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The propagation of Lamb waves in a plate with an engraved periodic grating is addressed in this
article. Mode conversions and reflections are analyzed. In the first part the conversion modes are
explained by the existence of a resonance condition between the Lamb-wave wavenumbers and the
fundamental and harmonic spatial periods of the grating. These phenomena are experimentally and
numerically highlighted for a metallic waveguide with a rectangular grating. The second part
focuses on the pseudo-Lamb wave dispersion curves in a periodic waveguide. The periodicity
implies that the Lamb waves dispersion curves fold back at the edge of the Brillouin zone. Several
stop bands appear: classical band gaps at the boundary of the Brillouin zone and mini-stop-bands
inside the Brillouin zone. For the ministop band, dispersion curves cross and a possible coupling
occurs between the modes. Finally, conversions or the existence of gaps are linked with the Power
Spectral Density of the grating profile. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2737348�

I. INTRODUCTION

Lamb waves are of great interest in the nondestructive
evaluation of surfaces or interfaces. The particular case of
periodic surfaces is studied in this article. Understanding this
problem can be useful, for example, to evaluate ribbed plate
or sandwich panels utilizing a honeycomb core. It was
shown that a guided wave is attenuated when propagating on
a plate with a rough surface.1–4 The amplitude attenuation is
related to the Root Mean Square �RMS� value of the depth of
the roughness. Potel et al.4 have shown the importance of the
spatial periods of the surface for the calculation of the attenu-
ation. Furthermore, attenuation depends on the considered
Lamb mode. An original approach to the problem consists in
interpreting the attenuation by an energy transfer between
modes.5 This approach also supposes restriction on the value
of the rms and a weak variation of the surface profile. There-
fore, in the presence of roughness, an incident propagating
mode is converted in propagating or localized modes. Con-
sequently, the energy lost by the incident wave is divided
among a wide number of modes.

If the plate is periodically corrugated, mode coupling
involves interference processes. In this case, a phase match-
ing between the incident and one special converted mode can
occur. This phenomenon has been extensively studied in the
case of the propagation of sound waves in a waveguide with
sinusoidally perturbed rigid wall.6–8 Some other recent

works deal with the propagation of Lamb waves in an elastic
plate having periodically corrugated free surfaces.9–13 El
Bahrawy9 shows by using a modal approach that inside a
stopband a Lamb mode can interact with another Lamb
mode. This interaction leads to crossover point in the Lamb
waves dispersion curves. This phenomenon was experimen-
tally studied by Leduc et al. in Ref. 13 in the case of an
incident wave propagating in a plate with a surface grating
composed by triangular grooves. It is shown that converted
reflected waves are observed depending on the period of the
corrugated surface.

The case of a multiperiodic surface has been studied
theoretically by means of the multiscale method.14 The num-
ber of possibilities to have different coupled modes increases
and then wider stop bands can be obtained. In this paper, it is
shown that for a rectangular grating there is an interaction
between an incident Lamb wave with the fundamental period
of the grating and also with the spatial harmonic compo-
nents. In the first part, we present a transient analysis of
Lamb wave propagation on a corrugated plate by a Finite
Element Method. Two rectangular geometries are studied
and particularly the effect of the shape of the rectangular
corrugation. In the second part, an experimental study is per-
formed on the same plates.

In the last part, interpretation of the conversion phenom-
ena is done by considering the dispersion curves of the
propagating modes in a plate with an infinite periodical sur-
face grating. The dispersion curves exhibit a folding effect
and band gaps. Some band gaps inside the first Brillouina�Electronic mail: bruno.morvan@univ-lehavre.fr
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zone appear at particular dispersion curves crossing. It is
shown that these “mini-stop bands” exist for the frequencies
where converted waves were previously observed.

II. POSITION OF THE PROBLEM

The geometry of the studied corrugated plate is shown in
Fig. 1. � is the periodicity and a is the length of the higher
part of the pattern. Two specimens are considered: a rectan-
gular surface grating with a ratio a /�=1/3 and a square
surface grating such that a /�=1/2. The period of the grating
� is equal to 6 mm. The thickness of the aluminum plates is
5 mm whereas the corrugation depth is equal to 100 �m.
Concerning the Lamb wave propagation, the corrugation can
then be treated as a small perturbation.

The power spectral density �PSD� of the two profiles is
drawn in Figs. 2�a� and 2�b�. It is obtained by the Fourier
transform of the autocovariance function calculated from the
surface profile. It gives the spatial wavelength components of
the surface. It was already pointed out that an incident Lamb
mode can interact with the wavenumber of the surface cor-
rugation. In a previous study11 authors have shown that the
interaction of the incident wave with the grating can be re-
duced to a relation between the wave vectors

kinc − kconv = G �1�

where G is one vector of the reciprocal lattice �by analogy
with the crystalline structures�. G is defined by: G
= �2� /��ux. kinc and kconv are, respectively, the wave vec-
tors of the incident and reflected converted waves. It should
be noted that the incident and the converted modes can be

either codirectional or contradirectional. Relation �1� restricts
the interaction of the incident wave to the fundamental grat-
ing period. The converted waves excited on two successive
grooves must be in phase and the phase matching corre-
sponds to the smaller path. Whatever the path the general
condition is

kinc − kconv = nG , �2�

where n is an integer. Therefore, incident and converted
wavelengths are also coupled to the harmonics of the grating
�� /n�.

We are interested in the interaction of a Lamb wave with
the harmonic components �wave vector n ·k��. This is neces-
sary to use the fact that the PSD of the profile contains � /n
harmonics. The interaction will be enhanced if the amplitude
of these harmonics is strong. Therefore, it is interesting to
study a rectangular profile instead of a triangular profile used
in the previous study.11 Moreover, the variation of this am-
plitude can be controlled by the antisymmetric shape of the
rectangular profile.

III. NUMERICAL PROCESSING

The numerical study is performed with the ATILA
®

code.15 The two-dimensional �2D� model is a 200 mm long
plate with a limited grating on one side �Fig. 1�. The acous-
tics parameters, longitudinal and shear velocities, are, respec-
tively, cL=6350 m/s and cT=3100 m/s. The density of the
aluminum is equal to 2700 kg/m3. Only a part of one side is
engraved with eleven identical rectangular grooves. The sur-
face is flat before and after the grating: it enables to generate
and identify the incident Lamb mode. A transient analysis is
performed. A single mode is generated at the first extremity
of the plate by imposing its corresponding theoretical dis-
placements in the thickness. The excitation is quasiharmonic
and limited to five periods. The transient analysis allows us
to follow the propagation of this mode in the space-time
domain and particularly its interaction with the grating. The
normal surface displacements are calculated. From these dis-
placements, the identification of the propagating modes is
performed in the dual space by applying a time and a spatial
fast Fourier transform �2D FFT�.

The incident wave �positive wave number� is the funda-
mental symmetrical wave S0, generated on a frequency band-
width centered at f =800 kHz, corresponding to a frequency-
thickness product equal to 4 MHz·mm. In Fig. 3 the
amplitude of the S0 mode versus frequency is plotted. The

FIG. 1. Geometry of the studied samples. � is the periodicity and a is the
length of the higher part of the pattern. x is the direction of propagation.

FIG. 2. Power Spectral Density of the surface profile of the studied samples
against the spatial period �. �a� Rectangular grating and �b� square grating.

FIG. 3. FEM study. Amplitude of the S0 incident wave vs frequency-
thickness product.
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bandwidth of the signal �approximately �3.6−4.4 MHz mm��
is due to the short time duration of the tone burst. We are
interested in mode conversions under the grating. Five
modes can propagate �A0 , S0 , A1 , S1, and S2� in the consid-
ered frequency range �Fig. 4�. A 2D FFT of the different
time-space signals on each sample enables to identify the
converted modes. In the case of the rectangular grating �Fig.
4�a��, reflected Lamb mode S2 is observed with a very strong
amplitude at f =4 MHz mm �spot �a��. A1 mode at f
=3.35 MHz mm �spot �b�� and A0 or S0 at f
=3.65 MHz mm �spot �c�� are also present. From relation
�1�, the wavevector of the converted waves can be calcu-
lated. The curves describing the evolution of the wavenum-
bers kconv versus frequency are represented in solid line with
triangle in Fig. 4. Each intersection of these curves with a
Lamb wave dispersion curves indicates a possible conversion
of the incident wave. In Fig. 2�b�, the PSD of the profile
shows that the harmonic 2 is present. Indeed conversions
into reflected waves are observed and the wave vectors of

these waves check the Eq. �2� with N=2. The reflected wave,
identified by the spot �c� on the Fig. 4�a� cannot be explained
by relation �2�. At this frequency, the wavelength of the in-
cident mode is equal to 4 mm and this length is equal to
�A-a� �Fig. 1�. We can formulate the hypothesis that a S0

standing wave is present in each groove of the grating.
The square profile has only odd harmonics. The signals

in the wave number/frequency space show that conversions
related to the harmonic 2 disappear whereas conversions re-
lated to the harmonic 3 appear �kconv=kS0

−2� / �� /3��. A0

and A1 Lamb waves are observed for frequency-thickness
products equal, respectively, to 3.65 and 4.3 MHz mm �spots
�d� and �e��.

The same study is repeated with the incident A1 wave
excited at the frequency-thickness 5.5 MHz mm �Fig. 5�.
Figures 6�a� and 6�b� give, respectively, the converted re-
flected waves in the case of the rectangular and square grat-
ing. The theoretical values kconv from Eq. �2� are superim-
posed to the 2D FFT representation of signals. In the case of
the rectangular surface profile, only converted modes associ-
ated to the fundamental period and to the even harmonics
�N=2 and N=4� are present in accordance with the spectral
content of the PSD �Fig. 2�. The case of the spot �f� corre-
sponding to a converted reflected S1 wave is quite different.
At this frequency, three modes are coupled: A1, A0, and S1

modes. Indeed A1 is converted in the A0 reflected wave
�kA0

=kA1
−2� / �� /4�� due to the presence of the fourth har-

monic in the PSD. Then, in his turn, the A0 reflected mode is
itself converted in an S1 wave propagating in the same nega-
tive x direction �kS1

=−kA0
−2� /��. The case of the coupling

between three modes in a two-dimensional multiperiodic
waveguide was also studied by Asfar.12

The interaction of the incident A1 Lamb wave with the
square grating is shown in Fig. 6�b�. Only converted modes
coupled to the odd harmonics of the grating are excited. The
indirect conversion in the A0 Lamb wave at frequency fe
=1.07 MHz mm is observed �spot �g��. At this frequency the
incident A1 mode and reflected A0 and S1 modes are coupled.

IV. EXPERIMENTAL VERIFICATION

Two corrugated plates are studied �experimentally� with,
respectively, a square and rectangular grating. The studied
plates are engraved with 11 rectangular grooves and the sur-
face profiles are identical to those considered with the finite
element method �Fig. 1�. Plate thicknesses are 4.75 and 4.45
mm for, respectively, the square and rectangular plates. A

FIG. 4. FEM study. Incident S0 wave. Identification of the converted/
reflected waves in the wave number/frequency space. The theoretical disper-
sion curves are plotted in solid line. The solid lines with triangle represent
the wave numbers kconv obtain by relation �2� kinc=kS0

. �a� Rectangular
grating and �b� square grating.

FIG. 5. FEM study. Amplitude of the A1 incident wave vs frequency-
thickness product.
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pulse generator delivers a very short pulse voltage �about
300 V for duration of 0.3 �s� to a piezocomposite transducer.
The central frequency of this emitting transducer is 1 MHz
and the −6 dB bandwidth is 660 kHz. Lamb waves are then
generated by the wedge method. The surface displacements
are detected by a laser interferometer. The interferometer re-
mains unmoved whereas the plate with the emitter transducer
is translated along the principal direction of the incident
wave propagation. The interferometer collects the normal
displacements from x=10 mm �origin x=0 corresponds to
the wedge position� to x=90 mm by 0.1 mm step. For each
position of the laser, a 100 �s long signal is stored with a
0.02 �s time step. In order to improve the signal to noise
ratio, an average of 350 successive shots are performed. For
each spatial position, the amplitude is recorded and then an
�x, t� image is obtained as in the case of the finite element
method �FEM� study. A 2D FFT is applied to the previous
data: it gives the dispersion curves of the waves traveling in
the plate in the �k , f� space. In Fig. 7 the amplitude of the
incident waves are plotted versus frequencies. In the
frequency-thickness range �2–4 MHz mm�, the S0 mode is

generated whereas the incident A1 mode is present in the
thickness-frequency range �4–6 MHz mm�. The S1 mode
around its cutoff is also excited.

A. S0 incident wave

Reflected signals in the wave number/frequency space
are represented in Fig. 8 for a frequency range where the S0

Lamb wave is incident. In the case of the rectangular profile,
the converted A1 and S2 modes are reflected �respectively,
spot �i� and �h� in Fig. 8�a��. As in the FEM study these
modes are linked to the second �N=2� harmonic of the grat-
ing. The conversion mode related to the S1 incident mode is
present: the reflected S0 wave �spot �j�� related to the har-
monic 2 of the grating �kS0

=kS1
−2� / �� /2��. Figure 8�a�

shows the S0 standing wave �spot �k�� already observed in
the FEM study �Fig. 4�a��. The wavelength � of this wave is
equal to 4 mm corresponding to the difference between the
period � and the length a=2 mm �see Fig. 1�. Contrary to
the case of the rectangular profile, the square profile has only
odd harmonics. We verify that conversions �h� and �i� related
to the harmonic 2 disappear �Fig. 4�b��. Spots surrounded in
dots are due to the S1 incident mode. The A0 reflected mode
�spot �l�� is due to a conversion of the S0 mode and verifies
kA0

=kS0
−2� / �� /3�. The spot �m� is a standing S0 wave with

a wavelength �=3 mm equal to the half of the square
groove.

B. A1 incident wave

In the frequency bandwidth where the A1 wave is inci-
dent �Fig. 9�, the converted waves �A1, S2, A0 /S0� are also
linked to the presence of the second and fourth harmonics in
the PSD of the rectangular grating profile. The spot �n� is a
reflected A1 component of a standing wave with a wavenum-
ber k=2� / ��−a�=1570 m−1.

The 2D FFT on the square grating �Fig. 9�b�� exhibits
converted waves due to the third harmonic. The A0 reflected
waves �spot �o�� at thickness-frequency fe=5.25 MHz mm
results from the conversion of the S1 reflected wave. Then, at
this frequency three modes are coupled: A1, S1, and A0

modes. The S0 mode �spot �p�� and A1 mode �spot �q�� are
due to the presence of two standing waves with wave num-
bers k=2� / ��−a�=2100 m−1.

FIG. 6. FEM study. Incident A1 wave. Identification of the converted/
reflected waves in the wavenumber/frequency space. The theoretical disper-
sion curves are plotted in solid line. The solid lines with triangle represent
the wavenumbers kconv obtained by relation �2� kinc=kA1

. �a� Rectangular
grating and �b� square grating.

FIG. 7. Experimental study. Amplitude of the incident waves vs frequency-
thickness product.
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These results are consistent with those obtained by the
FEM study. However, slight differences are observed be-
tween the frequencies of the converted waves in the experi-
mental and the FEM studies. Indeed thicknesses of the ex-
perimental plates are slightly lower than the FEM plate
model. Then there is a small shift of the wavenumbers of the
Lamb wave. In the experiment the signal is a short pulse.
The spectrum is only limited by the bandwidth of the broad-
band transducer. In the FEM the excitation is quasi harmonic
and then the spectrum of the signal exhibits a low level for
some frequencies. This fact explains why some conversions
observed in experimental study are not observed in the FEM
study. In spite of these small differences the two studies al-
low to conclude that a simple relationship exists between
incident and converted wavevector and the surface grating
profile. The wave vectors of the converted waves depend on
the PSD of the grating profile. Some additional converted
modes are also observed due to standing wave formed under
surface grating.

It is well known16 for a one-dimensional �1D� crystal
that the propagating wave vector belongs to the first Bril-

louin zone. Here the grating can be considered as a 1D crys-
tal. Therefore, it is convenient to study the coupling between
Lamb modes insides the first Brillouin zone. This is the goal
of the following section.

V. DISPERSION CURVES IN THE FIRST BRILLOUIN
ZONE

In this section, the waveguide is considered as a repeti-
tion along the �Ox� direction of the elementary cell of the
grating �Fig. 10�. The finite element method consists in
meshing only one unit cell of the grating and then using the

FIG. 8. Experimental study. Incident S0 wave. Identification of the
converted/reflected waves in the wavenumber/frequency space. The theoret-
ical dispersion curves are plotted in solid line. The solid lines with triangle
represent the wavenumbers kconv obtained by relation �2� with kinc=kS0

. The
solid lines with circle represent the wave numbers kconv obtained by relation
�2� with kinc=kS1

. �a� Rectangular grating and �b� square grating.

FIG. 9. Experimental study. Incident A1 wave. Identification of the
converted/reflected waves in the wave number/frequency space. The theo-
retical dispersion curves are plotted in solid line. The solid lines with tri-
angle represent the wave numbers kconv obtained by relation �2� with kinc

=kS0
. The solid lines with a circle represent the wave numbers kconv ob-

tained by relation �2� with kinc=kS1
. �a� Rectangular grating and �b� square

grating.

FIG. 10. Elementary periodic cell.
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Bloch–Floquet relations,17 which are the phase relations be-
tween nodes separated by one period. On each boundary of
the pattern �x=0 and x=��, a Bloch–Floquet condition has to
be fulfilled. The angular frequency � is a periodic function
of the wave vector k so the study becomes restricted to the
first Brillouin zone. The dispersion diagram is plotted by
varying the wave vector in a half Brillouin zone �0; � /��
and then the other half zone �−� /� ; 0� is plotted symmetri-
cally. The dispersion curves enable us to deduce propagation
modes, cutoff frequencies, bandwidth, and stop bands.

In Fig. 11 the dispersion curves for the rectangular grat-
ing are plotted in the Brillouin zone. The periodicity of the
guide implies that the Lamb waves dispersion curves fold
back for k= ±� /� and k=0. The study of these dispersion
curves shows the existence of gaps also called forbidden
bands. These gaps are of two kinds: stop band at the limit of
the Brillouin zone or “mini-stop band” into the Brillouin
zone.18

Mini-stop bands are due to the opening of gap at the
crossing of two Lamb mode dispersion curves. This leads to
anti-crossing behavior of the dispersion curves. This case
corresponds to mode coupling �mode conversion�. Indeed,
near the edge of the stop band, the group velocity vanishes
and allows a possible conversion between two different
modes. For the rectangular grating in Fig. 12, a mini-stop
band appears at crossing between the S0 and S1 dispersion
curves �fe=3.85 MHz mm�. This implies an important band

gap and therefore a strong coupling between the mode S0 and
the mode S2. Indeed a reflected mode S2 is observed experi-
mentally and by the FEM analysis in Fig. 4 �spot �a�� and
Fig. 8�a� �spot �h��. For the square grating in Fig. 13, the
band gap is closed and the wave S0 does not convert into the
mode S2 �Figs. 4�b� and 8�b��. The same phenomenon is
observed at the crossing of the S0 and A1 dispersion curves.
A ministop band is present in Fig. 12 at fe=3.25 MHz mm.
This forbidden band leads to a S0 mode conversion in the A1

mode. This conversion is observed in Fig. 4�a� �spot �b�� and
Fig. 8�a� �spot �i��. Stop bands seem to appear according to
the grating period and implying the existence of an energy
transfer between modes.

The second type of stop band exists at the boundary of
the Brillouin zone. These stop bands are located in a fre-
quency range where a dispersion curve folds back. An ex-
ample of stop band is shown in Fig. 14 around the
frequency-thickness product fe=3.7 MHz mm. This stop
band is located at the limit k=� /� where the S0 dispersion
curve is folding back. This point corresponds to the intersec-
tion of two dispersion branches shifted by ±m�2� /�� �m is
an integer�. This leads to relation �2� with N=2. This forbid-
den band is present for the square and the rectangular grat-
ing. In Figs. 4�a� and 4�b�, reflections of the S0 wave are
observed around fe=3.7 MHz mm �spots �c� and �d��. One
can note that the amplitude of the S0 reflected wave is stron-
ger in the case of the rectangular grating and corresponds to
a wider stop band.

FIG. 11. Dispersion curves in the first Brillouin zone. Rectangular grating.

FIG. 12. Stop bands for the rectangular grating. Zoom of Fig. 11 in the
range �3–4.2 MHz mm�.

FIG. 13. Stop bands for the square grating.

FIG. 14. Lamb wave dispersion curves for rectangular grating �solid lines�
and square grating �solid lines with circles�.
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We also verify the link between opening of stop band
and conversion phenomena for experimental results. Spot
�m� is observed in Fig. 8�b� and corresponds to a reflected S0

wave with a wave vector k =−1050 m−1. Figure 15 shows
that a gap is open at this thickness-frequency product fe
=2.78 MHz mm in the case of the square grating whereas the
gap is closed for the rectangular one. At k=0 or k= ±� /�,
the opening of a stop band means that two counterpropagat-
ing modes are coupled.

VI. CONCLUSIONS

The process of mode conversions describes the interac-
tion of Lamb wave with a periodic grating. This process is
completely described in the dual space �wave number/
frequency space�. The spatial periods of the corrugated sur-
face imply coupling between modes �conversions� and re-
flections. The coupling of modes is related to the opening of
the band gaps in the fold-back dispersion curves in the first
Brillouin zone. In this study the complex modes are not
taken into account in the mode conversion process. In the
future, it could be interesting to identify these localized
modes. In particular, they are very important near a default

of a grating as shown in the domain of photonic gratings.18

As the opening of the stop band is strongly dependent on the
PSD of the surface, further studies will treat this topic. This
kind of study has not been developed in the crystal photonic
field.
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FIG. 15. Lamb wave dispersion curves for rectangular grating �solid lines�
and square grating �solid lines with circles�.
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