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This paper originates from the observation that many classical NP graph
problems, including some NP-complete problems, are actually of very low
nondeterministic time complexity. In order to formalize this observation,
we define the complexity class vertexNLIN, which collects the graph prob-
lems computable on a nondeterministic RAM in time O(n), where n is the
number of vertices of the input graph G = (V, E), rather than its usual size
|V| + |E|. It appears that this class is robust (it is defined by a natural re-
strictive computational device; it is logically characterized by several simple
fragments of existential second-order logic; it is closed under various com-
binatorial operators, including some restrictions of transitive closure) and
meaningful (it contains many natural NP problems: connectivity, hamil-
tonicity, non-planarity,etc). Furthermore, the very restrictive definition of
vertexNLIN seems to have beneficial effects on our ability to answer difficult
questions about complexity lower bounds or separation between determin-
ism and nondeterminism. For instance, we prove that vertexNLIN strictly
contains its deterministic counterpart, vertexDLIN, and even that it does
not coincide with its complementary class, co-vertexNLIN. Also, we prove
that several famous graph problems (e.g. planarity, 2-colourability) do not
belong to vertexNLIN, although they are computable in deterministic time
O(IV] + |B)).

Key Words: linear time, nondeterminism, complexity lower bounds, combinatorial prob-

lems, finite model theory, existential second-oder logic.
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INTRODUCTION

Except for some tradeoff space-time lower bounds results (see e.g. [2, 6, 14, 27])
we do not know of any proved complexity lower bounds for any natural NP problem
on a general-purpose model of computation such as the Random Access Machine
(RAM). We see at least two reasons. First, we know little about the relationships
between nondeterminism and determinism, with the exception of some technical
results such as the separation of deterministic and nondeterministic linear time for
Turing machines (see [40]), but we have no idea of how to generalize this result
to linear time on RAMs. Furthermore, most natural NP problems are of very low
nondeterministic complexity. Grandjean [22, 23] gave evidence that most natural
NP problems belong to the class NLIN, i.e., are recognizable in linear time on
nondeterministic RAMs. Further, the famous SAT problem can be recognized by a
RAM that only uses a linear number O(n) of deterministic steps and a sublinear
O(n/logn) number of nondeterministic steps, where n is the size of the formula,
i.e., its number of variable occurrences (see [23]).

Most general-purpose lower bounds results follow from a careful analysis of the
proof that the problem in concern is hard for a complexity class'. With regard
to time bounds, it is symptomatic that, on the one hand we know some NLIN-
complete problems via DTIME(O(n)) reductions (see [41, 10, 20]), on the other
hand we cannot imagine any candidate problem for completeness in the nondeter-
ministic quadratic time class or in any similar polynomial superlinear time class.
Notice that even in the PTIME class many classical problems are of very low deter-
ministic complexity, more precisely, quasi-linear time O(n x (logn)?(M)) (sorting,
minimal spanning tree, single-source shortest path problems, etc) or in linear time
(connectivity, planarity, Horn satisfiability,etc).

One goal of this paper is to show that some classical combinatorial problems
are even easier on the nondeterministic model. It is folklore to notice that the
natural certificates of many NP graph problems have size linear in the number of
vertices. More accurately, we prove in this paper that a number of graph problems
including connectivity, biconnectivity, Hamiltonicity and nonplanarity, belong to
a very restricted complexity class denoted vertexNLIN. It means that they are
recognizable on a nondeterministic RAM in time O(n), where n = |V| is the number
of vertices of the input graph G = (V, E) which may be much less than the size
of the graph, usually defined as n + e, where e = |E|. Intuitively, any positive
instance G = (V, E) of such a problem, e.g., connectivity (resp. nonplanarity),
has a proof, e.g. a spanning tree (resp. a subgraph homeomorphic to K5 or K3 3)
S of size O(n), n = |V|, which is checked in (deterministic) time O(n). If the
graph is not sparse, i.e., n = o(e), this is a nondeterministic time bound which is
sublinear in the time of the graph. Notice that this can be obtained because in our
computational model, the input is assumed to be separated from the workspace.

IFor instance, from the fact that each NSPACE(n) problem is reducible to qBr (Quantified
Boolean Formulas validity) in space O(logn) and time O(n? logn) (see [49]), it follows that QBF ¢

NSPACE(o(y/n/logn)).



More precisely, our RAM has specific read-only input registers, e.g., n? boolean
registers E(i,7),i,j < n, that represent the adjacency matrix of the input graph
and O(n) read/write registers R;, i = O(n), each of which contains a number whose
magnitude is O(n). In this model, it makes sense to check nondeterministically a
property, e.g., connectedness, in time O(n), which is much less than the input size,
namely ©(n?); in particular, only a small part of the input, namely O(n) registers,
can be read in one computation.

A natural question arises —positively answered in this paper: is vertexNLIN a
robust complexity class 7 Since it is, in some sense, a linear time complexity class
(in fact a generalization of this notion, since the reference parameter n is no longer
the input size) it is useful to recall some points about such a delicate notion. In [16],
Grédel argues that “ it is not clear at all what should be the right notion of linear
time computability” and doubts that there could be an adequate - i.e. intuitive and
including linear time classical algorithms - and robust - i.e. machine-independent
- definition of linear time. In [16] and [26], the authors circumvent that problem
by considering some robust closures of linear time (see also [44] and [3] for other
points of view). However, [45], [25], [23] and [24] introduce and study a notion of
linear time, namely the deterministic (resp. nondeterministic) class DLIN (resp.
NLIN) and argue that both classes are adequate and robust. In particular, DLIN
(resp. NLIN) has algebraic (resp. logical) characterizations from which complete
problems can be derived as shown in [45], [25] (resp.[24], [37]).

A second goal of this paper is to study a general notion of nondeterministic time
complexity on RAMs and to establish its equivalent logical characterizations. More
precisely, let o be any first-order vocabulary which may include relation, function
and constant symbols. We are interested in o-problems, that means decision prob-
lems for sets of finite o-structures. For instance, a graph problem is a o-problem
for o = {E}, where E is a binary relation symbol. For any function 7' : IN — IN,
T(n) > n, let NTIME?(T'(n)) denote the class of o-problems that are recognized
by nondeterministic RAMs? in time O(T(n)), where n is the domain size of the
input. Several logics appear in the paper. They are all fragments of existential
second-order logic. We denote by ESO? this last logic. That is, ESO? is the class
of formula of the form: ® = 37¢, where 7 is a tuple of relation and function symbols
of various arities, and ¢ is a first-order formula of signature cUT. Notice that in this
definition, the second order variables all stand in front of the formula (but we could
give up this constraint), whereas the first-order part ¢ is not necessarly prenex. If
¢ is in prenex form and if furthermore, its variables z1,...,z4 are all universally
quantified, we denote ® € ESO?(Vd). In other terms, ESO? (Vd) is the subset of
ESO’ whose formulas have the form: ® = 3IrVay, where 7 is a tuple of relation
and function symbols of various arities, « is a d-tuple of first-order variables, and
¥ is a quantifier-free formula of signature o U 7. We denote by ESO? (arity k, Vd)
the set of formulas in ESO? (Vd) whose ESO relation and function symbols are all

21n this paper, the notation “NTIME?” is used differently compared the previous papers : it refers
to time complexity on nondeterministic RAMs, rather than nondeterministic Turing Machines.



of arity < k. Finally, we also denote by ESO? (resp. ESO? (Vd), ESO? (arity k, Vd))
the class of o-problems definable in these logics. In this paper we refine Fagin’s
characterization of NP:

[JNTIME (n?) = ESO” (see [12])
d

by proving the equalities
NTIME’ (n?) = ESO (arity d,Vd) = ESO? (Vd), (1)

for any vocabulary o and any integer d > 0. A similar result was proved in [18,
19, 24] but the new result is more general: the parameter d is now independent
of the arities of the o symbols. Note also that no built-in symbol is required in
the ESO? formulas. Another aside contribution of this paper is a purely logical
(machine-independent) proof of the second equality above.

Most important is the case d = 1 of the previous equalities: on the one hand,
it shows the robustness of the class vertexNLIN? =4o¢ NTIME’ (n) ; on the other
hand, it gives a logical method and complementary tools to prove that a specific
problem belongs to this class. For example, [19] proves that the ESO “quantifier”
(Fhin order <) can be defined in ESO? (V1). In this paper, we prove that other useful
constructs are also definable in this restricted logic: the ancestor relation in trees
and forests, any depth-first order in a graph, the transitive closure of any unary
function, etc. Those logical tools are exactly what we need to prove that many
combinatorial problems such as connectivity or non planarity belong to vertexNLIN.

Starting from the observation that most of our graph problems in vertexNLIN
are monotone—a graph problem P is monotone if G € P implies G’ € P for any
extension G’ = GU{a} where a is any new edge-we study the monotone restriction
of the class vertexNLIN. Monotone NP problems were studied by Iain Stewart
[46, 47, 48] who, in particular, proved some equalities that can be reformulated as
follows: for any relational vocabulary o,

monotone-NP? = U NTIME* (n?) = ESO”™. (2)
d

Here monotone-NP? denotes the class of monotone o-problems in NP, ESO7*
denotes the class of o-problems definable by ESO formulas where any relation o-
symbol only occurs positively and NTIME’ " (T(n)) denotes the class of o-problems
computable in time O(T'(n)) on an NRAM which rejects whenever it reads an input
0 (i.e. consults a tuple of an input o-relation r which does not belong to r). In this
paper, we prove the following equalities which are similar to (1) and refine (2): for
any relational vocabulary ¢ and any integer d > 0,

monotone-NTIME? (n?) = NTIME’* (n?) 3)
= ESO7* (arity d, Vd) = ESO’ ™" (Vd).

In particular, this shows the robustness of the class monotone-vertexNLIN which
includes many combinatorial problems: Hamiltonicity, connectivity, nonplanarity,
etc.



Last, we study some structural properties of the class vertexNLIN. By giving a
simple combinatorial method to prove that a number of graph properties are not in
vertexNLIN, we demonstrate that this class is not closed under complementation
and also that DLIN \ vertexNLIN is not empty, which yields the strict inclusion
vertexNLIN ; NLIN. The method to prove that a specific graph property P does
not belong to vertexNLIN consists in exhibiting, for each n € IN, a graph G,, of n
vertices and a set A,, of Q(n?) edges that “flip-flop” property P: this obliges every
non deterministic algorithm for P on input G,, to read all the Q(n?) edges of A,,.

Let us now present a detailed plan of the paper:

e Section 1 gives some preliminaries about the computational model and the
logics involved in the paper.

e In Section 2, we prove (Theorem 2.1) the logical characterization of NTIME(n<)
above mentioned: NTIME(n?) = ESO (arity d, Vd).

e In Section 3 we show the robustness of NTIME(n?): we give alternative logical
characterizations of this class (Theorem 3.1).

e Section 4 deals with monotone classes: Theorem 4.2 states the characterizations
of monotone-NTIME(n?) quoted above in (3).

In the rest of the paper, we restrict our attention to the class vertexNLIN =
NTIME(n) and to the logic that characterizes it, ESO(V1).

e Section 5 provides a kind of toolboz of the “semantical constructions” that can
be freely handled in this logic.

e Section 6 uses the previous results to prove, by purely logical means, that
several well-known graph problems belong to vertexNLIN.

e In Section 7, we demonstrate that many other combinatorial problems do not
belong to vertexNLIN. Then, we prove and discuss the structural properties of
vertexNLIN.

e Finally, Section 8 states some conclusive remarks and open problems.

Three groups of sections can be read independently one from the others: the
first one consists of Sections 2, 3 and 4, in which various logical charaterizations
of NTIME(n?) are proved; the second one consists of Sections 5 and 6, which
provide logical tools used to prove that various combinatorial problems belong to
vertexNLIN; the third one is Section 7, which is devoted to structural complexity.

1. PRELIMINARIES
We will often deal with tuples of objects. We denote them by bold letters. A
d-tuple is said to be of arity d. When we want to insist on the arity of a tuple x,
we sometimes denote it by x4, where d = arity(x).

1.1. Structures and problems
For all notations related to finite model theory, we refer to the usual conventions
(see [11], for instance). Our inputs are finite first-order structures. A signature (or



vocabulary) o is a finite set of relation and function symbols each of which has a
fixed arity which can be zero (a 0-ary function symbol is a constant symbol). The
arity of o, denoted by arity(c), is the maximal arity of its symbols. A vocabulary is
relational if it does not contain any function symbol. When ¢ and 7 are two disjoint
signatures, we often denote by o7 their union o U 7. A structure S of vocabulary
o, or o-structure, consists of a finite domain D of cardinality n > 1, and, for any
symbol s € o, an interpretation of s over D, often denoted by s for simplicity.
The set of interpretations of the o-symbols over D is called the interpretation of o
over D and, when no confusion results, it is also denoted o. The cardinality of a
structure is the cardinality of its domain. For instance, a graph or digraph (V, E)
can be encoded in two natural ways:

e As a o-structure G = (D,o) where the domain is D = V and where o is
reduced to a binary relation symbol interpreted on D as the edge relation E ;

e As a o'-structure G' = (D, 0’) where the domain is D = V U E and where o’
is a pair of unary function symbol {head, tail} interpreted as follows on V' U E: for
each z € V, head(z) = tail(xz) = z and for each a € E, head(a) = z and tail(a) = y
if the edge « links the vertex x to the vertex y.

The first of those structures is called the relational representation of the graph
(V, E) while the second is its functional representation.

For any signature o, we denote by STRUC(c) the class of (finite) o-structures.
We are interested in decision problems. A o-problem is a set P C STRUC(o) that
is closed under isomorphism. A typical example is a set MODELS(¢) of the o-
structures which satisfy some fixed formula ¢. Let o be a relational vocabulary and
S,S" € sTruUC(0). We say that S’ is an extension of S, and we write S C §', if
s% C s% for each relation symbol s € 0. A g-problem P is monotone if it is closed
under extension. The set of monotone o-problems is denoted by Monotone”. Thus,
a set P C STRUC(0) is in Monotone” if P is a o-problem and if furthermore, for all
S,S" € sSTRUC(0) we have: (S € P and S C S') = S" € P. For example, the set of
connected graphs, for the above relational representation of graphs, is monotone.

1.2. Computational model and complexity classes
Our computational model is the Nondeterministic Random Access Machine with
read-only input registers. A o-NRAM (or NRAM, for short) M is designed to store
an input o-structure S = (D, o), where D = [n] =ger {0,...,n — 1} (recall that o
might contain function symbols). It consists of:

e input registers:

— a register N supposed to contain the cardinality n of the input, and
— for each o-symbol s of arity ¢, and for each tuple ¢ € [n]?, one register s[z]
supposed to store the value s(2) ;
e 7 + 1 special registers (also called accumulators), A, By,...,B,, where r =
arity(o);

e the main memory which consists of registers Ry, Ry, ...
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FIG. 1. an NRAM for a graph problem

Such a 0-NRAM for a graph problem (¢ = {E}) is represented in Figure 1. Input
registers are read-only. The other registers are read/write. The program of M is a
sequence of labeled instructions of the following forms (1-11):

.A:=N

. A:=s[Bi,...,B,] where s € o and ¢ = arity(s)
.A=0

LA=A4+1

.A:=Ry

.B;:=A,1<i<r

.Ry:=B;;,1<i<r

. If A = B, then instr ig else instr 41, 1 <i <r
. guess(A)

. accept

. reject

Semantics of the model:

e At the beginning of the computation, each read/write register contains 0.
e R, denotes the register R; whose address, i, is the content of accumulator A.

e Instruction (9), guess(A), is our nondeterministic instruction: it stores any
integer in A.

M accepts a o-structure S if some computation of M on input S reaches the
statement (10): accept. A o-problem P belongs to NTIME?(T'(n)) if there is a
0-NRAM M such that:

(i) P is the set of o-structures accepted by M;

(ii) each computation of M on every input o-structure S, only uses integers in
O(T'(n)) and stops within time O(T'(n)), where n is the cardinality of S.



We will focus on the class NTIME? (n). When ¢ is unary and contains at least
one unary function symbol, the size and the cardinality (i.e. size of the domain) of
o-structures are linearly related, since a unary function f : [n] — [n] can be de-
scribed by its list of values, f(0),..., f(n —1). Therefore, in this case, NTIME’ (n)
coincides with the class NLIN defined in [24] (see also [45, 25]). Otherwise (i.e.
if arity (o) > 2), the class NTIME? (n) gathers problems recognizable nondeter-
ministically in time linear in the cardinality of the input structure, but sublinear
in its size. Notably, if E is a binary relation symbol, NTIMEE(n) is the class of
graph and digraph problems recognizable nondeterministically in time linear in the
number of vertices of an input graph given by its relational representation, that
is, represented by its adjacency matrix. For this reason, we call vertexNLIN this
class of graph problems. By analogy, we will often denote by vertexNLIN? the class
NTIME? (n) when arity (o) > 2.

Let o be a relational vocabulary. A positive c-NRAM M is a 0-NRAM for which
any access to the input o-structure should be positive. More precisely, instruction
(2) is replaced by

(2+) If r(Bu,...,By) then instr i else reject;

where r € 0. Of course, any o-problem accepted by a positive o-NRAM is mono-
tone. Such a machine is very similar to the so-called Conjunctive Random Access
Turing Machine of Tain Stewart [46]. Complexity classes NTIME’"(T'(n)) and
vertexNLIN? " are defined accordingly.

Remark.

e One may imagine that our instruction “guess(A)” which puts any integer into
A is too powerful. It is not the case since, as it can be easily shown, such an
O(T'(n))-time bounded o-NRAM can be simulated within the same time by another
0-NRAM which guesses integers in O(T'(n)) and, more generally, only uses integers
of magnitude O(T'(n)) (as addresses and register contents).

e Our complexity classes NTIME? (T'(n)) (resp. NTIME’"(T'(n))) are compu-
tationally robust. More precisely, they are invariant under many changes of the
allowed set of instructions. E.g., they do not change if we allow not only incremen-
tation by 1 (instruction (4)) but also addition, substraction and/or multiplication
of register contents, provided all the integers manipulated by an O(T(n))-time
bounded NRAM are required to be of magnitude O(T'(n)) (for details, see, e.g.,
[21, 25]).

In this paper, we also occasionally use the deterministic RAM model and deter-
ministic time complexity (see Section 7). A 0-RAM is similar to a o-NRAM up to
the following two changes:

e it is deterministic. That is, it does not use the nondeterministic instruction (9);
e it may perform additions. That is, the instruction A := A+ B;, 1 <i < r,is
allowed.

A o-problem belongs to DTIME? (T'(n)) if it is recognized by a o-RAM that uses
only integers in O(T'(n)) and stops within time O(T'(n)).



1.3. Logic and definability classes
We use the usual definitions and notations in logic and finite model theory (see
[11]). We are interested by definability in Ezistential Second Order logic (ESO).
Given two disjoint signatures o = {s1,...,sp} and 7 = {t1,...,ts} (where the
s;’s and the t¢;’s are relation and function symbols of various arities), we write
® = Ir¢(o,7) to mean that ® has the form 3ty ... 3t é(s1,...,5p,t1,...,1,). For
a vocabulary o, we denote by ESO? the class of o-formulas ® of the form

® = Arg(o, 1)

where 7 is a signature disjoint from ¢ and ¢ is a first-order sentence of vocabulary
o7. For simplicity, we confuse in our notation a class of o-formulas, e.g. ESO?, and
the class of o-problems P they define. Namely, P € ESO? means that there exists
® € ESO? such that P = MODELS(®), i.e., S € P iff S |= ®. As in [18, 20, 24|, we
are interested in syntactic restrictions of ESO?:

e & € ESO? (var d) means that the first-order part ¢ of ® (which is not necessarily
in prenex form) contains at most d (first-order) variables which may be quantified
several times;

e & ¢ ESO?(Vd) means that ® is in the Skolemized prenex form IrVaeo(o, 7, x)
where ¢ is quantifier-free, x is a tuple of first-order variables, and arity(x) = d;

e & € ESO” (arity k,Vd) if it fulfils the same conditions as above and if further-
more, arity(r) < k.

Remark.  Clearly, the class of problems defined in ESO?(Vd) is not modified if
formulas of the more liberal form

® : IV, Iyd(o, 7, ¢4, y)

are allowed, since, via Skolemization of the existential variables y, one obtains a
formula of the required form. So, for convenience, we shall write formulas in the
more liberal form above.

For a relational vocabulary o, we denote by ESO’", ESO’™ (var d), ESO”™ (Vd)
and ESO” ™ (arity k, Vd) the similar classes of o-formulas where each (relation) sym-
bol of ¢ only occurs positively, i.e., in the scope of an even number of negations
(assuming that the only connectives are =, A and V).

2. A LOGICAL CHARACTERIZATION OF NTIME(n%)

The following equality refines Fagin’s Theorem [12] and generalizes results of
[18, 19, 24]:

THEOREM 2.1. For any signature o and any integer d > 0:

NTIME? (n?) = ESO7 (arity d, Vd).

Proof. The two corresponding inclusions are proved in Lemma 2.1 and Proposi-

tion 2.1.d



Lemma 2.1. ESO7(arityd,Vd) C NTIME? (nd).

Proof. Let p be a signature of arity d and ¢ = IpVyp(xy) be a formula of
ESO’ (arity d,Vd). The following nondeterministic algorithm A clearly recognizes
P = MODELS(¢).

Algorithm A: On any input ([n],o) € STRUC(0),

(a) guess an interpretation over [n] of each relation or function symbol in p ;

(b) if the expanded structure ([n], o, p) satisfies Vrgip(xq) then accept, else reject.

Clearly, an NRAM? M can implement (a) using O(n?) guess instructions (9)
that guess the O(n?) values of the d-ary functions in p. Those values are easily
stored in O(n?) registers R; of the main memory. Then, M executes (b) within
O(n?) deterministic steps: more precisely, for each a € [n]¢, ([n],0,p) E ¢¥(a)
is checked in constant time since length(t) is fixed and since M can evaluate
each subterm or atomic subformula s(b) (s € o Up, b C a) in one step with

exactly one access to the input (if s € o) or to the main memory (if s € p ).d

We now prove the converse inclusion: NTIME’ (n?) C ESO’ (arity d,Vd). As
usual, in order to describe a computation, it is crucial to have a linear order <,
which intuitively encodes the time order. It is easy to express the existence of such
a linear order in ESO’ (arity d, Vd), for d > 2:

e for d > 3, we simply have to write that there exists a binary relation which is
antisymmetric, transitive and linear: this can be done using at most three univer-
sally quantified first-order variables.

e For d = 2, the above mentioned defining properties of linear orders are not
directly expressible. However, we can quite easily overcome this difficulty by ex-
pressing that there exists, in addition to the binary relation <, a unary function
succ that is forced to be a successor function while < is compelled to coincide with
the transitive closure of succ. It is possible to express the second constraint using
only two variables, by hand of an inductive argument (related to succ).

The unary arity of succ and the possibility to define < from succ by an inductive
argument allow to write these constraints with only two first-order variables.

However, the case d = 1 is much more difficult. It was solved in [19] as follows:
with only one first-order variable, there is no more hope to force explicitly a binary
relation to be a linear order. On the other hand, there exists a first-order formula
built(v) over a unary signature v whose models can be easily equipped with a
linear order implicitly defined via an existential first-order formula order(z,y) of
arity 2. Consequently, an assertion of the form: “there exists a linear order < on
the domain D such that D = ®(<)”, where ®(<) is a formula involving <, can
be rephrazed: “there exists an interpretation of v over the domain D such that
(D,v) E built(v) A @' (v)”, where ®' is obtained from ® by replacing each atomic
formula t; < to by order(ty,ts).



In order to allow a better understanding of the way these two formulas help to
express in ESO (arity 1,V1) the existence of a linear order, we recall the original
result (in a slightly different formulation):

LEMMA 2.2 (Grandjean [19]).  There exist two first-order formulas built(v) and
order(x,y,v) over a unary vocabulary v such that:

1. “built” is a sentence of the form Yxd(x,v), where ¢ is quantifier-free;

2. “order” is a formula with two free variables x, y, of the form Jzy(x,y, z,v), where
Y is quantifier-free;

3. “built” has exactly one model (up to isomorphism) in each cardinality and

4.0n each model (D,v) of built(v), order(x,y) defines a linear order. That is:

if (D,v) = built(v), then
{(a,b) € D? s.t. (D,v) |= order(a,b)} is a linear order of D.

Proof. See [19], Proposition 4 for 3. and Lemma 5 for 4.0

CoroLLARY 2.1 (Grandjean [19]). The definability class ESO? (arity1,V1) is
not enlarged by the addition of the second-order quantifier (Jiin order <) (to be read:
“there exists a linear order < of the domain such that...”). More precisely, any
formula ¥ of the form

(alin order <)¢(07 <)7
where ® € ESO”<(arity1,V1) is equivalent to a formula ¥' € ESO’ (arity1,V1).

Proof. Without loss of generality, assume that symbol < only occurs positively
in ®. Define formula ¥’ = Jv : built(v) A®' (0, v), where ®' is obtained from ® by re-
placing each inequality ¢ (z) < t2(x) by the existential formula order(t; (), t2(z), v).
Clearly, by Conditions 3. and 4. of Lemma 2.2, ¥’ is logically equivalent to ¥. Fi-
nally, the form of formulas built and order (see Conditions 1. and 2. of Lemma 2.2)

guarantees that ¥’ can be written in ESO? (arity 1,V1), by Skolemization.d

Using the quantifier (Jjin order <), We shall express an NTIME” (n?) computation
in ESOY (arity d, Vd) even for d = 1:

ProPOSITION 2.1. NTIME? (n4) C ESO? (arityd, Vd).

Proof. 1In order to avoid heavy notations, let us give the proof for d = 1, the
general case being similar. It is reminiscent of a similar proof in [17] and [24]
(see also [45]). Let P be a o-problem (i.e., a set of og-structures which is closed
under isomorphism) recognized by a o-NRAM M in time O(n). Without loss of
generality, assume that M only uses integers (addresses and registers) smaller than
cn and always stops in time at most cn, for a fixed integer ¢ > 1; in particular, the
instants (resp. steps) of a computation are exactly numbered 0,1,--- ,en — 1 and
a final instruction (accept or reject) is performed at step en — 1 or before (if it is



performed before, it is repeated till the step ¢n — 1). So, it is natural to encode
such a computation over a linearly ordered structure with domain [en] as described
below. At the end of the proof, we describe how to adapt the encoding for the
smaller domain [n].

Let instrg, instry,- - - ,instr; denote the sequence of the instructions of the pro-
gram of M. Without loss of generality, assume that instrj is the only accept
instruction. In the encoding, we will use the successor function Suce, associated
to the linear order < and also denoted Succ(xz) = z + 1, and the associated con-
stants 0,1,2,...,k and maz = en — 1 (assume k < cn ), and also the constant n.
Additionally to the input relation and function symbols s € o defined in [n] and
arbitrarily extended to [cn], e.g. with zero values, we encode a computation of M
on input structure ([en], (s)ses) by the following new unary functions

I,A,(Bi)i<r, Ra, Ry : [en] — [en]

which, with the exception of Ry, are intended to describe the situation of M at
instant ¢, that is the instant before step t is performed. More precisely:

e I(t) holds the current instruction number (e.g. I(0) = 0 and I(mazx) = k);

e A(t) and By(t), i = 1,2,...,7, hold the current values of registers A and B;,
respectively (e.g. A(0) = B;(0) = 0);

e R4(t) holds the current value of the register whose address is currently con-
tained in register A (e.g. R4(0) = 0) and

e R',(t) holds the value of the same register after step t.

By case distinction according to the value of I(t), most of the logical description
of the computation of M is straightforward. FE.g., if M performs a statement
A := A+1 at step t, then the formula will force A(t + 1) = A(t) + 1. The main
complication arises for the instruction A := R4 which loads into the accumulator A
the content of the register whose address was contained in A before the execution
of the instruction. Note that the functions defined in that way do not explicitly
encode the values of all the memory registers of M at each instant but only the
content of the register to which A points. So, how can we get the right value of
R4(t) ? If the register pointed to by A at instant ¢ has never been visited before
t, then it contains its initial value : 0. Otherwise, let u be the last instant before ¢
when A contained the value A(t). Then the last modification of the register pointed
to by A at instant ¢ has been performed during step w, and Ra(t) = R'y(v). In
other terms, either there is no i < ¢ such that A(i) = A(t), and R4(t) = 0 (case 1)
or u = max{i < t: A(i) = A(t)} exists, and Ra(t) = R/;(u) (case 2). Now, it is
essential to notice that the alternative between these two cases can be rephrazed
as follows: assume we have lexicographically ordered the pairs (A(¢),t), t € [en].
Then, either t = 0, and therefore, (A(t),t) = (0,0) and R4(t) = 0, or there exists
u < t such that (A(u),u) is the predecessor of (A(t),t) for the lexicographic order
over the pairs (A(7),4). In this case, case 1 occurs if A(t) # A(u); case 2 occurs
otherwise.

Let us number the cn ordered pairs (A(t),t), t € [en] according to their lexico-
graphical order, in other words, Lez(y) = (A(t),t), y € [en], means the y'* ordered
pair is (A(t),t). It is now obvious that if y = x + 1, and Lexz(z) = (A(u),u),



then u is the instant concerned in the above cases (1,2). The essential point is
that ¢ is the only universally quantified first-order variable in that description. The
other variables involved x, y and u are existentially quantified, and, hence, can be
Skolemized. Formally, the function Lex : [en] — [en]? is represented by two unary
functions Lexy, Lexs : [cn] — [en]. Now we present the first-order formulas (with
only one universally quantified variable) whose conjunction will form the first-order
part of the ESO? (arity 1,V1)-formula. In order to simplify notation and obtain a
natural encoding of an accepting computation of M, we introduce the formulas in
an informal way that uses case distinction as in [45] and [25] (but these formulas
are essentially equivalent to those of [18] and [24]). Recall that the function I only
takes a fixed number of values 0,1,..., k. For convenience, we freely use abbrevi-
ations for instruction case distinction, e.g., “I(t) is A := 0” is an abbreviation for
the formula

I(z) =iy VI(z) =is V- VI(z) =ip,

where the i; are all the numbers of the instructions A := 0 in the program. In all
the following “formulas” that define I, A, B;, i < r, the quantification (V¢ < maz)
is implicit and we use informal expressions that are easily encoded in logic such as
“if”) “and” and “otherwise”. G denotes a new unary function symbol existentially
quantified (for the guess instruction). Recall that instructions of the form (8.) in an
NRAM are as follows: “If A = B; then instr iy else instr i;” (see subsection 1.2).
Then I(0) =0, A(0) =0, B;(0) =0 (for each i) and for all ¢:

10 if I(t) is of the form (8) and A = B;
[(t+1) = i1 if I(t) is of the form (8) and A # B;
I(t) if I(t) is of the form (10) or (11) (accept or reject)
I(t) + 1 otherwise
(n if I(t)is A:=N
F(By(t),...,By(t)) if I(t)is A:=F(By,...,By)
0 if I(t)is A:=0
Aa+n:{A@+1 if 7(t)is A= A+1
RA(t) if I(t) isA:=Ry
G(t) if I(t) is guess(A)
[ A(t) otherwise

A(t) ifI(t)is B;:=A
B;(t) otherwise

&a+n:{

The following formula, now quantified by V¢, defines the value R/,(t) contained
in the register of address A(t) after step ¢:

Bi(t) if I(t)is Ra := B
R4(t) otherwise

R0 = {

There remains to define the functions Lezx (in fact, Lex; and Lezs) and R4.
Lex is obviously defined by the two formulas Vi3z : Lex(x) = (A(t),t) and (Vo <



max) : Lex(x) < Lex(xz + 1) and Ry is defined by

. Lex(z + 1) = (A(t),t) A
R4(0)=0 A (Vt>0)Judx (A(t) = A(u) - Ba(t) = By (u)) A
(A(t) > A(u) = Ra(t) =0)

Finally, the formula I(maz) = k expresses that the last intruction performed is
instr, = accept. So, we have proved that our o-problem P is defined on domain
[en] by a formula ¢ of the form

(Fiin order <)ITVE = (x).

Here v is a quantifier-free formula that uses, in addition to 7, the symbols <, Succ,
0, maz and n, while 7 is a unary vocabulary including I, A, (B;)i<,, Ra, R}, G
and Lex. Of course, Succ, 0 and maz are easily definable with < and hence can
be eliminated.

It remains to explain how to modify the relations, functions, constants, and the
formula if the domain is [n] instead of [en]. For convenience, assume that each
atomic subformula involving any unary function symbol F' is of the form F(u) = v
where u, v are individual variables, and that the first-order part of our formula is
of the form

Vidxy(t, ),

where 1 is quantifier-free and x is a tuple of variables. Each element b € [en] is
naturally represented by the ordered pair (i,a) such that b = i X n + a, i € [c],
a € [n]. The rest of the encoding is a consequence of that representation:

e The universally quantified variable Vt is replaced by /\ie[c] Vt (which intuitively
means Y(i,t) € [c] x [n] ), and the existential part of the prefix, 3z is modified
similarly;

e The constant n, that is 1 x n+ 0, is replaced by the ordered pair (1,0) and the
linear order < is encoded similarly;

e Fach atomic subformula involving an input relation or function symbol s € o
is not modified (recall that in such a formula, the arguments are forced to belong
to [n]);

e Each atomic subformula of the form F(u) = v where F is an ESO unary
function symbol symbol (F = I, A,...) and u, v are any variables, is replaced by
the conjunction

Rl (u) A Fy(u) =v

which intuitively means F(i,u) = (j,v) and in which Rfj and F; are new unary
relation and function symbols, respectively, with 4, j € [¢]. To enforce the functional
nature of Rf’? ;» we finally make the conjunction of the first-order sentence so modified
and of some sentences which mean that for every i € [c] and u € [n], Rfj(u) holds
for exactly one j € [c].



The details of the encoding are left to the reader. By Corollary 2.1, this finishes
the proof that P belongs to ESO? (arity 1,V1).d

3. OTHER LOGICAL CHARACTERIZATIONS

It is natural to ask how robust is the computational /logical class NTIME? (n?) =
ESO (arity d,Vd) from a logical point of view, i.e. to look for other logical charac-
terizations of this class. F.g., is it equal to ESO7 (arity d), the similar class when the
number of first-order (universal) variables is no longer bounded? We cannot answer
this question, which is related to a conjecture by Fagin about the arity hierarchy
[13]. However, we can prove the following result:

THEOREM 3.1. For every vocabulary o and every integer d > 0:

ESO? (arityd,Vd) = ESO? (Vd) = ESO? (var d).

The inclusions ESO” (arity d,Vd) C ESO? (Vd) C ESO?(var d) are trivial. The
converse inclusions are proved in the following Lemma 3.1 and Proposition 3.1.
Before proving Lemma 3.1, it seems useful to examine an example. Let us consider
the formula

¢ =35,T:VzS(z) vVl (z),

where S, T are unary relation symbols. Clearly, ® belongs to ESO? (var 1). And
putting ® under prenex form in a natural way would provide the formula 35, TVz, y :
S(x) VT (y), which belongs to ESO? (¥2). Nevertheless, we can build an ESO? (V1)-
formula equivalent to ®. First, let us quote all the subformulas of the first-order
part of ®:

a(z) = S(z) VS (z);

v(x) =T(x); 6 = VaT (x);
¢ =VxS(z) vV VzT ().

; B
;0

=S(x
=T (x

Now, we associate to these formulas some new relation symbols R,, ..., Rs and we
define the formulas A,,..., Ay as follows:

Ay =Vz: Ry(z) —» S(x); Ag =Vx: Rg = Ry(z);
Ay =Vz:R,(z) - T(z); As =Vz: Ry — R,(z);
A¢ER¢—)RBVR5.

It is easy to see that the formula ® =35, T3R,,..., Ry : Rg AAGAAGAALAAGA
Ay is equivalent to ® and has a prenex form in ESO?(V1). (Notice furthermore
that we could get rid of 0-ary predicates by replacing each such predicate Py by the
atom Pj(c), where P; is a new unary predicate and ¢ any existentially quantified
constant.) The next lemma generalizes this construction.

LEMMA 3.1. ESO7(var d) C ESO?(Vd).



Proof. The proof looks like the proof of a similar but less general result of
[17] (Proposition 2.4). Let P be a o-problem in ESO’(var d), i.e. we have P =
MODELS(¥) for a formula of the form ¥ = 374 (o, 1), where 7 is any signature
and ¢ is a first-order o U 7-sentence with exactly d individual variables x = z,
T2, ..., Tq which may be quantified several times. Without loss of generality, let us
assume that ¢ contains only the connectives A, V and — such that no quantifier is
in the scope of a negation. We also assume that ¢ contains no existential quantifier
(existential variables can be Skolemized). We have to transform ¢ into prenex form
with also d (universal) variables. The key observation is that any subformula 6(u)
of ¥ contains at most d free variablesu C @, u = uy,...,ux, k < d. Let us associate
to each subformula f(u) a new relation symbol Ry of same arity. Intuitively, Ry(u)
represents 6(u). Then, let us associate an implication Ay to each subformula 6(u)
as follows:

e if f(u) is quantifier-free, take Ag =Vu : Ryp(u) — 6(u) ;
e otherwise:
— if O(u) = Vb (u,v), take Ay =VuVYv : Ry(u) = Ry (u,v) ;
—if (u) = 0'(v) A 0"(v) where u = v Uw, take Ay = Vu : Ryp(u) —
(Ror(v) A Rgrr (w)) 5
—if O(u) = ¢'(v) V 0" (w) where u = v U w, take Ay
(R (0) V Ron ().

Yu : Ry(u) —

It can be shown by an easy induction that ¢ is logically equivalent to the formula:
1/)’ EHR@U...,RQP : R,/,/\Agl /\.../\Agp,

where 64,...,0, enumerate the set of subformulas of ¢, including ¢ itself. More
precisely, the implication ¢ — ' is straightforward if each Ry is given its intu-
itive meaning. For the converse implication, notice that, by an easy induction on
the structure of 6, Ag, A ... A Ag, implies that for each subformula §(u) of ¢ we
have Yu(Ry(u) — 6(u)). Hence, by taking 8 = «, ¢ follows from ¢’ by Modus
Ponens applied to Ry and Ry, — 1. Since each conjunct Ay is of the form Vué'(u),
u C x, for a quantifier-free formula ¢, the formula ' can be put into the form
JRy,,..., Ry, V)" (x), where 9" is quantifier-free, as required. This concludes the

proof of Lemma 3.1.1

ProprosITiON 3.1. ESO7(Vd) C ESO? (arityd,Vd).

Proof. As before, for simplicity, we give the proof only for d = 1 (the proof of
the general case is similar). First of all, we need to establish a normalization of
the logic ESO?(V1). Recall that the formulas of this class are of the form (after
Skolemization) : 3fVz¢, where f is a sequence of second-order symbols of various
arities, x is a first-order variable, and ¢ is a quantifier-free formula of signature
o U f (see Subsection 1.3). We can assume without loss of generality that each
f € f is a function symbol: if it not the case, transform each relation symbol
R into a function symbol R of the same arity and replace each atomic formula



R(m,...,74) by R(71,...,7;) = ¢, where ¢ is any constant symbol, belonging to
o or existentially quantified (if ¢ does not exist, create it by adding ¢ to the ESO
symbols of the formula). The point is, as we will prove it in the next lemma, that
we can furthermore assume that all the terms and subterms occurring in ¢ are of
the form: 7(z) = f(r1(x),...,7(z)), where f is a k-ary function symbol of ¢ U f
which doesn’t occur in any of the subterms 7;(z) (i = 1,...,k). Before giving a
formal proof of this fact, let us illustrate it by an example: consider the formula
¢ =Vz : u(u(z,0),v(z)) = v(v(z)), where u,v are, respectively, binary and unary
function symbols and 0 is a constant symbol. The terms and subterms occurring
in ¢ are the following :

T1 (Z’)

x To(x) =0 T3(x) = u(zx,0)
Ts(x) =0 u v

(@) 75(2) = u(u(z,0),v(z)) 76(z) = v(v(z))

Some of these terms (namely, 75 and 74) don’t fulfil the above requirement. Let
us now introduce, for each of these terms 7;(z), a unary function symbol 7;, and
consider the following formulas, that relate these functions to the terms :

Ti(z) ==z To(z) =0 T3(z) = u(f1(z), T2 (x))

(ha(@), 7a(@) Fo(a) = (74 (2))

Now, let us denote by A the conjunction of these six formulas. Clearly, the formula
¢ = 3In ... AVx : A(u,v,0,71,...,76,2) A T5(x) = T6(x) is equivalent to ¢ and
has the required form. The following lemma generalizes this result.

LEMMA 3.2.  Each formula ¢ in ESO? (V1) is equivalent to a formula ¢' in
ESO?(V1), where each (sub)term of the form f(ri(x),...,7,(x)) is such that no
subterm 1;(x) contains the function symbol f.

Proof. As before, we assume without loss of generality that our formula ¢ =
AfVzy(x) (where ¢ is quantifier-free) contains no ESO relation symbol. Let term(¢))
denote the set of terms and subterms of . To each 7 € term(v), we associate a new
unary function symbol 7, which intends to represent 7, and a formula §.(f, 7, z)
which inductively defines the function 7 as follows :

e if 7 is z or a constant symbol, then 6, (f,7,x) is the formula 7(z) = 7 ;
e otherwise, i.e. if 7 is of the form f(m (x),...,7,(z)), 6-(f,7,z) is the formula

T(z) = f(T(z), ..., T(x)).

Now, set ¢' = 3f(37), cterm(u) V2 A+ cterm(y) 07 (f, 7> @) A ¢*(2)], where ¢*(z) is
the formula ¢ (x) in which each 7 € term(¢) that is not a proper subterm is replaced
by 7(z). Clearly, ¢’ is equivalent to ¢ and has the required form. This concludes the

proof of Lemma 3.2.1

Let us now prove Proposition 3.1 (for d = 1). Let ¢ = 3fViy(t) € ESO?(V1).
Assume (without loss of generality) that it satisfies the condition of Lemma 3.2.
We want to eliminate every function symbol f of arity ¢ > 1 in the ESO prefix
f. Let f(7o(t)), ..., f(Tk—1(t)) be the list of all the occurrences of f in ¢ (each



7;(t) is a g-tuple of terms (7} (t),...,7(t))). In order to eliminate f, we search
to interpret each term f(7;(t)) as the image of ¢t by a new unary function. So let
us consider k new unary function symbol Fp, ..., Fi_1 and denote by ¢ and 6 the

following formulas:

e 4 is the formula 1) where every term f(7;(t)) is replaced by Fj(t) and

e 0=Vt N\ [Tilt) =i (t') » Fi(t) = Fy ().
i1 <k

(Here, 7;(t) = 74 (t') is the natural abbreviation for A, ., i (t) = 75 (t").) Now

consider the following formula ¢ where f no longer occurs:
¢=3Fy,...,Fr_q : 0 AV

We claim that the formula ¢ is equivalent to gz; The argument of our claim is the
well-known easy fact that follows.

Fact 3.2. Let G: X - Y and F : X — Z be two functions on the same domain
X. Then, the two following assertions are equivalent:

1.for all x,y € X, G(x) = G(y) implies F(x) = F(y) ;
2.there exists f : Y — Z such that F = foG.

To prove our claim, apply Fact 3.2 with the sets X = [k] x D, Y =D? Z =D
and the functions F(i,t) = F;(t), G(i,t) = 7;(t). Unfortunately, there are two
(universally quantified) first-order variables ¢,¢' in the subformula 6 of ¢. In order
to obtain an equivalent one-variable formula as required, we use the same idea and
techniques as in the proof of Proposition 2.1. Once again, an ESO linear order
< is introduced: it is used to lexicographically order the set of (q + 2)-tuples:
S = {(7i(t),i,t),i < k,t € D}. The crucial point is that, for each value v € DY,
the set I, = {(7(t),i,t) : 7;(t) = v} forms an interval of S for the lexicographical
linear order. In other words, tuples with the same value 7;(t) are contiguous for this
order. Since |S| = k|D]|, there is a lexicographically increasing bijection, denoted
Lex, of [k] x D onto S, which is defined via the following formulas t1;; and tine:

Yij = Y(i,8)3(J, z) : Lex(j, ) = (7:(t),1,1)

¢inc = V(],CE) < (k - lamax)zl(jlaml) :
(J',2") = Succ(j, z) A Lex(j, z) < Lex(j', z')

Remark.  For readability, we use the suggestive and concise notations V(i,t),
3(j, x), etc, that are easy to translate; Succ(j, ) denotes the successor of the ordered
pair (j,z) in the lexicographical order of [k] x D and similarly for relations = and
< between ordered pairs. Notice that our formal syntax represents the function
Lex : [k] x D — D72 by k(q + 2) functions Lex;- :D — D, where ¢ < ¢+ 2 and
Jj<k.



It is now easy to check that the subformula 6 of ¢ is equivalent to the following
formula 6':

01 = (Ellin order <)(3Lex) ['beij A ¢inc A 'Qbfunct]

Here, the conjunct ¥sunct expresses the fact that on each interval I,, (see above),
two successive elements Lex(j,z) = (74(t),,t) and LexSucc(j,z) = (74 (t'),7,t")
fulfil F;(t) = Fy (t'). That is, ¥funcs is the formula:

A (Ti(t) =Ty (tl — Fl(t) = Fy (t’)).

One easily transforms ¢’ and, finally, ¢ into the (Skolemized) ESO? (arity 1,V1) re-
quired form. This concludes the proof of Proposition 3.1 and completes the proof of

Theorem 3.1.1

4. SIMILAR RESULTS FOR MONOTONE CLASSES

In this section, each input vocabulary o is required to be relational. Iain Stew-
art has studied several logical descriptions of monotone o-problems in NP. In [47]
and [48], he showed that several monotone problems, including HAMILTON and
CUBIC-SUBGRAPH, are complete for monotone-NP via monotone projection trans-
lations. In [46], he proved the following theorem, whose proof is used in the proof
of Lemma 4.2:

THEOREM 4.1 (Stewart). monotone-NP? = |J, NTIME?* (n?) = ESO”*.

Proof. Clearly, we have the inclusions:

ESO”T C UNTIME"*(nd) C monotone-NP? C monotone-ESO?,
d

because of Fagin’s characterization of NP (namely, | J, NTIME? (n?) = ESO?). The
theorem will be an immediate consequence of the inclusion:

monotone-ESO’ C ESO . (4)

Let us prove this inclusion: given a problem P € monotone-ESO? over a rela-
tional signature o = {Ry,..., Ry}, there exists an ESO?-formula ¢ such that
P = MODELS(¢). The reader can easily check that, by monotonicity, ¢(R) is
equivalent to the following ESO?-formula:

¢ =3R : (R)AR CR,

where R' = (R},...,R}) is a list of new relation symbols such that arity(R]) =
arity(R;) = a;, where ¢(R') is obtained from ¢(R) by replacing each R; by R} and
where R' C R stands for the conjunction A, V&, (R}(q;) = Ri(@,,;)). Then P =
MODELS(¢'), and since the input relation symbols R; occur only positively in ¢, we

conclude that P € ESO°*.0



For any degree d of nondeterministic polynomial time, we can prove the following
analogue of Theorems 2.1 and 3.1, thus refining Theorem 4.1:

THEOREM 4.2. For any integer d > 0 and any relational vocabulary o, we have:

monotone-NTIME? (n4) = NTIME?+ (n)
= ESO”" (arityd,¥d) = ESO’" (Vd) = ESO” ™ (var d).

Proof. This theorem is the consequence of a series of class inclusions with, in
particular, the two following lemmas:

LEmMA 4.1. ESO7Y(arityd,Vd) C NTIME? " (n?).

Proof. The proof is a variant of that of Lemma 2.1 to which the reader is invited
to refer. Let P € ESO”T (arityd,Vd) for a relational signature o = {Ry,..., Ry}
Then P = MODELS(¢) for a formula ¢ = IpVaxy(x), where arity (p) = arity (x) = d
and ¥ is a disjunctive normal form () V...V y4—1(2) in which the R;’s occur
only positively. Then P is recognized by a nondeterministic algorithm similar to A
(cf. proof of Lemma 2.1) where Part (b) is replaced by the following new part:

for each a € [n]?, guess a number i. If i < ¢ check that ([n], o, p) E vi(a).
If not, reject. If no rejection occurs, accept.

It is essential to notice that since +; is a conjunction of literals where each R; € o
occurs positively, then in each accepting computation, each access to the input

can be realized by a positive c-NRAM instruction of the form (2+), as required.d
LEMMA 4.2. monotone-ESO (arityd,Vd) C ESO" (arityd, Vd).

Proof.  For the sake of simplicity, let us prove this result for d = 1 and o = {R},
where R is a k-ary relation symbol. The general case is similar. As justified in the
proof of Theorem 4.1, any sentence ¢(R) € ESO” expressing a monotone property
of o-structures is equivalent to the following sentence ¢'(R) € ESO7*:

3R’ : ¢(R') AVz(R'(x) — R(x)),

where R’ is a new k-ary relation symbol and ¢(R') is obtained from ¢(R) by re-
placing R by R'.

Now, let us assume ¢(R) € ESO?(arity 1,V1). The equivalent formula ¢'(R)
above belongs to ESO’™ but does not belong to ESO? (arity 1,V1) in case k > 1, as
it is required. More precisely, we show: if ¢(R) is of the form IwVyy(R,v,y) with
arity (v) = 1, and if ¢ is quantifier-free, then ¢(R) is equivalent to the following
sentence ¢'(R) € ESO’™, where arity (R') = k:

AR Vyp(R',v,y) AVz(R' (z) — R(x)).

We now transform the formula ¢'(R) into an equivalent formula of ESO* (arity 1, V1)
in two steps:



(1) first, we transform ¢'(R) into ¢;(R) € ESO” (arity 1) ;
(2) then, we transform ¢; (R) into ¢o(R) € ESO” ™ (arity 1, V1).

Let R'(t;(y))icr denote the set of distinct atomic subformulas of ¥(R',v,y) that
involve R'. (Note: each ¢;(y) is a tuple of terms of the same arity as R’ and R.)
Step (1) essentially consists in replacing each atom R'(¢;(y)) by R;(y), where R; is
a new relation symbol. More precisely, we show the following:

Claim. ¢'(R) is equivalent to the following formula ¢ (R) € ESO’ " (arity 1):
v A /\z I(R( ) (t y)) (( l)lGDV y)
sty (N S S i & iy )

where ¢’ denotes the quantifier-free formula ¢ where each atom R'(¢;(y)) has been
replaced by R;(y).

Indeed, ¢'(R) clearly implies ¢ (R): interpret R;(y) as R'(t;(y)) for each y. The
converse implication is obtained by defining the Boolean values of R’ as follows, on
the universe of the input structure ([n], R):

(a) R'(t;(y)) := R;(y) for each i € I and y € [n] ;
(b) R'(x) := R(z) if the tuple = € [n]* is distinct from each tuple ¢;(y), i € I,

y €n]

The coherence of the first item of this definition follows from the third conjunct
of ¢1(R). Conditions (a) and (b), in addition to the first conjunct of ¢;, imply

together R’ C R. Finally, from the formula Yy¢'((R;)icr,v,y), one easily deduces
Yy (R',v,y) by Condition (a). This proves the claim.

The three conjuncts of ¢;(R) have the required form: they involve only unary
ESO symbols (v, (R;):cr) and only one first-order variable y, except for the third
conjunct in which the new variable z appears. But this third conjunct can be
written in ESO (arity 1, V1):

Claim. The formula ¢ = Vy \;c; V2 A\jerti(y) = ti(2) = (Rily) < R;(2)) is
equivalent to some formula in ESO (arity 1,V1).

A similar assertion has yet been proved in the proof of Proposition 3.1. The only
difference is that we are now interested in unary relation symbols instead of unary
function symbols. But the proof is nearly the same and the reader is invited to refer

to it. This concludes the proof of Lemma 4.2.1

Now, we can prove Theorem 4.2 in considering Figure 2. In this scheme, A - B
stands for A C B and A + B, for A = B. Besides, the labels of the arrows refer to
the following arguments:

(0) follows immediately from the definitions of the involved classes;

(1) follows from the equality NTIME? (n?) = ESOQ (arity d,Vd) proved in Sec-
tion 2 (Theorem 2.1) and from the definition monotone-C := Monotone” N C for
any class of g-problems C;



monotone-NTIME? (n) ‘ «—2  INTIME"* (n%)

1 [s
monotone-ESO (arity d, Vd) ——| ESO"* (arity d, Vd) | ——| ESO”* (Vd)

monotone-ESO” (var d) +———— ESO’* (var d)

FIG. 2. [Inclusions between the complexity classes

(2) follows from the equality ESO? (arity d,Vd) = ESO’(var d) proved in Sec-
tion 3 (Theorem 3.1) and from the definition of monotone-C;

(3) is Lemma 4.2;

(4) is Lemma 4.1.

Clearly, this scheme implies the equality between all the involved classes and, in par-
ticular, the equality between the framed classes. This completes the proof of Theo-

rem 4.2.1

5. SEMANTICAL INVARIANCE PROPERTIES OF ESO (V1)

In Section 6, we shall prove that some well-known graph problems belong to
the class vertexNLIN. In order to establish these memberships by purely logical
means (i.e. by proving the definability of these problems in ESO(V1)), we first
examine, in the present section, some syntactical extensions of ESO(V1), which
will simplify the formulation of graph properties under consideration. We prove
that these syntactical extensions do not enlarge the semantical scope of ESO (V1),
so that the above mentionned properties appear to be in vertexNLIN. Such a
result has already been proved in Section 2: Corollary 2.1 precisely states that
existential quantifications over linear orders (Jjin order <) do not enlarge ESO (V1)
from a semantical point of view. This result is a key argument of many definability
results in ESO (V1) and it will be widely used in the present section. However, this
extension will not be sufficient to give a correct and useful ESO(V1)-formulation of
some rather sophisticated graph properties. In particular, the logical descriptions
of many such properties seem to require the use of two first-order variables, in order
to fully describe the behaviour of the edge relation of the graphs. To perform these
logical characterizations in the more restrictive logic ESO(V1), we shall first have
to “translate” the property under consideration into an equivalent property dealing
with a spanning forest (resp. tree) of the graph which, in turn, can be logically
characterized with a single first-order variable (because of the unary arity of the
forest). For instance, we shall prove the ESO(V1)-definability of connectivity using
the fact that a graph is connected iff it is spanned by some tree, the latter being
easily expressed in our logic.



For these reasons, the core of this section consists of the proof that ESO (V1)
is not enlarged by existential quantification over forests and over several functions
and relations (including transitive closure) related to forests (Subsection 5.2). Then
we shall concentrate on functional graphs, that is, graphs of unary functions. We
shall state that in those graphs, both transitive closure (Subsection 5.3) and a
certain notion of distance (Subsection 5.4) can be defined in ESO(V1). These results
notably attest the robustness of the logic ESO (V1) and, in turn, the robustness of
the complexity class vertexNLIN.

First of all, let us give a precise meaning to the assertion: “existential quantifi-
cation over such and such a class of structures (linear orders, forests, etc) does not
enlarge ESO(V1)”.

5.1. Existential quantification over sets of structures

In the rest of the paper, we deal with the logic ESO(V1). From now on, we denote
it by ESO; (or ESOY when we want to restrict it to a particular signature).

Let o, 7 be two disjoint signatures and 7 be a set of finite 7-structures. The
logic ESOJ[T] is the set of formulas of the form: (3r € T)® with ® € ESOJ".
The semantic of such a formula is naturally defined: a o-structure (D, o) satisfies
(3r € T)® iff there exists an interpretation of 7 on D such that (D,7) € T and
(D,o,7) E ®. The condition (D, ) € T will often be denoted by: 7 € T(D).
Therefore,

(D,o) |E (31 € T)® iff there exists 7 € T(D) such that (D,o,7) E

Let o, 7, 7" be three pairwise disjoint signatures, 7 C STRUC(7T), T’ C sTRUC(T').
We write ESO7[T] C ESO7[T'] when each formula of the first logic is equivalent
(on o-structures) to a formula of the second logic. In other terms:

ESOT[T] CESOJ[T]
iff
(V¢ € ESOT[T]) (3¢' € ESOT[T']) s.t. MODELS(¢') = MODELS().

When the converse inclusion also holds, we note ESOJ[7] = ESOJ[T’]. When this
equality holds for any signature o, we write ESO,[T] = ESO,[T"]. In the particular
case where 7' = @) (i.e. ESO,[T] = ESO,), we say that ezistential quantification
over T does not enlarge ESO, .

Definition and example. Let us denote by LINORD the set of finite structures
(D, <), where < is a linear order on the domain D. Corollary 2.1 precisely says
that existential quantification over LINORD does not enlarge ESO;. In our new
formalism, we can write:

ESO,[LINORD] = ESO,, (5)

and this equality must be understood as follows: for any signature o and any
formula ¢ of the form (3 < € LINORD)t), whith ¢ € ESO{"<, there exists a formula
¢' € ESO7 such that MODELS(¢) = MODELS(¢'), and conversely. (Notice that the



existential quantification over a linear order <, previously denoted by (Jiin order <)
is now written: (3 < € LINORD).)

The goal of the following subsections is to state such “invariance results” for
several sets of structures 7. Let us mention some easy remarks about relative
inclusions between logics ESO,[T]. Until the end of this subsection, 7, 7', 7" denote
any three signatures and 7,7, 7" three sets of structures such that 7 C sTRUC(T),
T' C sTtruc(r') and T" C sTrRUC(7"). First, observe that our semantical inclusion
is transitive. That is:

ESO,[T] CESO,[T'] CESO,[T”] = ESO,[T] C ESO,[T”] (6)

Of course, this transitivity result can be extended to semantical equalities. That
is, (6) still holds when replacing “C” by “=".

Now, suppose T is definable in ESO][7"]. In other words, there exists a formula
¢ = (37" € T")p(r,7') in ESOT[T’] such that T = MoDELS(®). Then, any formula
U = (3r € T)¢(o,7) in ESOJ[T] is clearly equivalent to 3r(37' € T') : ¢(r,7") A
(o, 7). This last formula can be written as (37" € T')Ir¢(r,7") A (o, T), which
can be proved to be in ESOJ[T'] by easy closure properties of this logic. Since
these remarks hold for any signature o, they can be summarized by:

T is definable in ESOJ[T'] = ESO,[T] C ESO,[T"] (7)

We shall often make use of the following result: we say that T is a complete
restriction of T' if = C 7', if each structure (D, 7) of T can be expanded into a
structure (D, 7') belonging to 7' and if furthermore each structure (D, 7') € T' is
an expansion of a structure (D, 7) € T. With this definition, each formula ¥ =
(3T € T)®(0,7) of ESOT[T] is obviously equivalent to a formula ¥’ of ESOJ[T"].
Namely, if we denote 7/ = 7 U p, then ¥' = (I7p € T')®(0, 7). Thus we have:

T is a complete restriction of 7' = ESO,[T] C ESO,[T] (8)

Definition and example.. Let us consider the signature {<, pred, succ, min, max}
in which < is a binary relation symbol, pred and succ are unary function symbols,
and min and max are constant symbols. Let us furthermore denote by FULL-LINORD
the set of finite structures (D, <, pred, succ, min, max), where < is a linear order, pred
and succ are its associated predecessor and successor functions, min and max are its
associated minimal and maximal elements. Hence, trivially, LINORD is a complete
restriction of FULL-LINORD (consequently, ESO, [LINORD] C ESO, [FULL-LINORD]).

We now mention two easy but useful remarks. Let 71, ..., 7, be k signatures such
that o,71,..., 7 are pairwise disjoint. Let 73 C sTRUC(71), ..., Tx C STRUC(7%)
be k sets of structures. We denote by ESO7[T1,...,Tk] the set of formulas of the
form: (3ry € T1)...(3m € Ti)®, where ® € ESO7™ ™. The semantic associated
to this logic is as expected. Recalling that an equality such as ESO,[T] = ESO,



stands for Vo : ESOJ[T] = ESOY, one can easily prove:
(Vi=1,...,k: ESO,[T;] = ESO,) = ESO, [T, ...,T)] = ESO, 9)

As the above implication holds for any signatures 7;, we obtain, when 7, ..., 7 are
pairwise disjoints copies of 7: for any 7 C STRUC(T),

ESO,[T] = ESO, = ESO,[T,...,T] = ESO, (10)

and we shall keep in mind the meaning of this implication in the following form:

it ESO,[T] = ESO,, then for every signature o, any formula of the form (Ir €
T)...(3m, € T)®, with ® € ESO7™ ™, is equivalent to a formula of ESOY.

We conclude this subsection with two invariance results of ESO;:

LeEMMA 5.1. ESO, [FULL-LINORD] = ESO; .

Proof. Let ¥ = (3(<, pred, succ, min, max) € FULL-LINORD)® be a formula in
ESO7[FULL-LINORD], where o is any signature. Then ¥ has the same models (D, o)
as

¥’ = (3 < € LINORD)(Ipred, succ, min, max) (®' A ),

where @' is the formula
Vo : (min <z <max) A (z # min — (pred(z) < x A succpred(z) = z)).

Indeed, ®' forces pred, succ, min, max, respectively, to be the predecessor, successor,
minimum and maximum related to the existentially quantified linear order <: just
consider a strictly increasing enumeration of D according to <, say a1 < a2 <
-+ < ap, and prove, from ®', that a; = min, a, = max and for each 1 < i < n,
a; = pred(a;+1) = succ(a;—1) (by recurrence on i). As ¥’ clearly has a prenex form
in ESO{ [LINORD], it yields ESO, [FULL-LINORD] C ESO, [LINORD]. But the converse
inclusion also holds (see the previous example). Therefore ESO, [FULL-LINORD] =
ESO, [LINORD] and the conclusion follows from the equations (5) and (6) stated

above.d

The last result has a different flavour, since it deals with ordered structures,
that is, with structures over a signature that contains a built-in linear order. More
precisely: let o be any signature and < be a binary relation symbol. We call ordered
o-structure any structure S = (D, 0, <) over the signature o U {<} in which < is
interpreted as a linear order. This allows to identify D to the initial segment of IN
of size |D| and to view some functions over this initial segment as functions over
D.

In particular, let us temporarily use the following notations: if |[D| = n, and if k&
is an integer strictly smaller than n, we denote by k the k*" successor of the minimal
element of (D, <). E.g., if min (resp. max) denotes the minimal (resp. maximal)



element of (D, <), then 0 = min and n — 1 = max. Then, we denote by ARITH. (D)
the set of functions +,—, x, div, mod : D x D — D defined as follows: for all
k.l <mn,

k+0 = Min(k+£t,n—1)
kxt = Min(kl,n—1)
k—0 = Mazx(k—¢,0)
kdivl = g
kmodl =7

)

where, assuming ¢ # 0, ¢ and r are the unique integers such that k = ¢ +r, ¢ < n,
r < ¢, and where Min (resp. Maz) maps each (i, j) € IN? to i (resp. j) if i < j, and
to j (resp. i) otherwise. (We write k¢ instead of k x £.)

For any signature o, we denote by STRUC« (o) the set of o U {<}-structures in
which < is interpreted by a linear order. A subset of STRUC< (o) will be called a set
of ordered o-structures and we will denote it by 7~ to recall that the interpretation
of o over a structure S € 7. depends on a built-in linear order on S. Given a set
of ordered T-structures T, we denote by ESO{[T<] the set of formulas of the form:

3r e T)®(<,0,7)

with & € ESO;”". The semantic of this logic is as follows: the models of such
a formula are ordered structures. An ordered o-structure (D, <, o) satisfies (I €
T<)® iff there exists an interpretation of 7 on D such that: (D,<,7) € T~ and
(D,<,0,7) = ®. Finally, we write ESOJ[7<] = ESO{[<] when for each formula
® € ESO7[7<] there exists a formula ® € ESO7[<] such that ® and ®' have the
same ordered o-models. The last result of this subsection is given without proof.
It attests the invariance of ESO; under arithmetical extensions.

LEMMA 5.2 (Olive).  For any signature o, ESOJ[ARITH.] = ESOJ [<].

Proof. We just sketch very roughly the proof. It can be found in [36], Theorem
2.31, p. 104. First, one can prove the definability in ESO{[<] of the unary functions
o, 1,72 and of the constant b defined as follows over a domain D: b = |\/|D|]
and Vz € D: mo(z),m(x),m2(z) < b and x = mo(z) + m1(2)b + m2(x)b?. This
is done recursively by forcing o (succ(z)), m (succ(z)) and mo(succ(z)) to fit their
rigth values, with respect to the values of mo(x), 71 (z) and m(z). Then, one can
define the restrictions of + and x to [b]. More precisely, the unary functions A
and M such that Vz € D, A(z) = mo(z) + m1(z) and M(z) = mo(z)m1(x) can be
defined in ESOJ[<]. Once again, this is done recursively, by stating the value of
A(x) (resp. M(z)) when m(z) = 0 and by relating A(z + b) (resp. M(z + b)) to
A(z) (resp. M(z)) (notice that the function z +— x + b is itself trivially definable
from succ). At last, the definability of the functions + and X is easily deduced

from those of A and M. The definability of —, div and mod is proved similarly..d

5.2. Prefix order in a forest



The results of this subsection and of the next one (“Transitive closure of a func-
tion”) are essentially due to a collaboration with C. Lautemann [32] and S. Ranaivo-
son [42]

Let D be a finite domain. We say that a function F' : D — D is a forest over
D if F has no cycle except the loops F(z) = x. We denote it by F' € FOREST(D).
If F: D — D is a forest, we denote by descy(x) the set of the descendants of the
node z € D in the forest, including z. In other words, descp(z) ={y € D: i €
IN s.t. Fi(y) =z}

A prefiz order of the forest (D, F) is a linear order < of D satisfiying : Vx €
D, F(z) < x and descp(z) is an interval with respect to <. We write (F,<) €
PREFORD-FOREST(D) when F € FOREST(D) and < is a prefix order on this forest.

One can easily prove that a linear order < is a prefix order of a given forest (D, F')
if, and only if, for each z € D there exists I, € D such that descp(z) = [z,l;]. The
node I, is thus the last descendant of x in F" according to < and the function z — [,
is called the last function associated to (F, <).

Given a prefix ordered forest (D, F, <), each node x € D which is not a root
may have siblings smaller than it (according to <). If this is the case, we call left
sibling of = the largest of those siblings; if it is not, we assume that the left sibling
of z is x itself. We extend this notion to the roots in the following way: the left
sibling of the smallest root ry is ry itself ; the left sibling of a root r > r; is the
biggest root smaller than r. Finally, we call left function associated to (D, F, <)
the unary function over D which maps every node onto its left sibling. Figure 3
shows a forest F' together with a left function (in dotted lines) associated to the
prefix order underlying the chosen planar representation of F'.

FIG. 3. a forest F' (bold lines) and its left function (dotted lines)

The root function associated to F maps each x € D onto the root r of its com-
ponent in the forest (i.e. F(r) =r and x € descp(r)).

We say that a tuple (F,root, last, left) is a full forest over D if:

e F € FOREST(D) ;

e root is the root function associated to F' ;



e last and left are, respectively, the last function and the left function associated
to F', relatively to the same prefix order over F'.

We denote by FULL-FOREST(D) the set of such tuples.

PROPOSITION 5.1 ([32, 42]). Let D be a finite domain and F, root, last, left be
four unary functions over D. Then (F,root,last,left) € FULL-FOREST(D) if, and
only if, there exists (<, pred, succ, min, max) € FULL-LINORD(D) such that, for every
z €D:

(a) F(z) <z < last(z) < lastF(z) ;
(b) one of these three assertions is true:

(i) pred(z) = F(z) Aleft(z) =z ;
(i1) © = F(x) A left(z) = Fleft(x) A last left(z) = pred(z) ;
(iii) x # F(z) Aleft(x) # Fleft(z) A Fleft(x) = F(z) Alast left(z) = pred(z);

(¢) (F(x) =z — root(x) = ) A rootF(z) = root(z).

Proof. A full forest trivially fulfils conditions (a) through (c), if we take for
< the prefix order over F' according to which last and left are the last and left
functions associated to F'. So, we only have to prove the sufficiency of (a) — (c).
That is, let us assume that there exists (<, pred, succ, min, max) € FULL-LINORD(D)
such that (F,root, last, left) satisfies conditions (a) to (¢) for every € D and let
us prove that:

e [ ig a forest and root is its root function ;
e last and left are the last and left functions associated to F' relatively to the
same prefix order.

In the following, we shall often use the characteristic property of FULL-LINORD
given in the proof of Lemma 5.1. We recall it there: let < be a linear order
over D, pred,succ : D — D and min,max € D. Then (<, pred,succ, min, max) €
FULL-LINORD(D) iff for every € D,

(d) (min <z <max) A (z # min — (pred(z) < x A succ pred(z) = z)).

F' is a forest and root is its root function.

According to (a), any F-circuit xq N Tp LN 1 must satisfy z; > -+ >
x, > o1 and thus z; = --- = x,. Consequently, all F-circuits are loops and F'is a
forest. Furthermore, Condition (c) allows to prove inductively that root is constant
on each connected component of F' and maps each root to itself. That is, root is
the root function associated to F'.

last and left are the last and left functions associated to F' relatively to the same
prefix order.

Actually, we shall prove that the above existentially quantified < is necessarily a
prefix order over D and that last and left are the last and left functions associated



to F' according to this prefix order. That is, we will prove the statement: for each
x € D, descp(z) = [z,last(z)] and left(z) is the left sibling of © according to <.
Notice that Condition (a) affirms the inclusion [z, last(x)] C [F(x), lastF(z)] which
in turn, allows to prove inductively the inclusion descp(x) C [z, last(z)]. This will
help us to prove the above statement by recurrence on the level £ of  in the forest
F'. That is, we prove by induction that the following assertion holds for any ¢ < |D|:

for each node x of level £ in F:
descp(z) = [z,last(z)] and left(z) is the left sibling of x.

We denote by (Hy) this recurrence hypothesis. In order to prove that Hy and
(Hy = Hy41) hold, let us notice the following: if € D is a root of F, it must
satisfy (bi) or (bi7) (since condition (bii7) demands F(x) # x). In the first case,
left(z) = x ; in the second case, left(z) is a root (since Fleft(x) = left(z)) such that
last left(2) = pred(z). But this last equality implies, by Conditions (d) and (a),
that left(z) is smaller than z. Consequently, in both cases left(x) is a root smaller
than z. Analogously, any “non root” node x must satisfy (bi) or (biii). And we can
prove as above that these conditions force left(z) to be a “non root” smaller than
x. So, we will remind the following consequences of Condition (b):

if 2 is a root (resp. a non root node), then z satisfies (bi) or (bii)
(resp. (bi) or (biii)) and left(z) is a root (resp. a non root node)
smaller or equal to x.

We will call this assertion Condition (b').
The case of roots (Hy)

Let r1 < rg < -+- < 711 be the strictly increasing list of the roots of F. We first
prove the two following facts:

e pred(ry) = 1 = left(r1). Indeed, since r1 is a root, left(ry) is a root smaller
or equal to 71 (by (b)) and thus left(r;) = ry (since r; is the smallest root).
Furthermore, 7y satisfies (bi) or (bii). In the first case, pred(r1) = F(r1) = r ;
in the second, the equality last left(r;) = pred(ry) leads to last(r1) = pred(r1) and
then, to r; < pred(r1) (see Condition (a)). Therefore, we still have r; = pred(ry).
Note that, by Condition (d), this equality means 71 = min.

e For every i < k, pred(r;y+1) = last(r;) and left(r;+1) = r; . Let us prove this by
recursion on .

This assertion is fulfilled by ¢ = 1: ro being a root, it must satisfy (bi) or (bii) (by
(b")). If it satisfies (bi), then pred(ry) = F'(r2) = ry and thus ro = min (by (d)). But
this contradicts the fact that ro > r;. Therefore, (bii) must hold for r». It implies
pred(ry) = last left(r2) and consequently left(rs) < last left(ry) = pred(ry) < ro (by
(a) and (d)). Then left(rs) is a root (by (b')) strictly smaller than ro. That is:
left(r2) = r1 and the equality pred(rs) = last left(ry) becomes pred(rs) = last(ry).

Now, consider j € {2,...,k — 1} and assume that the recurrence hypothesis is
satisfied for each ¢ < j. The node r;4; is a non minimal root. For the same reasons
than 7, it fulfils (bii) and left(r;;1) is a root strictly smaller than rj,. Let ¢ < j
be such that left(r;;1) = r;. By the recurrence hypothesis, last(r;) = pred(r;y1). In



the same time, last left(r;j41) = pred(rj+1) (by (bii)). Consequently, pred(rjt1) =
pred(r;+1) and, since rj11 # min and r;41 # min: 741 = r;41. Therefore, i = j
and left(rj;1) = rj, last(r;) = pred(rjt1).

So, we have proved the following sequence of inequalities:
[r1, last(ry)] < [ro, last(r2)] < - -+ < [rg, last(rg)], (11)

with 71 = min = left(ry), pred(r;y1) = last(r;) and left(r;;1) = r;. This shows
that left fulfils its expected interpretation, as far as roots are concerned. Also, the
schema (11) obviously shows that the intervals [r;, last(r;)] are disjoint. However we
have seen before that for each ¢, descp(r;) C [r;, last(r;)]. As the subsets descp(r;),
it =1,...,k, clearly form a partition of D, these last inclusions lead to the demanded
equalities: descp(r;) = [r;, last(r;)].

Inductive step (Hy = Hyy1)

Let us now assume that Hy holds for a given £ > 0. In order to prove that Hi
holds, we only have to prove that for each node x of level ¢ and for each child y
of z in the forest: descp(y) = [y,last(y)] and left(y) is the left sibling of y. So,
suppose that € D is a node of level £ and denote by z; < 22 < --- < z, the
strictly increasing list of its children. We prove in “one move” that all the z;’s fulfil
the expected conditions. The proof is almost the same as in the base case:

First, 21, which is not a root, must fulfil (bi): otherwise, by (b'), it would fulfil
(biti), that is: left(x) is not aroot, Fleft(x1) = F(x1) and last left(x;) = pred(x;) <
x1. Thus, left(z1) would be a sibling of x; strictly smaller than z;: a contradiction.
Thus, pred(z1) = F(x1) = = and left(z1) = 1.

Now, we can inductively prove that for each i < p, pred(z;+1) = last(z;) and
left(z;+1) = x; : by their definition, all the z;’s, ¢ > 1, have to satisfy Condi-
tion (biii) (if such an x; satisfies (bi), then pred(z;) = F(x;) = v = pred(z1): a
contradiction). For each ¢ > 1, this implies that left(z;) is a sibling of z; strictly
smaller than z; and such that lastleft(z;) = pred(z;). For i = 2, this imposes
left(z2) = x1 and last(z1) = pred(z2). Then, one shows recursively, similarly to the
base case, that pred(z;11) = last(z;) and left(z;41) = z; foreachi=1,...,p— 1.
Thus we have proved the decomposition scheme:

x < [z1,last(z1)] < [z2,last(z2)] < -+ < [z, last(z)p)], (12)

with pred(zy) = z, pred(z;+1) = last(z;) and left(z;y;) = z;. The scheme (12)
obviously implies that the sets {z}, [z1,last(z1)], ..., [zp,last(x;)] are mutually
disjoints. Moreover, by the induction hypothesis, we have descp(z) = [z,last(z)].
Since for each i, descp(x;) C [x;, last(z;)] and since, trivially, the sets {z}, descp (1),
..., descp(z,) form a partition of descp(x), the same argument as above allows to
conclude that descp(z;) = [z;, last(z;)] for each i. This finally assures that <, last
and left fit their expected interpretations and concludes the proof of Proposi-
tion 5.1..d

CoROLLARY 5.1. ESO, [FULL-FOREST] = ESO,.



Proof. Proposition 5.1 precisely states that the set of structures FULL-FOREST
is definable in ESO, [FULL-LINORD], via the formula:

3(<, pred, succ, min, max) € FULL-LINORD Yz :
{ F(z) <z <last(z) < lastF(z) } A

pred(z) = F(z) A left(z) = x
\%
x = F(z) Nleft(z) = Fleft(x) A last left(x) = pred(z)
Vv
x # F(xz) A left(z) # Fleft(x) A Fleft(x) = F(x) A last left(z) = pred(x)

A { (F(z) = z — root(xz) = x) A rootF(x) = root(z) }

As ESO, [FULL-LINORD] = ESO,, by Lemma 5.1, FULL-FOREST is also definable in

ESO,, and the conclusion follows from Implication (7).

We shall now state a generalization of this result, using the formalism described
in the previous subsection. First, let us introduce some new notations:

e FULL-FOREST+TC is the set of structures (D, F,root, last, left, F'*) such that:
(F,root, last, left) € FULL-FOREST(D) and F™* is the transitive closure of F' (that is:
F*(z,y) iff 3i € IN : Fi(z) = y) and

e FULL-TREE-+TC is the set of structures (D,T,root, last, left,7*) which are in
FULL-FOREST+TC and such that 7T is a tree (i.e. T is connected).

COROLLARY 5.2 (in collaboration with C. Lautemann and S. Ranaivoson).
The following equalities hold:

(a) ESO, [FULL-FOREST+TC| = ESO, and
(b) ESO, [FULL-TREE+TC] = ESO,

Proof.

(a) Suppose F' is a forest of domain D, < is a prefix order over F' and last is
the last function of F' with respect to <. Then for any z,y € D, F*(x,y) holds
iff z € descp(y). But descp(y) = [y,last(y)]. Therefore we have: F*(z,y) iff
y <z < last(y).

Now, let us denote by © the quantifier-free matrix of the formula described in the

proof of Corollary 5.1, so that FULL-FOREST is defined by the formula:

3(<, pred, succ, min, max) € FULL-LINORD Yz :
O©(z, <, pred, succ, min, max, F, root, last, left)

Since this formula forces (F, <) to be a prefix ordered forest and last to be the
associated last function, it is clear that each formula 3(F),root, last, left, F*)® of



ESO, [FULL-FOREST+TC] is equivalent to the formula:

3(<, pred, succ, min, max) € FULL-LINORD 3F) root, last, left, F* :
(Vx ©(z)) AP’

where @' is obtained from ® by replacing each atomic formula F*(¢(x),t2(x))
(where t1(z), t2(x) are terms over the only first-order variable x occurring in ®)
by the formula ¢1(x) < to(x) < last(ti(x)). As this formula clearly belongs to
ESO, [FULL-LINORD], it can be written in ESO,, by Lemma 5.1. Finally, each
formula of ESO, [FULL-FOREST+TC] is thus proved logically equivalent to a formula
of ESO; and the result follows.

(b) A tree is a forest with only one root. Therefore, each formula
A(T, root, last, left, T*) € FULL-TREE+TC : ®
in ESO, [FULL-TREE+TC] is equivalent to the formula:
(T, root, last, left, T*) € FULL-FOREST+TC Jr : (Vz :root(z) =r) A P,
which can be written in ESO,, by (a).

This concludes the proof of Corollary 5.2.1

We conclude this subsection by a remark which relates the statements of Corol-
lary 5.2 to the way we will use them in the following. First, let us introduce the
following definitions:

e ROOTED-FOREST is the set of structures (D, F), root) such that F' € FOREST(D)
and root is its root function ;

e FORESTHTC is the set of structures (D, F, F*) such that F' € FOREST(D) and
F* is its transitive closure.

e ROOTED-FOREST-TC is the set of structures (D, F| root, F'*) such that (F, root)
is in ROOTED-FOREST(D) and (F, F*) is in FOREST+TC.

e TREE is the set of structures (D, T) such that T is a tree.

e TREE-+TC is the set of structures (D, T,T*) such that T € TREE and T* is its
transitive closure.

Remark. The above sets of structures are all complete restrictions of either the
set FULL-FOREST-+TC or the set FULL-TREE-+TC. Therefore, by Corollary 5.2 and
Implication (8), existential quantifications over these sets does not enlarge ESO, .

5.3. Transitive closure of a function
Let D be a finite domain of cardinality n» > 2 and f a unary function over D.
We also call f the directed graph of f, that is the binary structure (D, E), where
E(z,y) holds if f(z) = y. The shape of functional graphs are well-known: they
look as forests, except that the root of any connected component can be replaced
by a cycle. Such a graph is represented in Figure 4.



FIG. 4. a unary function fo over D = {0,...,19}
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FIG. 5. a forest Fy obtained from fo

Let us now consider a forest F' of domain D. We say that F' is obtained from f
if each root of F'is on a circuit of f and if furthermore F' and f coincide on every
x € D which is not a root of F'. A forest Fy obtained from the function fy is given
in Figure 5.

LEMMA 5.3. Let D be a finite domain and f : D — D. Let F be a forest of
domain D, rooty its associated root function and F* its transitive closure.

(a) F is obtained from f if and only if, for every x € D:
rootr f(z) = rootp(x) and F(x) #x — F(z) = f(x).
(b) If F is obtained from f, then for every x,y € D:
[ (@,y) iff F(z,y)V (F"(z,rootp(z)) A F*(frootr(x),y)).

Proof. Let us first notice that if F' € FOREST(D) fulfils (a) and if z4,..., 2, is
a tuple of nodes distinct from any root of F', then we clearly have:

Ti1Ts...xp is a path in f iff z125...2, is a path in F. (%)

(a) The “only if” condition is trivial. Let us check the “f” one: the equal-
ity rootp f(x) = rootp(z) guarantees, by induction on f, that the function
rooty is constant on each connected component of f. Therefore, each con-
nected component, C' of f contains exactly one root of F, and we only have
to verify that this root lies on the circuit of C. Assume, for the sake of



a contradiction, that the f-circuit z122...zpz; of C' does not contain any
root of F. Then, by (%), z122...2zp21 is also a circuit of F. This im-
plies 1 = z2 = --- = x, (since F is a forest) and thus, z1 = F(z1): a

contradiction.
f,

(b) “Only if”. Let x = x4 EN T2 RN Tp EN y be a simple path from z to

y in f. If none of the z;’s is a root for F', then this path is also a path in F’
and we have F*(z,y). Otherwise, let ¢ be such that F(z;) = ;. This ¢ is
unique, since there is only one root in each connected component of f and
since the path zzs ...zpy is simple. Consequently, zz>...2; and T;41 ...y
are paths in f that do not contain any F-root. Hence they are paths in F
and we have F*(z,z;) and F*(x;41,z). The equalities x; = rootp(z) and
xir1 = f(x;) yield the conclusion.

“If”. 1t F*(x,y), then either x = y, and the conclusion is clear, or there
exists a simple path z = 7 & ... 5 Tp EN y in F such that F(x;) # x; for
every 7 (since the path is simple). By (x), this F-path is therefore also a

path in f and we have f*(z,y). If F*(z,rootr(z)) A F*(frootr(z),y), the
previous remark leads to f*(z,rootp(z)) A f*(frootp(z),y) and therefore,

to f*(z,y).

The proof of Assertion (b) leads to the following remark, that will be used in the

next section:

I

Remark. Suppose that f*(x,y) holds and call P the simple path from z to y in

Then:

either P is also the path from x to y in F,
or P has the form zz; ... rootp(z)frootr(z)...xpy,
where z...rootp(z) and frootp(x)...y are also paths in F'.

The previous lemma has an immediate consequence, in terms of “robustness” of

the class ESO,. Let us first define the following class of structures:

FUNCTION-+TC is the set of structures (D, f, f*) where f is a unary function

over D and f* is the transitive closure of f.

CoRrOLLARY 5.3. ESO,[FuNcTION+TC] = ESO;.

Proof. It immediately follows from Lemma 5.3 that each formula

¥ = 3(f, f*) € FUNCTION+TC : ®(f, f*)

of ESO, [FUNCTION+TC] is equivalent to the formula ¥':

A(F, rootr, F*) € ROOTED-FOREST+TC :
(Vx : rootp f(x) =rootp(x) A F(x) # x — F(x) = f(x))
A ®'(f,F,rootp),



where @' is obtained from ® by replacing each atomic formula f*(¢;(z),t2(x)) by
the formula:

F* (1 (x), t2(2)) V (F" (81 (), rootp (1 (x))) A F*(frootr (t1(z)), t2(2))).

The formula ¥’ so obtained is in ESO,[ROOTED-FOREST+TC]| and thus, by Corol-

lary 5.2, it can be written in ESO,. Hence the result.d

5.4. Distance in an ordered functional graph

The goal of this subsection is to refine the main result of the previous one: we
have stated in Corollary 5.3 that the transitive closure of a unary function can be
expressed in ESO,. That is, we can express, in this logic, that there exists a path
between two nodes of a given functional graph. But what about the length of this
path ? Can we also define it in ESO,? In other words, can we define in ESO,
the function disty, with respect to a given unary function f, that maps each pair
(z,y) € f* onto the length of the shortest f-path between z and y ? A problem
arises in this formulation: such a function dist; has to take its values in IN. Thus
it cannot be described, a priori, as the interpretation of a function symbol over a
domain D. But we have seen, in Subsection 5.1, how to overcome this difficulty:
when a domain D is given with a built-in linear order, its elements can be identified
to the nonnegative integers 0, 1, ..., |D| — 1. As the distance function maps each
ordered pair (z,y) of D x D onto an integer strictly smaller than |D|, it can be
represented by a binary function over D, provided D is equipped with a linear order.
And this will be also the case for some other functions (height, length) considered in
this subsection. Once our above question will be well reformulated, we shall answer
it positively (Corollary 5.4). For this purpose, let us briefly introduce some new
definitions:

Let (D, <) be a linearly ordered domain, whose elements are denoted by 0, 1,
..., |D| = 1. Let f be a unary function over D.

When f*(x,y) holds, there exists a unique simple path from z to y in f. We
call the distance from x to y in f the length of this path (i.e. the number of edges
occurring in the path). It follows that, if f*(z,y) holds, the distance from z to y in
f is the least i < |D| such that y = fi(x). We call the distance function associated
to f according to < the binary function over D that maps each pair (z,y) € f* to
the (representative of the) distance from z to y in f. For the sake of completeness,
we assume that this function maps each (z,y) ¢ f* to 0.

The length of © in f is the length of the circuit of the f-connected component
on which z lies. We call length function associated to f with respect to < the unary
function over D that maps each z € D onto the (representative of the) length of z

in f.

For the function represented in Figure 4 for instance, the distance from 11 to 2
is 6 and the length of 11 is 4.



Besides, if F' is in FOREST(D), the height of x in F is the distance from z to its
F-root, that is, the smallest i < |D| such that F(F(z)) = Fi(z). We call height
function associated to F with respect to < the unary function over D that maps
each x € D onto the (representative of the) height of z in F.

Let f and dist be two function symbols of respective arities 1 and 2. We denote
by FUN-+DIST< the set of ordered structures (D, <, f,dist) of signature (f,dist) in
which dist is the distance function associated to the unary function f with respect
to the linear order <.

LEMMA 5.4. Let (D, f, f*) € FUNCTION+TC and < be a linear order over D.
Let disty : D x D — D. Then disty is the distance function associated to f with
respect to < iff:

there exists (F,rooty, F'*) € ROOTED-FOREST+TC(D),
there exists (+, X, —, div, mod ) € ARITH(D),

there exist heightp, length, : D — D,
such that the following conditions (a — d) hold:

(@) Yz : rootp f(x) =rootp(z) A (F(z)#z— F(z) = f(x)) ;
(b) Yz : F(z) =z — heightp(z) =0 A
F(z) # © — heighty(z) = 1 + height, F(x) ;
(c) Vz : length;(z) = 1 + heighty f rootp(z) ;
(d) for every x,y,z € D, the assertion z = disty(z,y) is equivalent to:
{ f*(z,y) NF*(2,y) Az = heightp(z) — height - (y) }
vV A{ f*(x,y) A =F*(z,y) A 2 = heightp(z) + length;(z) — height(y) }
V {=f*(z,y) Az=0}.

Proof. The forward implication is easy (see Figure 5). We prove the converse
implication by looking at the following consequences of statements (a — d):

(a) This is the condition for F' to be obtained from f (see Lemma 5.3).

(b) By this condition, heighty takes the value 0 on each root, and each further
step outside the loop increases its value by one. This inductively forces heightz to
be the height function associated to F' according to <.

(¢) Let z € D. Recall that the length of  in f is the length of the cycle of the
f-connected component of z. As this cycle contains rootg(z), it can be written:

rooty () EN frootp(x) ENSER rootp(z).
Thus, the length of z in f is 1 plus the length of the f-path frootp(z) ERSEN
rootp(x). But this path is also a path in F' and its length can be viewed as the
distance from frootp(z) to rootp(x) in F, that is, as the height of frootp(z) in F.
Therefore, the length of z in f is 1 + heighty f rootr(z) and Condition (c) implies
that length is the length function associated to f according to <.



(d) Let us temporarily denote by Distg (resp. Disty) the distance function asso-
ciated to F' (resp. f) according to <. Since F is a forest, we clearly have, for any
T €D:

Distp (z, rootp(x)) = heightp(z)

and consequently, for any (z,y) € F*:

Distp(z,y) = Distg(z,rootp(z)) — Distg(y, rootr(y))
= height (z) — heightz(y).

Now, let us “compute” Dists(x,y) according to the situation of the ordered pair
(x,y): if f*(z,y) does not hold, then Dists(z,y) = 0 ; if f*(z,y) holds, let P be
the simple f-path from x to y. Then Disty(x,y) is the length of this path and we
have, by the remark of page 35: either P is also an F-path, or P has the form

P=z%H... 4% rooty () EN f(rootp(x)) ENSER Y,

where z...rootp(z) and frootp(x)...y are also paths in F. The first case yields
Dists(z,y) = Distp(z,y) = height(x) — height (y)
and the second one:

Disty(z,y) = Distp(z,rootp(x)) + 1+ Distg(frootp(z),y)
= heighty () + 1 + height (frootp(x)) — heightz(y).

That is, by Condition (c):
Dists(z,y) = heightp(z) + length,(z) — height(y).
It is now easily seen that Condition (d) implies the equality dist; = Distg.

This concludes the proof of Lemma 5.4.1
COROLLARY 5.4. ESO,[FUN+DIST.] = ESO, [<].

Proof. By Lemma 5.4, every formula
U = 3(f,disty) € FUN+DIST< : ®(<, 0, f, disty)
of ESO7[FUN+DIST«] has the same ordered models as the formula:

3A(f, f*) € FUNCTION-+TC
3(F,rootp, F*) € ROOTED-FOREST+TC
A(+, x,—, div, mod ) € ARITH.
Jheight Jlength,

rootg f(x) =rootp(z) A (F(x) #x — F(x) = f(z)) A
(F(z) =z — heightp(x) = 0) A

(F(z) # x — heightz(x) = 1 + heighty F(x)) A
length;(x) = 1 + heightp f rootr ()

Yz N D



where ®' is obtained from @ by replacing each atomic subformula
ty = disty(ug,vy)

(where u,, v, t, are terms built over the only first-order variable z occurring in
®) by the formula

{f*(ug,vz) A F*(ug,vg) Aty = heightp(u,) — heightp(v,) }
VA (U, v2) A 2F* (ug, vz) Aty = heightp(u,) — heightp (v, ) + length, (ug) }
V {=f*(ug,vs) ANtz =0}

The formula ¥’ so obtained can be written in ESOJ[<] by Corollary 5.3, Corol-
lary 5.2, Lemma 5.2 and Implication (9) of Subsection 5.1..d

Remark. We have said that this last result holds in case the involved structures
are equipped with a built-in linear order. Otherwise, the statement of Corollary 5.4
has no precise meaning since the notion of “distance function” must refer to a linear
order. But what happens if we consider an ezxistentially quantified linear order < ?
We are still able, in this case, to build the functions height and length and the set
ARITH. related to <, as in Lemma 5.4. And we can in turn define a notion of
distance associated to a given unary function f according to this linear order. Of
course, an assertion of the form t, = disty(u,,v,) for such a function disty is of no
intrinsic interest since it has different meanings according to the choice of <. On
the other hand, an equality such as disty(u,,v,) = disty(ul,v}) is order invariant.
That is, if it holds for (the distance function related to) a given linear order, then
it holds for any linear order. Thus, our ability to express the distance function of
f according to a (existentially quantified) linear order < allows to say, in ESO,,
that two ordered pairs of nodes (u;,v,) and (ul,v)) are linked by paths with the
same number of edges in a given functional graph. In other words, the logic ESO,
is not enlarged if we allow subformulas of the form disty(u,,v,) = disty(ul,,v.),
where disty is a distance function associated to a unary function f involved in the
formula. The details are left to the reader.

The last result of this section does not refer explicitly to graph properties, al-
though it is a straightforward consequence of the ESO,-definability of the distance
function of a functional graph. By the definability of transitive closure, we can
easily assert in ESO; that a unary function g is obtained by iterated composi-
tions of a given unary function f (i.e. for each z, there exists ¢ € IN such that
g(z) = f¥(z)). Indeed, this assertion is equivalent to g C f*, where f* denotes the
transitive closure of f and g is viewed as an edge relation, thus it can be translated
in ESO, by: Vzf*(x,g(z)). Now, if we restrict our attention to ordered structures,
the definability of distance functions allows us to refine the previous assertion by
specifying, for each z, the number i of compositions of f needed to pass from z to
g(z) = f¥(z). This is the meaning of the next lemma. Let us formalize it:

Let (D, <) be a linearly ordered domain and f, g, h be three unary functions
over D. We denote by g = f" the fact that ¢ C f* and that for each =, h(z) is the



(representative of the) number of applications of f over x needed to pass from z to
g(z). In other words, g = f* means:

Vz € D: g(z) = f"®(z) = ff...f ()
h(z) times

Now, we denote by ITER-COMPO. (for iterated composition) the set of ordered
structures (D, <, f, g, h) such that g = f*. Then:

LeEMmMA 5.5. ESO, [ITER-cOMPO.] = ESO, [<].

Proof. Let f be a unary function over a linearly ordered domain (D, <). Let
length, and dist; be its corresponding length and distance functions according to
<. Consider z,y € D and suppose that there exists i € IN such that y = fi(z) (i.e.,
suppose f*(z,y)). Then, by definition of the distance function, dists(z,y) is the
least such ¢. Furthermore, if ¢ is not on a circuit of f then there is a unique path in f
from x to y and therefore dists(z, y) is the unique i such that y = f¥(z). Otherwise,
there may exist some j > dists(z,y) such that y = f7(x). More precisely, if y lies
on a circuit of f, then:

e cither y is a loop, and Vj > dist¢(z,y): y = f/(z)
e or y lies on a non-empty circuit of f (or equivalently: disty(f(y),y) > 0), and
therefore fleneths () (y) =y, which yields, for any j > dist¢(z,y):

y = f(z) iff j — dist;(z,y) =0 [length ()] .

Finally, under the assumption f*(z,y), the assertion y = fi(x) is equivalent to:

{i = dist;(z,9) )

or

{fly) =y and i > disty(z,y)}
or

dist;(f(y),y) >0 and > disty(z,y) and
{ (i — dists(z,y)) mod length(x) =0 }

Consequently, for any functions g,h : D — D and any = € D such that f*(z, g(x)),
the assertion g(z) = f*(*)(z) is equivalent to:

{ h(z) = dist; (2, g(x)) }

or
{fg(z) = g(x) and h(z) > dist;(z,9(z)) }

or
{ dists(fg(z),g(z)) >0 and h(z) > disty(z,g(x)) and }
)=0

"If,
(h(z) —dist(z, g(x))) mod length ,(z
Before concluding, it remains to notice that:

o g=f"iff (C f*andVz € D:g(z) = f"")(2)) ;



e g C f*iff (Vz € D: & = g(z) or disty(z,g(x)) > 0) ;
e the function length, is completely characterized by the following facts: it is

invariant on each connected component of f ; it maps each loop onto 0 ; for each z

lying on a non-empty f-circuit, i.e. for each z such that z EN f(z) d o Arisa

non-empty f-path, length, take the value 1+ dist;(f(z),z).

It is now easy to see that for every signature o, any formula
3(f,g,h) € ITER-COMPO. : ®(0)
of ESO7[ITER-COMPO] is equivalent to the formula:

3(+, x,—, div, mod ) € ARITH.
3(f,disty) € FUN+DIST< Jlength, 3g Jh :
U AP

where W is the conjunction of the following first-order formulas over the signature
{+, x,—, div, mod , f,dist;, length, g, h}:

Y1 =Vr : length,(f(z)) = length;(x) A

f(z) = — length,(z) =0 A

dist;(f(z),z) >0 — length,(x) = 1 + dist;(f(z), z)
Yo =V fg(x) = g(x) Vdisty(fg(z),g(x)) >0
Y3 =Vo © h(z) = disty(x, g(z)) V

{£9(x) = g(x) A h(z) > dists(w, g(x)) } V

{ dists(fg(x),g(x)) >0 A h(z) > distg(z, g(x)) A }

(h(x) — disty(z, g(x))) mod length,(z) = 0

Thus the above formula belongs to ESO] [ARITH., FUN+DIST.]. Implication (9) of

Subsection 5.1, Lemma 5.2 and Corollary 5.4 yield the conclusion.d

6. SOME PROBLEMS IN vertexNLIN

Using the logical toolbox of the previous section, we are now in a position to
prove in an elegant and concise way that a number of combinatorial problems are
in vertexNLIN.

We denote by DIGRAPH the set of finite structures of signature {E}, where E
is a binary relation symbol. We denote by GRAPH the set of finite structures
(D, E) € DIGRAPH for which FE is symmetric. Here follow some digraph (resp.
graph) problems:

HAMILTON = {G € GRAPH such that G admits a Hamiltonian cycle} ;
CONNEX = {G € GRAPH such that G is connected} ;

STRONG-CONNEX = {G € DIGRAPH such that G is strongly connected} ;
BICONNEX = {G € GRAPH such that G is biconnected} ;
CUBIC-SUBGRAPH =

{G € GrAPH such that G admits a nonempty cubic partial subgraph}.

(i.e. G = (V, E) € cUBIC-SUBGRAPH iff there exist V' C V and E' C V"2 N E such
that V' # () and each vertex of the graph (V', E') is of degree 3.)



NON-PLANAR = {G € GRAPH such that G is not planar} ;

Finally, we denote by f-CENTER the class of connected graphs G = (V, E) that
contain an f-center, that is a vertex ¢ such that for any vertex € V', there is a
path of length smaller than f(n — 1) (where n = |V|) that links ¢ to x.

PROPOSITION 6.1. HAMILTON, CONNEX, STRONG-CONNEX, CUBIC-SUBGRAPH,
f-CENTER (for any unary function f definable in ESO, ) and BICONNEX all belong
to vertexNLIN.

Proof. A graph G = (V, E) is Hamiltonian iff we can linearly order its vertices
in such a way that two successive vertices are linked by an edge and the maximal
vertex is linked to the minimal one. Therefore, HAMILTON is characterized by the
following formula:

3(<, pred, succ, min, max) € FULL-LINORD
E(max, min) A (Vz # max)E(z,succ(x))

which can be written in ESO; by Lemma 5.1.

A graph G = (V, E) is connected iff it can be spanned by a tree. This yields a
characterization of CONNEX by the following formula:

AT € TREEVZ : T(x) # 2 — E(T(x), )

according to which T is a tree whose all edges that are not loop are in E. This
formula can be written in ESO, by Corollary 5.2 and by the remark following it.

A directed graph G = (V, E) is strongly connected iff there exists a spanning
tree T for G and a spanning tree T for G" (the reverse graph (V, E") of G, defined
by: E"(z,y) iff E(y, z)) with the same root. Thus STRONG-CONNEX is characterized
by the formula:

(3T € TREE)(IT" € TREE) Vz :
{Te=zcTe=c}N{Te #z — (E(Tz,z) N E(x,T"z))}

which can be written in ESO; by Corollary 5.2, by the remark of page 33 and by
Implication (9) of Subsection 5.1.

The following sentence characterizes the problem CUBIC-SUBGRAPH:
Elfl:fZ)f?) de :

[fi(z) = f2(x) = fs(z) =] V
fi(e) #c¢ N Vx fi(z), f2(x), f3(z) and = are pairwise distinct

Fila
AN B Fi@) A AN fii) =

which is obviously in ESO,. (Observe that the existence of ¢ such that fi(c) # ¢
guarantees that the cubic subgraph is nonempty.)



Let f be a unary function definable in ESO, (e.g., /2, log(z), etc). We know
that disty can be defined in ESO,[<] if T is a unary function, then, a fortiori,
if T is a tree. Furthermore, we have seen (see the remark following the proof of
Corollary 5.4) that equalities such as disty(uy,v,) = distr(ul,vl,) (where ug, v,,
ul,, vl are first-order terms) are order invariant and therefore, can be expressed in
ESO, (i.e. without help of a built-in linear order). We let the reader verify that it is
also the case for inequalities such that disty(u,,v,) < f(t.), when f is definable in
ESO,. Now, a graph G has an f-center c iff it is spanned by a tree T" of root ¢ such
that, for all z € V, disty(c,z) < f(max). Therefore, f-CENTER is characterized by
the following formula (where A(f) is the ESO,-formula that defines f):

3(<, pred, succ, min, max) € FULL-LINORD 3T € TREE 3f ¢ Vx :
(z#£T(z) > E(T(z),z)) N T(c)=c A distr(c,z) < f(max) A A(f)
which can be written in ESO; by the above remarks.

The definability of BICONNEX in ESO, is justified by the following well known
result (see [1], for example):

LEMMA 6.1. A graph G = (V, E) is biconnected iff there exists a spanning tree
T for G (e.g. its depth-first search spanning tree) such that the following conditions
hold: (i) the root of T has at most one child ; (ii) for any vertex x € V which is
neither the root of T nor a child of the root, there is some vertex y in the subtree
descr(x) which is adjacent in G to a proper T-ancestor z of T'(x) (that is, to a
T-ancestor z of TT(x)).

Hence we get a characterization of our problem by the following formula:

(T, T*) € TREE+TC
Vo :T(x) #x — E(z,T(z)) A
Ve (TT(x) =T(x)ANT(x) #2z) >x=uA
Vaedy3dz : TT(x) # T(x) = (T*(y,z) NT*(TT(z),2) A E(y, 2))

whose prenex form is in ESO; by Corollary 5.2 and by the remark that follows it.
This concludes the proof of Proposition 6.1.1

We are now going to prove that NON-PLANAR belongs to the class vertexNLIN.
In order to build a logical ESO,-characterization of NON-PLANAR we could use
Kuratowski’s characterization: a graph is not planar iff it contains a subgraph
homeomorphic to K5 or K33. It could be done by expressing that there exist
several mutually disjoint paths between some specified pairs of vertices. Because
of the technicality of such an assertion, we prefer to use another characterization
of nonplanar graphs given by Harary (see [7], Theorem 4.11 p. 100, for instance).
Let us first recall that a graph # is said contractible to some graph H' if { can be
transformed into H' by successive identifications of pairs of adjacent vertices. Then
we have:



PrOPOSITION 6.2 (Harary, see [7]). A graph G is nonplanar iff G contains a
subgraph H which is contractible to K5 or K3 3.

But we trivially get the following characterization of such contractions, due to
Ranaivoson [43]:

LEMMA 6.2. Let H = (V,E) € GRAPH. Then:

1.H is contractible to K5 iff V' contains five mutually disjoint sets Vy,..., Vs such
that both following conditions hold:

(a) H restricted to Vi, i =1,...,5, is connected ;
(b) for each pair (V;,V;), 1 < i < j < 5, there is an edge {x,y} of H such that
z€ViandyeV;.
2.1 is contractible to K3 3 iff V contains siz mutually disjoint sets Uy, Uz, Us, V1, Vo, Vs
such that both following conditions hold:
(a) each Hy; (resp. Hv;), i =1,2,3, is connected ;

(b) for each pair (U;,V;), 1 <1i,j <3, there is an edge {x,y} of H such that x € U;
andy € Vj.

Hence we get:

COROLLARY 6.1. NON-PLANAR belongs to vertexNLIN.

Proof.  As the sets U;, V; involved in Lemma 6.2 are connected, they can be
viewed as connected components of a spanning forest F' of G. Now, assume that
two of these sets, say U and V, are respectively rooted in u and v, according to
F. Then, U and V are related by an edge of G iff there exist two vertices a and b
in the graph such that: F*(a,u) and F*(b,v) and E(a,b). This remark allows to
interpret Proposition 6.2 and Lemma 6.2 by the following formula, which therefore
characterizes NON-PLANAR:

3(F,F*) € FOREST+TC

{Va : F(z) # 2 — E(z, F(x))}

A
( E|’U1,...,’U5: /\F(’l}i):’l}i/\ /\ vi#vj/\ W
1<i<5 1<i<j<5
/\ da,b (F*(a,v;) A E(a,b) A F*(b,v;))
1<i<j<5
Vv
Juy, us,us, v1,vs, U3 : /\ (F(u;) =u; AF(v;) = v5) A 0
1<i<3
/\ (uiyéuj/\vi;évj/\ui;zévi)/\
1<i<j<3
A Fa,b (F*(a,u:) A E(a,b) A F*(b,v;))
L 1<4,5<3 )




and this formula can be written in ESO; by Corollary 5.2 and by the remark follow-
ing it. This yields the expected conclusion.d

7. STRUCTURAL COMPLEXITY OF vertexNLIN

In this section, we study for vertexNLIN the main questions that are of interest
for any complexity class such as P, NP, NLOGSPACE, DLIN, NLIN, etc.

e upper/lower bounds: to prove that some natural problems do or do not belong
to the concerned class;

e structural complezity: has the class some structural property ? For instance, is
it closed under complementation 7 is it strictly included in some other class ?

Surprinsingly, although most of those questions are open and seem very hard
for most classical complexity classes, we are going to solve many of them for
vertexNLIN. For instance, we shall prove for quite some combinatorial problems
that they do not belong to vertexNLIN.

Notation. For a decision problem P, let NON-P denote the complement (i.e.
negation) problem of P. For a complexity class C, let co-C denote the class of
problems whose complements belong to C.

Here follow some new graph decision problems:

IS-TREE = {G € GRAPH s.t. G is connex and acyclic} ;
IS-FOREST = {G € GRAPH s.t. G is acyclic} ;
EULER = {G € GRAPH s.t. G has some Eulerian cycle} ;

(Recall that a cycle in G is Eulerian if it uses each edge exactly once.)
PERF-MATCH = {G € GRAPH s.t. G has some perfect matching} ;

for any k € IN* define the k-colourability problem:
k-cOLOUR = {G € GRAPH s.t. G can be coloured with & colours} ;
COLOUR = {(G, k) € GRAPH x IN* s.t. G can be coloured with & colours} ;
CLIQUE = {(G, k) € GRAPH x IN* s.t. G contains a clique of size k} ;
PATH = {(G, s,t) s.t. G is a graph and s, t are two vertices related by a path}.

First, we are going to prove that many of those problems and/or their comple-
ments do not belong to vertexNLIN. The proofs are quite easy and uniform: to
prove that a property P does not belong to vertexNLIN, we essentially construct
a family (G,) of graphs in P with arbitrary large cardinality n and a set A, of
O(n?) edges such that, for every a € A,: G, U{a} ¢ P (resp. G, \ {a} ¢ P). As
a consequence, any o-NRAM M that recognizes P has to read all the ©(n?) bits
corresponding to A, in the input adjacence matrix of G, ; this is because if some
bit @ € A,, was not read, then the same accepting computation of M would also
accept G, U {a} ¢ P (resp. G, \ {a} ¢ P), a contradiction.

PROPOSITION 7.1. The following problems do not belong to vertexNLIN:

IS-FOREST IS-TREE NON-IS-TREE EULER
CLIQUE NON-COLOUR NON-CLIQUE  NON-PATH
NON-CONNEX NON-HAMILTON  (k-COLOUR)j>2 COLOUR
PLANAR NON-PERF-MATCH NON-EULER



Proof. For each problem P among those above quoted, we shall prove that there
exists a constant ¢ > 0 such that any o-NRAM that recognizes P should read more
than cn? bits of the input matrix. This will imply the result. This will be done by
the construction of sets GG,, and A,, as above mentioned. These constructions will
be generally obtained by bringing together some of the following sets and graphs:

L] m:{ao,...,am,l},V,;l:{bg,...,bm,l},VmﬂV/n:@;

e the path graph P, = (V,,, EF') where EF = {{a;_1,a;}: 0 <i < m} and its
copy P = (V! EP") where EF" = {{bi_1,b;} : 0 <i<m};

e the clique graph K,,, = (Vi, EX) where EX = {{a;,a;} : i < j < m} and its
copy K!, = (Vm, BE") where EX = {{b;,b;} : i <j <m};

e the cycle graph C,, = (Vin, ES) where ES = EF U{am 1,00} ;

e the stable graph S,, = Vi, 0).

Now, let us describe the construction of families (G,,) and (A,) for each problem
involved in the statement:

Problem 1S-TREE (Tesp. IS-FOREST ).

Let G, be the path graph P, which is a tree (resp. a forest). Let A, = {{a;,a;} :
i+ 1< j<n}. Then, |A,| = ©(n?) and for every a € A,, G, U {a} has a cycle
and thus is not a tree (resp. a forest), as required.

Since the proofs for the other problems are very similar, we essentially give, for
each problem P, the graphs GG,, € P and the sets of edges A4,,. We leave the details
to the reader.

Problem NON-IS-TREE.

Let n = 2m and G,, be the disjoint union of the path graphs P,,, and P),. Clearly,
G, is not connected and therefore, is not a tree. Let A, = {{a;,b;}: 4,5 < m}.
Clearly, G,, U {a} is a tree for every a € A,,.

Problem EULER.

Let G, be the cycle graph C,, = (V,,, ES) and A4, = {{aj,a;} : i < j <
n and {a;,a;} ¢ ES}. Clearly, G, € EULER and G, U {a} ¢ EULER for every
a € A,

Problem CLIQUE (resp. NON-COLOUR).

Let Gy, be the n-clique graph K,, (notice that Gy, is not (n — 1)-colourable). Let
A, = {{ai,q;} 1 i < j < n}. Obviously, G, \ {a} contains no n-clique (resp. is
(n — 1)-colourable) for every a € A,,.

Problem NON-CLIQUE.
Let G, be the n-stable S,, which contains no 2-clique. Let A4, = {{a;,a;}: i <
j <n}. Then G, U{a} contains a 2-clique for every a € A,,.

Problem NON-PATH (Tesp. NON-CONNEX ).
Let n = 2m + 2 and G,, be the disjoint union of the clique graphs K,,, K,
and two new vertices s, t with the additional edges {s, a;}i<m and {b;,t}j<m. Let



A, ={{ai,b;} : i <j <m}. Clearly, there is no (s, t)-path in G,, (resp. Gy, is not
connected), but there is one in G,, U {a} (resp. G, U {a} is connected) for every
a € Ay

Problem NON-HAMILTON.
Same proof as for NON-PATH, with the same graph G,,, but with the additional
edge {s,t}.

Problem k-COLOUR, k > 2.

Let n =m+ k — 1 and G, be the disjoint union of the stable graph S, and the
clique graph Kj_,, with the additional edges {a;,b;}, for i < m and j < k — 1.
Let A, = {{ai,a;} : i <j <m}. Clearly, Gy, can be coloured with & colours, but
G, U {a} cannot, for every a € A,,.

Problem COLOUR.
This problem generalizes k-COLOUR.

Problem PLANAR.

Let G,, = (Vy,, E,) be any triangulated planar graph of cardinality n. By Eu-
ler’s formula (see [7] for example), we have |E,| = 3n — 6, which is the maximal
number of edges of planar graph of cardinality n. Let A, = {{a;,a;}: i <j <
n and {a;,a;} ¢ E,}. Then, for every a € A,, G, U{a} has too many edges to be
planar.

Problem NON-PERF-MATCH.

Let n = 4m + 2 and G, be the disjoint union of the clique graphs Ksp,+1 and
K31 Let Ay = {{a;,b;} : i,j < m}. Then, G, has no perfect-matching but
for every a € Ay, G,, U {a} has one that includes a. Note that an easy variant of
the above construction (left to the reader) can also prove that the restriction of the
problem NON-PERF-MATCH to bipartite graphs does not belong to vertexNLIN.

Problem NON-EULER.

This proof is slightly more complicate than the previous ones. First, recall that
a graph is Eulerian if and only if it is connected and each of its vertices is of even
degree. Let n = 4m+2 and G, be the disjoint union of Ky, 41 and K3, ,,, so that
the degree of each vertex is even. Nevertheless, GG, is not connected and thus, is
not Eulerian. The new idea consists in adding to G,, a fixed number of edges (not
only one) so that the graph becomes connected and each vertex remains of even
degree. For each ordered pair (i,j) € [m] x [m], let

Aii = {{a2i, b2}, {azs, b2j1}, {azit1, baj}, {aziv1, bajvi}}-

Notice that the ©(n?) sets of edges A;; are pairwise disjoint. Let M be a o-
NRAM that reconizes the problem NON-EULER and, consequently, accepts G, by a
computation C,. Now, assume there exist i,j < m such that C,, reads none of the
four bits corresponding to A;;. Then, the same computation C,, accepts the modified
graph G, = G, U A;;. This is a contradiction since G!, is Eulerian. So, we have
proved that each computation of M that accepts G, must read at least one input



bit of A;; for each ordered pair (,j) € [m]?. Hence, it should read at least m> =

O(n?) distinct input bits, as claimed. This concludes the proof of Proposition 7.1.d

By using those counterexamples, we are now in a position to answer several
natural questions about the structural complexity of vertexNLIN. For example,
we have proved in Subsection 5.3 that ESO; = vertexNLIN is not enlarged by
existential quantification over transitive closure of unary functions. It easily implies
that this logic is not enlarged if one allows ESO,-formulas to refer to transitive
closure of any unary function, whether it is existentially quantified or is a part of
the input. In contrast, we have:

COROLLARY 7.1. If one allows transitive closure of binary relations in ESO, -
formulas, then some properties that are not in vertexNLIN become definable.

Proof. Problem NON-PATH, which does not belong to vertexNLIN (contrarily to
PATH), is clearly defined by the formula =E*(s,t), where E* denotes the transitive

closure of the input binary relation E.J
COROLLARY 7.2.

(a) vertexNLIN # co-vertexNLIN.

(b) DLIN\ (vertexNLINUco-vertexNLIN) # (). Furthermore, there are problems
P in DLIN such that every nondeterministic algorithm for P and every
nondeterministic algorithm for NON-P both require Q(n?) steps.

(c) vertexNLIN G NLIN.

Proof.

(a) For example, CONNEX and HAMILTON belong to vertexNLIN while their comple-
ments do not.

(b) Problems 1s-TREE and EULER are such separating problems.

(¢) Immediate consequence of (b) since DLIN C NLIN.
|

Notice that Proposition 7.1 and Corollary 7.2 provide some precise informations
about the comparative role of determinism and nondeterminism, in particular, for
the resolution of specific problems such as the following;:

Problem EULER (resp. IS-TREE) belongs to DTIME? (n2?). This should be com-
pared to the fact that if EULER (resp. IS-TREE) belongs to NTIME?(T'(n)) or
to co-NTIME? (T'(n)), then T'(n) = Q(n?) should hold. That means that neither
nondeterminism nor co-nondeterminism can significantly help in solving problems
EULER and IS-TREE.

Problems HAMILTON, CONNEX and PERF-MATCH are very different from their
complements: all three belong to NTIME? (n) but we have proved that if any of
them belong to co-NTIME? (T'(n)), then T'(n) = Q(n?) should hold.



The role of nondeterminism is essential in the fact that the graph problems we
have studied belong to vertexNLIN. In the deterministic model, they all require
at least 2(n?) steps. Natural questions arise about the deterministic restriction of
vertexNLIN, that is, about vertexDLIN? =g DTIME? (n):

e Is vertexDLIN a robust complexity class that contains significant problems 7
e Does the strict inclusion vertexDLIN ; vertexNLIN N co-vertexNLIN hold ?

Part of the answers will be provided by the analysis of two new digraph properties:

In a digraph, a leader is a vertex “liked” by everybody, i.e. such that the edge
(z,s) exists for every vertex x # s. A sink is a leader s for which no edge (s, )
starting from s exists. (Note that a digraph may have several leaders whereas it
cannot have more than one sink.) We denote:

LEADER = {G € DIGRAPH s.t. G has a leader};
SINK = {G € DIGRAPH s.t. G has a sink}.

The next result can be found without proof in [9]:

PROPOSITION 7.2. SINK belongs to vertexDLIN.

Proof. (Communicated by [5].) Let us consider the following algorithm whose
input is a digraph given by its 0/1 adjacency matrix E[i, j]; j<n.-

ALGORITHM 1 (SINK).

integer sink-candidate, j ;
begin
sink-candidate := 0; 7 := 1;
while j <n do/* no vertexi < j is a sink, except possibly sink-candidate */

if E[j, sink-candidate] =1 then /% j is not a sink */
ji=j+1
else /* sink-candidate is not a sink */
begin sink-candidate:=j ; j:=j+1 end
end while

/¥j=mn:novertexi <n is a sink, except possibly sink-candidate */
Check whether sink-candidate is really a sink by consulting both the line and
the column numbered sink-candidate ;
if it is not then reject /* the digraph has no sink */
else accept;
end.

Our inserted comments indicate how to prove the correctness of the algorithm,

which obviously runs in time O(n).d

So, vertexDLIN contains a significant combinatorial problem. On the other hand,
one can show that this complexity class, which generalizes the class DLIN in some



way, is similarly robust (see [25]). Let us now look for candidate problems to
separate vertexDLIN from vertexNLIN. First, notice that graph problems expressed
by first-order sentences of the form JzVyy(E,x,y), where ¢ is a quantifier-free
formula with only two first-order variables z, y, trivially belong to vertexNLIN N
co-vertexNLIN. E.g., problems LEADER and SINK do, since they are expressed by
the following respective sentences:

¢leader = EIa:Vy Yy 7é r— Eym ;

¢sink = J2Vy : y #x — (BEyx A ~Exy).

PROPOSITION 7.3.

LEADER belongs to (vertexNLIN N co-vertexNLIN) \ vertexDLIN. More precisely,
for every deterministic algorithm A that decides LEADER and for each integer n,
there exists a graph G,,(A) of cardinality n such that the computation of A on input
Gn(A) reads at least n® —n input bits.

Proof.  (Essentially due to Lautemann [33].) There only remains to prove the
complexity lower bound. First, note that the result of a deterministic algorithm 4
only depends on the sequence of input bits it reads during the computation. Let
us fix the cardinality n. Without loss of generality, assume that the only queried
bits are E[i, j], for i # j, since all the diagonal bits E[i, ] are zero. We can imagine
those nondiagonal bits supplied by an adversary, who uses the following strategy:
when queried “E[i, j]” 7

e if question “Eli,j] 77 has been previously asked, she gives the same answer ;

e otherwise, i.e. if the question “EJi, j] 7 is asked for the first time, she answers:

— 1, if there is some i’ # 4 such that question “E[i’,j] ?” has not yet been
asked ;

— 0 otherwise, i.e. when all the bits of column j have been queried.

Let C,(A) denote the computation so defined. Assume that C,(A) stops after
having queried less than the n? — n nondiagonal bits. Also, assume that C,(A)
accepts. Then, set the (nondiagonal) non queried bits to 0. This gives an accepted
input which is not in LEADER: a contradiction. So, C,(A) rejects. Now, set the
(nondiagonal) non queried bits to 1. This gives at least one column where the
n — 1 nondiagonal bits are all 1’s. Hence, the rejected input belongs to LEADER:
a contradiction. This proves that C,(A) reads all the n? — n nondiagonal bits

of the input G, (A) so obtained. This concludes the proof of Proposition 7.3.

Figure 6 summarizes the main results of this section. The problems quoted
without brackets have been proved as belonging to the precise intersection on which
they lie on the figure. Those between brackets are just candidates to belong to a
given subset. Subsets that contain only candidate problems (e.g. co-vertexNLIN \
NLIN) or no problem at all (e.g. (co-vertexNLINNvertexNLIN)\DLIN) are possibly
empty. They are marked with a “?”.

Remark.
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FIG. 6. Mutual inclusions between the complexity classes mentionned in this section

e NON-2-COLOUR belongs to vertexNLIN since a graph is not colourable with 2
colours iff it contains an odd length cycle.

e NON-PERF-MATCH belongs to NLIN because for a given matching M in a given
graph G, one can check in deterministic linear time whether M is a maximum
matching of G. For bipartite graphs, this is proved for example in [39]; for general

graphs, this is proved by sophisticated technics in [35, 50] or in [4]. That yields the
following NLIN algorithm:

— guess a non perfect matching M of G,

— check that M is a maximum matching of G.

8. CONCLUSIONS AND OPEN PROBLEMS

The main aim of computational complexity theory is to determine the intrinsic
time (resp. space) complexity of "natural" problems. We think that logic, or more
precisely, descriptive complexity, gives us tools and results to study and to better
understand that complexity. This paper was initially motivated by the following
two items:

An observation: most "natural" NP-complete problems belong to NLIN, i.e.,
are recognized by NRAMs in nondeterministic linear time ; e.g. Grandjean [22]
mentions that the 21 NP-complete problems exhibited by Karp [31] are in NLIN;
for a graph problem P, that means P is recognized in time O(|V| + |E|), where
G = (V, E) is the input graph, or, equivalently (by our results [24]), P is defined
by an ESO(arity 1, V1) formula on the domain VU E ;



1.
2.
3.
4.

5.

A question (asked by Grandjean and Lynch in FMT open problems, [Oberwol-
fach 94, problem 8] and [Luminy 95, problem 23]): investigate the class of graph
properties that can be defined in ESO? (arity 1), where 0 = {E} and FE is a binary
relation symbol, i.e., by existential second-order formulas with unary function and
constant symbols only, interpreted in the domain of vertices.

In the present paper, we have studied in detail vertexNLIN, that is the class of
o-problems (i.e., decision problems every input of which is a first-order structure
of any fixed signature o) that are recognized in nondeterministic time O(n) where
n is the cardinality of the domain of the input structure. So, the time O(n) can
be much less than the input size. For instance, the size of a graph presented by its
adjacency matrix is exactly its number of bits, n?. The conclusions of our study
are the following:

* vertexNLIN is a robust complexity class, as shown by its closure properties (e.g.,
for some restricted transitive closure operators) and its various logical characteriza-
tions such as ESO? (V1) = ESO’ (arity 1,V1). (Note that this last characterization
states that this class is (strictly?) included in ESO7 (arity 1).)

% vertexNLIN (and hence also ESO? (arity 1)) contains many classical combinatorial
problems, including CONNEX, NON-PLANAR and HAMILTON.

x  Although vertexNLIN appears to be a genuine complexity class, as attested
by the two previous items, we have succeeded in proving, by simple arguments,
several structural properties of this class; the key point is that for any specific
graph problem we have studied till now, we have been able to prove that it belongs
or does not belong to vertexNLIN; in particular, it is the case for all the graph
problems known to belong to DLIN (deterministic linear time) we have studied;
actually, we have exhibited inside DLIN (see Figure 6) a kind of microcosm of our
complexity questions with a strict partition of DLIN in five nonempty subclasses:

the vertexDLIN problems (e.g. SINK);

some problems in (vertexNLIN N co-vertexNLIN) \ vertexDLIN (e.g. LEADER);
some other ones in vertexNLIN \ co-vertexNLIN (e.g. CONNEX and PATH);

some other ones in co-vertexNLIN \ vertexNLIN (e.g. 2-COLOUR and PLANAR) and
finally,

the other ones out of vertexNLIN U co-vertexNLIN (e.g. EULER and IS-TREE).

x vertexNLIN appears to be the minimal nondeterministic time complexity class for
graph problems, or, more generally, for decision problems of first-order structures.
(Note that its deterministic counterpart, vertexDLIN, although less significant, is
also of some interest.) We cannot imagine a nondeterministic process that recog-
nizes any significant graph problem in time o(n) where n is the number of vertices
of the graph.



Our thesis, which may explain the difficulty to establish complexity lower bounds,
is that "natural" combinatorial problems are generally of very low complexity in
the following sense. While some of them, e.g. the contraction problem of acyclic
digraphs (see [41]) are NLIN-complete, most of them either belong to vertexNLIN
or to co-vertexNLIN, or, as EULER and COLOUR, can be solved in time O(n) by
"alternating" RAMs, namely RAMs which can perform nondeterministic (i.e. exis-
tential) "guess" instructions and (dual) co-nondeterministic (i.e. universal) "guess"
instructions, with a fixed number & of alternations between existential and universal
instructions®. Let ATIME-ALT (n, k) denote this complexity class for o-problems
and let us define the vertex-linear hierarchy* as the union:

vertexLinH” = | | ATIME-ALT” (n, k).
k

Notice that this class can be easily characterized by second-order formulas (SO)
with second-order relation or function symbols of arity < 1 (resp. of arity < 1 and
only 1 first-order variable), namely:

vertexLinH? = SO (arity 1) = SO7 (arity 1, var 1).

(Compare those equalities with the similar characterization of LinH by J.F. Lynch
[34] and N. Immerman [29, 30].)

Of course, the main significant (realistic!) time complexity is neither the non-
deterministic time, nor the alternating time (here, with a fixed number of alter-
nations), but is deterministic time. Unfortunately, we are still unable to prove
any significant deterministic time lower bound on a general-purpose model of com-
putation, for any natural problem in NP. However, we hope to have explained
convincingly "where" the difficulty lies. Most of (or all 7) the "natural" problems
are of nondeterministic "minimal complexity", that means they can be solved in
time linear with respect to their size (or, better, with respect to their domain car-
dinality), provided nondeterminism (or its generalization: alternation, with a fixed
number of alternations between nondeterministic phases and co-nondeterministic
phases) is allowed.

Thus, the paradigm determinism/nondeterminism is still and ever the crucial
and central point of computational complexity, but it merits to be studied in the
linear context for at least as good reasons as in the traditional polynomial context.
In other words, the DLIN Z NLIN question is quite significant and more precise
than the P = NP question. We hope that this paper can contribute to convince the
readers of the interest of that new problematic. Specifically, our study of the class
vertexNLIN, because it allows simple proofs, may help or give some indications of

methods to manage the more significant DLIN Z NLIN question.

3for a detailed presentation of alternating machines, see for instance Papadimitriou’s book [38]
4similar to the linear time hierarchy for words problems, denoted LinH or rudimentary lan-
guages. See Hajek and Pudlak’s book [28].



Let us conclude this paper by giving a list of open problems:

1. Characterize the graph (resp. digraph) problems, such as SINK and LEADER, that
belong to vertexNLIN N co-vertexNLIN (a seemingly very strong condition). Are
they all in PTIME ? in DLIN ?

2. Does ESO? (V1) = ESO? (arity 1) holds for arity (¢) = 1 ? Notice that the equal-
ity fails for arity (c) = 2 since, e.g., the set of complete graphs does not belong
to ESO?(V1). A positive answer would imply the equality, for each integer d,
ESO?(Vd) = ESO? (arity d) when arity (o) < d, and would yield (by the hierarchy
theorem proved by Cook [8] for nondeterministic time complexity) the strictness of
the arity hierarchy (an old and difficult open problem of [13]).

3. Exhibit a (nondirected) graph problem in vertexDLIN as natural as the digraph
problem SINK.

4. Prove for all the classical NP-complete graph (digraph) problems, e.g., KERNEL,
3-COLOUR, CUBIC-SUBGRAPH (see Garey & Johnson’s book [15]) that they be-
long or do not belong to vertexNLIN and that each of them does not belong to
co-vertexNLIN (such a systematic proof of nonbelonging would be a weakened form
of the conjecture that each of them does not belong to co-NLIN).

5. Prove a conjunctive logical characterization of vertexNLIN, similar to the conjunc-
tive characterization of NLIN given by [37]. This would provide some "natural”
vertexNLIN-complete problems (via very strict reductions such as the "affine" re-
ductions of [25]).

6. The classical graph properties we have studied, either belong to vertexNLIN, i.e.,
can be recognized within nondeterministic time O(n), or require Q(n?) nondeter-
ministic time. Can we fill this gap, i.e., exhibit "natural" graph problems that are
recognized nondeterministically in time o(n?) and that are not in vertexNLIN ? (Of
course, the "nonnatural” set of graphs that have at least n3/2 edges fulfils those
conditions.)
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