sizing with
setup times. Management Science, 35(3):353-366, 1989.

[TvW85| J.M. Thizy and L.N. van Wassenhove. Lagrangean relaxation for the
multi-item capacitated lot-sizing problem: a heuristic implementa-
tion. IEE Transactions, 17(4):308-313, 1985.

|[Van98| F. Vanderbeck. Lot-sizing with start-up times. Management Science,
44(10):1409-1425, 1998.

[VEvH97] C.A. van Eijl and C.P.M. van Hoesel. On the discrete lot-sizing and
scheduling problem with wagner-whitin costs. Operations Research
Letters, 20:7-13, 1997.

[Wol02] L. Wolsey. Solving multi-item lot-sizing problems with an MIP
solver using classification and reformulation. Management Science,
48(12):1587-1602, 2002.

|XD02| J. Xie and J. Dong. Heuristic genetic algorithms for general capac-
itated lot-sizing problems. Computer & Mathematics with applica-
tions, 44:263-276, 2002.

23



	TITRE CER
	CER_Gicquel_2008_01



