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Spiking Oscillations in Complex Neuronal Networks
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Although integrate-and-fire dynamics possesses special importance because of its intrinsic rela-
tionship with neuronal information processing, it has been rarely considered in investigations of the
structure-dynamics relationship in complex networks. However, the pronounced non-linearities of
this type of dynamics implies a particularly rich variety of attractors and activity patterns, includ-
ing avalanches of spikes and confinement of activation inside topological communities. Both these
remarkable phenomena take place during the transient activation regime. In this work we investi-
gate the oscillations and waves which appear in the equilibrium regime of integrate-and-fire complex
neuronal networks. In order to do so, one of the restrictions of the equivalent models reported pre-
viously, namely a reasonable uniformity of degrees, is circumvented by subsuming the nodes with
identical degree found inside each hierarchical levels into respective equivalent nodes. It has been
shown, by considering uniformly-random and small-world theoretical types of networks, that the
so-obtained model is capable of predicting the respective integrate-and-fire dynamics with great ac-
curacy regarding both temporal dynamics and power spectrum features. The causes and properties
of the stable waves emerging along the equilibrium regime of the complex neuronal networks are
identified and discussed. Of particular relevance are the twin correlations defined by the different
frequencies of groups of nodes at different concentric levels. The transient and equilibrium regimes
are also clearly identifiable from the total activation in the networks, corresponding respectively to
conservative and dissipative dynamics.

PACS numbers: 87.18.Sn, 89.75.Hc, 87.18.Fx, 89.45.+i, 89.75.Fb, 89.75.-k

‘Andria was built so artfully that its every street follows
a planet’s orbit, and the buildings and the places of com-
munity life repeat the order of the constellations and the
position of the most luminous stars...’ (Invisible Cities,
I. Calvino)

I. INTRODUCTION

Despite the great current interest in the structure and
dynamics relationship in complex networks (e.g. [1–12],
very few works have been reported addressing the non-
linear dynamics implied by the integrate-and-fire model
of neuronal cells. This type of non-linear dynamics is
particularly important because it is intrinsically associ-
ated to the workings of nervous systems (e.g. [13–15]),
being critically related to memory as well as the impor-
tant cognitive tasks of control and pattern recognition,
which seem to be essentially dependent of non-linear dy-
namics features and not obtainable by linear activations.
In addition, several other real-world situations can be
effectively modeled by the integrate-and-fire model, in-
cluding transportation systems, information processing,
disease spreading, and gene expression, amongst many
other important complex systems.

The rich variety of dynamics allowed by the integrate-
and-fire model when underlain by complex networks has
been corroborated in a recent series of works ( [16–20])
and includes the identification of avalanches of spikes [16]
and activation confinement within the network commu-
nities [17, 18] during the transient regime of integrate-
and-fire complex neuronal networks. These two phenom-

ena have been effectively modeled and explained by us-
ing equivalent models of the complex neuronal networks
( [19, 20]) which take into account the hierarchical organi-
zation of the respective connectivity. Another interesting
feature induced by integrate-and-fire dynamics on com-
plex networks are the oscillations of the number of spikes,
identified in [19] and preliminary illustrated in [20], which
corresponds to the main subject of the present work.

The first equivalent model, reported in [19], was ob-
tained by taking into account the hierarchical struc-
ture of complex networks (e.g. [21–24]), more specifically
the hierarchical number of nodes and hierarchical de-
grees. While assuming a reasonable uniformity of degrees
amongst the nodes at each level, a chain equivalent model
was suggested where all nodes at each concentric level are
subsumed [25] into an equivalent node. This approach al-
lowed predictions of the intensity and timing of the main
avalanches of spikes during the transient neuronal acti-
vation [19]. This model was subsequently enhanced to
incorporate the edges inside each concentric level as well
as complex networks with asymmetric connections (i.e.
not all directed edges have the respective opposite coun-
terpart) [20]. Such modifications allowed the equivalent
model to be extended to represent any integrate-and-fire
neuronal network, including modular complex neuronal
networks [20]. This model provided impressive predic-
tions of the non-linear dynamics in each of the commu-
nities within a given modular complex network.

The current article investigates to a greater extension
the saw oscillations and waves identified during the tran-
sient and equilibrium regimes of integrate-and-fire com-
plex neuronal networks [19, 20]. In a preliminary ap-



proach (unreported), the enhanced equivalent model in-
corporating intra-ring edges and asymmetric edges [20]
was applied in order to obtain insights about the origin
of the waves and oscillations while considering several
types of connectivity (e.g. Erdős-Rényi, Barabási-Albert,
etc.). As in the previous works, the networks were acti-
vated from a source node. However, poor results were
obtained, suggesting that there were additional impor-
tant features of the complex networks which were not
included in the enhanced in the equivalent model yet.
These features ultimately turned out to be, at least par-
tially, deviations from the basic assumption of nearly-
uniform node degrees which had been adopted previously.
Therefore, one of the remaining limitations of the equiv-
alent models had to be addressed and overcome, which
was done by subsuming into additional equivalent nodes
all the nodes within each level which had identical de-
grees. Thus, instead of mapping a whole concentric level
into an equivalent node, as done in [19], each of such
levels was partitioned into two or more equivalent nodes
associated to the nodes in each hierarchical level which
had identical degrees.

The so-obtained enhanced equivalent model, reported
in this work, allowed impressively accurate predictions of
the transient and equilibrium integrate-and-fire dynamics
in several theoretical types of networks, allowing not only
the identification and characterization of the oscillations
and waves at the equilibrium regime, but also motivating
the definition of new hierarchical measurements related
to the degree distribution within each concentric level.

This article starts by briefly reviewing the basic con-
cepts required for the understanding of the herein re-
ported developments and proceeds by describing the new
equivalent model, accounting for non-uniform degree dis-
tributions, and its application to the prediction of the os-
cillatory dynamics in two types (uniformly-random and
small-world models) of integrate-and-fire complex neu-
ronal networks. Though additional types of networks
have been also investigated, the latter type provides a
specially interesting case because of its several concen-
tric levels. Both these networks yielded a relatively large
dispersion of node degrees. The so-obtained insights were
then discussed with respect to the several types of char-
acterizations and obtained results. The article concludes
by identifying its main contributions and the respective
prospects for further developments.

II. BASIC CONCEPTS

A. Complex Networks Representation and
Characterization

A directed, weighted complex network can be repre-
sented in terms of its weight matrix W , so that W (j, i)
represents the weight of the edge extending from node
i to node j. The respective adjacency matrix K can
be obtained by transforming into 1 all non-zero weights.

The immediate neighbors of a node i are those nodes
which receive an edge from i. The out-degree of a node i
is equal to the number of its immediate neighbors. Two
edges are adjacent if they share a node. Two nodes are
adjacent whenever they share an edge. A sequence of ad-
jacent edges define a walk. A path is a walk which never
repeats nodes or edges. The length of a path (or walk)
is equal to the number of edge it contains.

B. Hierarchical Organization of Complex Networks

Given a complex network and a reference node i, its
hierarchical organization can be obtained by flooding the
network from the reference node [21]. The hierarchical
organization includes the concentric levels (or hierar-
chical levels) of the network, namely the levels contain-
ing the nodes which are at successive shortest path dis-
tances from the reference node i. So, the first concentric
level incorporates the original nodes which are at short-
est path distance 1 from i (i.e. they are the immediate
neighbors of i). The second concentric level includes the
nodes which are at shortest path distance 2 from i, and so
on. The connections between the reference node and the
nodes at the h−level can be understood as implementing
virtual links [26]. Once the hierarchical organization of a
network has been obtained with respect to a specific node
chosen as the reference, a series of measurements can be
calculated [21–24], including the hierarchical number of
nodes nh(i), the hierarchical degree kh(i) and the intra-
ring degree ah(i). The hierarchical number of nodes cor-
responds to the number of nodes within each respective
concentric level. The hierarchical degree is equal to the
number of edges from level h to level h + 1. The intra-
ring (or intra-level) degree corresponds to the number of
edges established within level h.

With the extension of the hierarchical organization to
complex networks with asymmetric connections [20], the
hierarchical degree needs to be split into hierarchical
indegree and hierarchical outdegree. Therefore, the hier-
archical indegree of level h with respect to node i, hence-
forth abbreviated as kih(i), is equal to the number of
edges received by level h from level h−1 . The hierarchi-
cal outdegree of level h is the number of edges sent from
that level to level h + 1.

C. Theoretical Models of Complex Networks

Two types of complex networks are considered in this
work: the uniformly-random network Erdős-Rényi (ER)
network [35]) and Watts-Strogatz small-world structures
(WS). The ER networks are obtained by assigning edges
between pairs of nodes with fixed probability. The Watts-
Strogatz networks adopted in this work start as linear lat-
tices with proper number of adjacent connections, with
subsequent rewiring of 10% of the edges. Only the largest
connected components of each of these 2 models are con-



sidered in this work. Directed complex neuronal networks
are respectively obtained by splitting each of the undi-
rected edges into two directed edges with opposite di-
rections (henceforth called asymmetric directed connec-
tions).

D. Integrate-and-Fire Model

The integrate-and-fire neuron adopted in the present
work is shown in Figure 1. It includes three components:
(i) integrator Σ, (ii) memory S(i) storing the accumu-
lated activation; and (iii) threshold element T (i). Once
the activation, received from the dendrites with respec-
tive weight modulation and integrated into S(i) (facili-
tation [13]), reaches the threshold value T (i), the neuron
fires, producing a spike which is conveyed by the respec-
tive axons to the adjacent neurons. The spike activation
is divided among the outgoing edges (axons), so that each
axon conveys 1/outdeg, where outdeg is the out-degree
of the firing node. Unlike in previous works [16–20], the
activation inside each memory S(i) is limited to L(i) at
all times. This implies that the portion of the activa-
tion received by a node which exceeds L(i) is discarded,
therefore undermining the conservation of the activation
received from the source node after the neurons start fir-
ing.

FIG. 1: The integrate-and-fire model of neuronal cell adopted
in the present work. It incorporates three components: (i)
integrator; (ii) memory (integrated activation) S(i); and (iii)
threshold T (i). Once fired, all axons emanating from neuron
i will convey the same amount of activation (equal to 1).

Oscillations have also been observed for the more
biologically-realistic situation in which the transfer ac-
tivation is constant (as in the action potential), though
they tend to take place along more limited parameter
configurations. These configurations will be explored in
a forthcoming work.

E. Spectral Characterization

Given a time series or signal s(t), it is often quite dif-
ficult to identify its periodical components. By reinforc-
ing the intrinsic periodicities along the signal, its auto-
correlation allows a more effective means for inferring
its constituent oscillations. In this work we resource to

the power spectrum P (f) of the signal s(t), which cor-
responds to the squared magnitude of the Fourier trans-
form of the autocorrelation of s(t) [27]. More specifically,
given the signal s(t), its Fourier transform is defined as

S(f) =
∫ ∞

t=−∞
s(t)exp(−i2πft)dt

The autocorrelation of s(t) is

a(τ) =
∫ ∞

t=−∞
s(t)s(τ − t)dt

Therefore, the Fourier transform of the autocorrelation
function is immediately given by the correlation theorem
as

A(f) = S(f)S(f)∗

where ‘S(f)∗’ is the conjugate of S. The magnitude of
the spectrum of s(t) is

|A(f)| =
√

S(f)S(f)∗dt

The power spectrum of s(t) is defined as being equal
to the squared magnitude of the spectrum of s(t), i.e.

P (f) = S(f)S(f)∗

The power spectrum allows the identification of auto-
correlations (especially oscillations) of the original signal.
More specifically, presence of peaks at specific frequen-
cies f in the power spectrum indicate the presence of
respective oscillations with frequency f in the original
signal s(t). All power spectra in this work are estimated
by using the Fast Fourier Transform (FFT).

F. Multivariate Statistical Methods

The spikes produced along time for each neuron in the
complex neuronal networks can be understood as pat-
terns, which can be compared and classified by using
multivariate statistics [27–29] and/or pattern recognition
methods [27, 29]. In the present work, we apply the Prin-
cipal Component Analysis (PCA) methodology [27, 30]
in order to decorrelate the spike patterns [31] and to
obtain more significant clusters in respective projections
of the original patterns.

Given a set of M spike patterns along H time steps, a
total of H measurements corresponding to the presence



of a spike at each time can be obtained. Let us define
the matrix U so that each of its rows corresponds to a
train of spikes, so that U has dimension M ×H . Let �μ
be the 1 × H vector containing the average number of
spikes at each time step h = 1, 2, . . . , H. Now, define the
new matrix F as

F = U − ones(M, 1)�μ

where ones(M, 1) is a M×1 vector of ones. The covari-
ance matrix, taking into account all pairwise covariances,
is immediately given as

C =
1

M − 1
FFT

Observe that C is symmetric. Let λi be the eigen-
values of C sorted in descending order, with respective
eigenvectors �vi. The Karhunen-Loève transform of the
original measurements is the stochastic linear transfor-
mation implemented by the matrix G given as follows

G =

⎡
⎢⎣
←− �v1 −→
←− �v2 −→
. . . . . . . . .
←− �vm −→

⎤
⎥⎦ (1)

The PCA method involves transforming the original
measurements as V = GUT with m << H , as allowed by
the high redundancy normally found along and between
signals. It can be shown that the resulting new measure-
ments V , which correspond to linear combinations of the
original measurements, are completely decorrelated by
the PCA methodology, therefore maximizing the varia-
tion of the data long the first new variables.

III. THE EQUIVALENT MODEL FOR
NON-UNIFORM DEGREES

Figure 2 illustrates the procedure which had to be
adopted in order to obtain the a more effective version of
the equivalent model of complex networks, by taking into
account non-uniformities of degrees amongst the original
nodes. First, the hierarchical organization of the origi-
nal network with reference to a given node i is obtained
(Fig 2). In this specific case we have 5 concentric lev-
els (h = 0, 1, . . . , H = 4), each containing 1, 3, 6, 2 and 1
nodes (i.e. n0(i) = 1; n1(3) = 1; n2(i) = 6; n3(i) = 2;
n4(i) = 1). The nodes within each concentric level which
have identical degrees are then subsumed into equivalent
nodes. Thus, nodes 3 and 4 at level h = 1 — all with
degree equal to 5 — become associated to the equiva-
lent node B. Nodes 5, 6 and 7, which have degree 4,

are subsumed by node F. The topology of the resulting
equivalent model is illustrated in Figure reffig:equiv.

Now, the weights associated to the edges in the equiv-
alent structure in Figure 2 are determined, similarly as
done in [20], by means of the following equation, applied
to each pair of equivalent nodes v and p

W (v, p) = k(v, p)/d

where k(v, p) is the number of original edges going from
the nodes associated to the equivalent node p to the nodes
associated to the equivalent node v, d =

∑
g∈Ω(p) k(g, p)

and Ω(p) is the set of equivalent nodes that receive a di-
rected edge from p. Obseve that W (b, a) expresses the
weight of the connection from a to b. The weights there-
fore obtained for the graph in Figure 2 are given as follows

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1/5 1/3 0 0 0 0
2/3 1/5 0 1/2 1/4 0 0
1/3 0 0 0 1/8 0 0
0 1/5 0 0 0 0 0
0 2/5 0 0 1/4 4/6 0
0 0 2/3 0 3/8 1/6 1
0 0 0 1/2 0 1/6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

For instance, as the two original nodes associated to
the equivalent node B, both of which with degree 5, send
two edges to the equivalent node A, two edges to D,
four edges to E, while two edges remain inside B, we
have W (A, B) = 1/5; W (D, B) = 1/5; W (E, B) = 2/5;
W (B, B) = 1/5.

The thresholds associated to neuron corresponding to
each equivalent node are immediately given as the num-
ber of original nodes associated to that equivalent node.
Therefore, we have that T (A) = 1; T (B) = 2; T (C) = 1;
T (D) = 2; T (E) = 1; T (F ) = 3; T (G) = 2; and
T (H) = 1. The limitations to the activations stored into
each memory are also set as being equal to the respec-
tive number of nodes within each equivalent node, i.e.
T (i) = L(i). Observe that the so-obtained equivalent
network itself correspond to an integrate-and-fire com-
plex neuronal networks with varying thresholds.

IV. OSCILLATIONS IN UNIFORMLY-RANDOM
NETWORKS

In this section we consider a series of complementary
approaches in order to characterize the transient and
equilibrium dynamics in two types of integrate-and-fire
complex neuronal networks — namely ER and WS struc-
ture. Representative samples of each of theses types of
networks have been selected with sizes N = 25, 50 and
100 and average degrees 〈k〉 = 10, 20, 30, 40 and 50.

Figure 3 shows the spikegrams obtained for the several
configurations of ER networks. Observe the sell-defined



FIG. 2: The hierarchical organization of a simple network (a) with respect to node 1. A total of 5 concentric levels have been
obtained. The dotted boxed identify the nodes with identical degrees at each concentric level, which are subsumed by the
respective equivalent nodes, yielding the equivalent network shown in (b).

avalanche transitions at the beginning of the spikes ob-
tained for all network configurations. In agreement with
previous results [19], the avalanches initiation times were
found to be quite similar for all network sizes, irrespec-
tively of the average degree. The early spikes obtained for
N = 50 and 〈k〉 = 10; N = 100 and 〈k〉 = 10; N = 100
and 〈k〉 = 20 and N = 100; 〈k〉 = 30 and 〈k〉 = 50 were a
consequence of the existence of communities which arise
in the ER networks arising from random fluctuations. In-
terestingly, the oscillations tended to become more regu-
lar (more similar frequencies) and synchronized with the
increase of the average degree. The routes to regularity
and synchronization this parameter is increased exhibited
groups of neurons producing similar spiking patterns.

The total number of spikes, shown in Figure 4 reflects
the ensemble behavior of the respective complex neuronal
networks, arising as a consequence of the linear super-
position of the spikes being produced by each neuron
(analogous to EEG potentials). The avalanche transi-
tions can be clearly identified, taking place after nearly
40 steps for N = 25, 40 steps for N = 50 and 80 steps
for N = 100, which confirms the previous study reported
in [19]. In several cases, a clear intense peak is observed
at the avalanche time, which is followed by oscillations
whose regularity tend to increase with the average degree.

In addition to the total number of spikes, it is also im-
portant to take into account the respective power spec-
tra, which are shown in Figure 5. Only the second half



FIG. 3: The spikegrams, i.e. the occurrence of spikes for each neuron (identified along the x−axis) along time (y−axis) obtained
for the ER configurations. Observe the avalanche transitions during the transient regime, as well as the increase of frequency
regularity and synchronization with observed for larger values of average degree.

of each signal (number os spikes) has been considered for
the calculation of the power spectra in order to represent
the equilibrium regime. So, a total H = 500 time steps
have been considered for the estimation of each spectrum.

Relatively rich spectral composition can be observed
for most cases, suggesting particularly complex behav-
ior of the oscillatory components. The progressive elim-
ination of frequencies with the increase of the average
degree is evident from Figure 5, especially for N = 50
and N = 100. In addition, the peaks of the spectra for
N = 50 and N = 100 tend to appear near 20 and 10 fre-
quency units, respectively. At the same time, it should
be observed that the peaks of the spectra in Figure 5
tend to shift to the right-hand side for larger values of
the average degree, signaling the increase of the main
frequencies. The more regular oscillations obtained for
larger average degrees are related to the fact that the
higher this parameter, the more regular the degrees of
the networks become. At the limit, for very large av-
erage degree, all nodes become connected, implying a
highly regular structure as far as all possible topological
features are concerned.

Unlike in the previous works [16–20], the activation
inside each neuron is limited to the respective maxi-
mum value L(i). In addition to being more biologically-
realistic, such a choice also allowed particularly interest-
ing oscillatory dynamics. At the same time, the limi-
tation of the internal activation implies that the overall
activation, constantly received from the source node, is

no longer guaranteed to be conserved. It is therefore in-
teresting to consider the total activation inside the whole
complex neuronal networks along time. Such a measure-
ment is depicted in Figure 6. Interestingly, two clearly
distinct regimes are immediately identified: one tran-
sient period in which the internal activation increases
linearly, followed by the steady-state regime character-
ized by nearly constant activation (even though activa-
tion is continuously pumped into the system through the
source node). The transition between these two regimes
is in most cases characterized by one abrupt surge of ac-
tivation, related to the main avalanche. Such a result
suggests that the main avalanche represents watershed
signaling the transition of the dynamics in the system
from conservative to dissipative.

Because the train of spikes produced by each individ-
ual neuron, shown in Figure 3, seems to be organized in
clusters during the route towards more regular and syn-
chronous firing (i.e. similar trains of spikes are obtained
for groups of neurons), it is interesting to investigate such
a possibility further. We do this with the help of the PCA
method, which produced the results shown in Figure 7.

It is clear from this figure that the increase of the aver-
age node degree tends to produce denser groups of spik-
ing patterns. At the same time, interesting clustering
structures are obtained for small average node degrees,
incorporating a dense central cluster (e.g. the PCA scat-
terplots for N = 25 and 〈k〉 = 10, N = 50 and 〈k〉 = 10,
and N = 100 and 〈k〉 = 10) surrounded by outliers. The



FIG. 4: The number of spikes along time obtained for the original ER complex network configurations.

dense cluster of spiking patterns tend to survive even for
relatively large average degrees in the case of N = 100.

The correlations between the total number of spikes
produced by each neuron during the simulations and
the respective degrees have also been considered, yield-
ing some of the most interesting results reported in the
present work. These scatterplots are shown in Figure 8.
Striking twin-linear correlation patterns have been ob-
tained throughout. Such scatterplots indicate that a
node with a given degree can spike at two distinct fre-
quencies of spikes, with the number of spikes being lin-
early related to the node degrees. At the same time,
given one of such rules, the number of spikes (i.e fre-
quency) tends to be correlated with the degree of the
original nodes. Such twin correlations are likely to be
related to clusters of original nodes appearing at differ-
ent concentric hierarchical levels, as discussed further in
Section VII.

V. OSCILLATIONS IN SMALL-WORLD
NETWORKS

Having obtained a comprehensive characterization of
the oscillations induced along the equilibrium regime in
ER networks, it is interesting to shift our attention to
the steady-state dynamics of WS integrate-and-fire acti-
vations. Figure 9 shows the spikegrams obtained for the
several parametric configurations of the WS models.

Several interesting features are evident from the re-

sults shown in Figure 9. Foremost are the more grad-
ual avalanches, which tend to be centralized around the
source node (node 1) [36]. Longer avalanche initiation
times are implied by larger network sizes N . Because
the increase of the average degree implies more degree-
regular networks, the gradual activation of the neurons
observed for relatively smaller average node degrees be-
came sharper for larger average node degrees. As with
the ER cases, the spiking patterns also tended to become
more regular and synchronized for larger values of aver-
age degree.

Figure 10 depicts the power spectra obtained for each
of the considered WS configurations. Such spectra, which
were obtained by considering the equilibrium regime of
the spikings (i.e. the time steps from 500 to 1000) are re-
markably similar to those obtained by the ER structures
(Fig. 5, suggesting some possible universality between
different complex networks types.

Regarding the total activation inside the system, the
revealed results (not shown in this work) also included
the two regimes as in the ER case, but with sublinear
increase during the transient regime, which was also duly
followed by the dissipative plateau of overall activation.

Figure 8 shows the scatterplots of the original node de-
grees and total number of spikes induced by each individ-
ual neuronal cell. Though these two features also tended
to be organized in terms of parallel straight groups for
small values of average degree, the correlations are now
substantially less definite.



FIG. 5: The power spectra obtained for the number of spikes produced by the whole original ER networks.

VI. EQUIVALENT MODEL PREDICTIONS

Having characterized the oscillatory integrate-and-fire
dynamics along the transient and equilibrium regimes in
terms of several measurements, it is time to consider the
respective equivalent models. The importance of such an
approach lies in the fact that these structures involve a
fraction of the original number of nodes, therefore allow-
ing the identification and theoretical modeling of more
definite relationships between structure and dynamics.
We start by considering the distribution of the equivalent
nodes and weights, as well as by comparing the predicted
and real number of spikes and spectra for ER.

Tables I and II give several features of the topologi-
cal structure of the equivalent models obtained for each
of the ER and WS configurations, respectively. These
features include the total number of original nodes in
each concentric level (upper line), the hierarchical de-
grees (second line), the total number of equivalent nodes
(in bold, third line), and the number of equivalent nodes
per concentric level (within brackets, third line). It is
clear from such measurements that the WS structure im-
plied a larger number of concentric levels in all cases. On
the other hand, most of the ER structures implied two or
three levels (the first of each level corresponding to the
source node), except for the network with N = 100 and
〈k〉 = 10, which implied 4 concentric levels. Also, because
of its greater degree uniformity, the WS model yielded
substantially fewer equivalent nodes than the ER struc-
tures. The relatively large number of equivalent nodes

obtained for each concentric level confirms the fact that
these two types of supposedly regular networks do actu-
ally a wide dispersion of node degrees, especially in the
case of the ER configurations. That is the reason why
equivalent models which do not take into account such a
heterogeneity cannot yield accurate predictions.

Though the partitioning of the concentric levels in
terms of groups of nodes with identical degrees was crit-
ical for proper modeling of the oscillatory dynamics, it
supplied as byproduct a new hierarchical measurement
corresponding to the number of nodes with specific de-
grees at each concentric level. Because such features have
been presently found to be essential for the integrate-and-
fire dynamics, it is likely that they will also provide valu-
able resources for the characterization of the topology of
the networks.

The weights of the equivalent models obtained for each
of the ER configurations are shown in Figure 12. The
equivalent nodes are organized bottom-upwards along
the columns and rows according to increasing degrees
of the respectively subsumed original nodes. It is clear
from these matrices that there are some equivalent nodes
which receive converging intense weights (the clearer rows
in the matrices — recall that we adopt the convention
that the edges extend from the columns towards the
rows). Such nodes are particularly important for the
non-linear dynamics because of their greater tendency
to spike, defining the main avalanches.

We now present some predictions of the dynamical fea-
tures as obtained by using the respective equivalent mod-
els. Figure 13 shows the number of spikes predicted by



FIG. 6: The total activation inside the complex neuronal networks is not conserved (recall that activation is being continuously
fed from the source node) after the main avalanche, but rather reaches a plateau of activation after the transient regime.

〈k〉 = 10 〈k〉 = 20 〈k〉 = 30 〈k〉 = 40 〈k〉 = 50

N = 25 1, 17, 7 1, 23, 1 1, 24 1, 24 1, 24

17, 72, 0 23, 23, 0 24, 0 24, 0 24, 0

16: (1) (10) (5) 5: (1) (3) (1) 2: (1) (1) 2: (1) (1) 2: (1) (1)

N = 50 1, 14, 35 1, 35, 14 1, 42, 7 1, 45, 4 1, 49

14, 168, 0 35, 310, 0 42, 246, 0 45, 176, 0 49, 0

23: (1) (10) (12) 22: (1) (13) (8) 17: (1) (12) (4) 9: (1) (6) (2) 2: (1) (1)

N = 100 1, 12, 83, 4 1, 36, 63 1, 67, 32 1, 68, 31 1, 75, 24

12, 189, 80, 0 36, 859, 0 67, 1117, 0 68, 1333, 0 75, 1358, 0

31: (1) (9) (17) (4) 34: (1) (15) (18) 33: (1) (19) (13) 36: (1) (20) (15) 34: (1) (20) (13)

TABLE I: Features of the equivalent models obtained for the ER configurations: number of nodes per level (first line);
hierarchical degrees of each level (second line); and total number of equivalent nodes (bold, third line) and the number of
equivalent per concentric level (within brackets).

the equivalent model for all the considered ER configura-
tions. By comparing with the respective real number of
spikes shown in Figure 4, it becomes clear that the equiv-
alent model allowed an impressive estimation of both the
transient and steady-state dynamics in every case.

The spectra predicted for the ER configurations by
using the equivalent model are shown in Figure 5. Again,
an impressive similarity can be appreciated between the
real values in Figure 14

Similarly impressive predictions of several aspects of
the dynamics were also obtained for the WS configura-
tions but are not shown here.

VII. OVERALL DISCUSSION

At this point, after having characterized several as-
pects of the integrate-and-fire dynamics obtained for the
original networks, as well as the features of the respective
equivalent models and predictions, it is time to integrate
all such information in order to obtain a more compre-
hensive explanation of the origin and properties of the
oscillations observed for the integrate-and-fire complex
neuronal networks.

The two clusters of correlations observed for the ER
model (Fig. 8) are particularly relevant, suggesting that



FIG. 7: The two-dimensional scatterplots obtained by the application of the PCA method over the spike patterns of each
neuron in the ER configurations.

〈k〉 = 10 〈k〉 = 20 〈k〉 = 30 〈k〉 = 40 〈k〉 = 50

N = 25 1, 10, 12, 2 1, 18, 6 1, 21, 3 1, 23, 1 1, 21, 3

10, 32, 15, 0 18, 84, 0 21, 54, 0 23, 21, 0 21, 57, 0

9: (1) (2) (4) (2) 10: (1) (6) (3) 9: (1) (5) (3) 8: (1) (6) (1) 10: (1) (6) (3)

N = 50 1, 9, 14, 24, 2 1, 19, 26, 4 1, 28, 21 1, 38, 11 1, 46, 3

9, 36, 54, 17, 0 19, 131, 62, 0 28, 271, 0 38, 309, 0 46, 114, 0

15: (1) (4) (4) (4) (2) 17: (1) (6) (8) (2) 16: (1) (8) (7) 16: (1) (9) (6) 12: (1) (8) (3)

N = 100 1, 11, 34, 38, 16 1, 21, 57, 21 1, 27, 55, 1 1, 42, 57 1, 50, 49

11, 57, 118, 91, 0 21, 179, 260, 0 27, 312, 338, 0 42, 577, 0 50, 843, 0

18: (1) (3) (4) (6) (4) 21: (1) (7) (9) (4 23: (1) (8) (9) (5) 22: (1) (11) (10) 19: (1) (9) (9)

TABLE II: Features of the equivalent models obtained for the WS configurations: number of nodes per level (first line);
hierarchical degrees of each level (second line); and total number of equivalent nodes (bold, third line) and the number of
equivalent per concentric level (within brackets).

the spiking frequency tends to increase linearly with the
indegree of the neurons. Indeed, the higher the indegree,
the more activation a neuron will receive along time, en-
hancing its chance of firing. Interestingly, the nodes be-
longing to each of the two groups straight correlations in
(Fig. 8) have been found to belong to distinct respective
hierarchical levels. As the neurons at different concentric
levels tend to fire with different frequencies, depending
on their respective number of nodes and connections, the
two groups of correlations are obtained, with the intra-
group straight dispersions being accounted by the above
observed tendency of the spiking frequency to increase
linearly with the indegrees.

Despite the clear separation of the hierarchical levels

provided by the correlation diagrams in Figure 8, it is
remarkable that the spiking patterns in Figure 7 failed
completely to clusterize with respect to the hierarchies.
This interesting fact can be taken as an indication that
though the nodes belonging to different hierarchical levels
do present a well-defined mean frequency, they are highly
irregular as far as the interspike times are concerned.
This can indeed be corroborated by the visual analysis of
the spikegrams in Figure 3 as well as from the rich spectra
(in the sense of exhibiting many frequencies) shown in
Figure 5. With this respect, it would be interesting to
consider PCA projections taking into account smoothed
versions of the spiking patterns, which would enhance the
correlations between those patterns and perhaps make



FIG. 8: The relationships between the total number of spikes per time step generated by each neuron and the respective degrees
for all the considered ER configurations. The number of spikes were counted during the last 500 steps of 1000 steps-long signals.

more evident the hierarchical clusters.
Because the considered WS structures implied larger

number of hierarchical levels (see Tab. II), with respec-
tive neurons firing at distinct group frequencies, the lin-
ear relationship between the spiking frequency and the
indegree became blurred in the respective scatterplots in
Figure 11.

VIII. CONCLUDING REMARKS

Though relatively simple, the integrate-and-fire model
yields rich dynamical features, including avalanches, ac-
tivation confinement inside communities and oscillations.
Having addressed and explained the first two phenomena
by using equivalent models [19, 20], it is now interesting
to consider the origins and properties of the oscillations
observed at both transient and equilibrium regimes in
integrate-and-fire complex neuronal networks. This con-
stituted precisely the objective of the present work. Its
main contributions are reviewed and discussed as follows.

Characterization of Several Aspects of the Os-
cillations: The oscillations in the integrate-and-fire
complex neuronal networks were characterized in terms
of several measurements and approaches, including the
visualization of the spikegrams, the total number of
spikes along time and respective power spectra, total acti-
vation along time, PCA decorrelation of the spiking pat-
terns in order to seek for clusterized dynamics features,
as well as correlations between the total number of spikes

and degrees of each neuron. Each of these approaches al-
lowed interesting complementary insights about the os-
cillatory behavior in uniformly-random (ER) and small-
world (WS) configurations. Particularly revealing were
the twin correlations observed for both models, which
were found to correspond to different frequencies of os-
cillations taking place at different concentric levels of the
networks. Such correlations also indicated that the mean
spiking frequency is linearly related to the indegree of the
respective neurons, which constutes a particularly rele-
vant property of the analyzed structures. Analogously
to the investigation of linear diffusive dynamics reported
in [32], this property links structure and oscillatory dy-
namics, implying that topological hubs will also become
hubs of activity in the integrate-and-fire dynamics. The
scatterplots obtained by the PCA projection of the in-
dividual spiking patterns yielded interesting structures
which, however, were not in correspondence with the
twin-correlation partitioniongs. The spectra, rich in fre-
quencies, confirmed the complex structure of the spik-
ings.

Identification of Two Clearly-Defined Regimes:
The consideration of the total activation along time re-
vealed two distinct and well-defined regimes: a conserva-
tive transient period, followed by the dissipative steady-
state regime. The critical point separating these two dy-
namics was found to correspond to the main avalanches.
The transient evolution was found to be more gradual for
the WS configurations, which could be indeed expected
because of the less pronounced (if any) avalanches in this



FIG. 9: The spikegrams obtained for the WS configurations.

type of networks.
Equivalent Model for Non-Uniform Degrees:

Following the comprehensive characterization of the os-
cillatory properties of the integrate-and-fire dynamics
in complex neuronal networks, an enhanced equivalent
model was developed which takes into account the diver-
sity of degrees within each concentric topological level.
More specifically, the nodes with identical degrees at each
of the levels are associated to respective equivalent nodes,
allowing a more detailed model. Such a modification was
found to be critical for paving the way to impressively ac-
curate predictions of both the transient and steady-state
features of the non-linear dynamics.

Limitation of the Stored Activation: Differently
from the previous approaches reported in [16–20], the ac-
tivation stored inside the state (memory) of each neuron
was limited to be at most equal to the respective thresh-
old. In addition to being more biologically-realistic in
which concerns neuronal networks, this choice also al-
lowed more interesting oscillatory dynamics.

Additional Hierarchical Measurements of Net-
work Topology: In addition to paving the way for pre-
cise estimations of the dynamics, the enhanced equivalent
model also yielded as a byproduct new hierarchical mea-
surements corresponding to the number of nodes with
specific degrees found at each of the respective concen-
tric levels. Because such topological features proved to be
fundamental for modeling the non-linear integrate-and-
fire dynamics, it is expected that they can also provide
valuable features for the characterization and classifica-

tion of complex networks [30].
Identification of the Origin and Properties of

Oscillations: As a consequence of the comprehensive
characterization and modeling of the integrate-and-fire
dynamics, a better understanding of the origins and prop-
erties of the spiking oscillations have been achieved. Of
special importance are the positive correlations between
the mean spiking frequency and the neuron indegrees and
the fact that nodes at distinct concentric levels tend to
fire with different ensemble frequencies. The combina-
tion of these two effects yielded the remarkable twin-
correlation diagrams. In addition, it has been found that
the oscillations tend to unfold after the main avalanches,
i.e. along the steady-state of the dynamics, as revealed
by the total activation in terms of time.

Several are the possibilities for further related investi-
gations. In principle, most of the suggestions for future
work identified in [16–20] can be immediately extended
to the present work. More specific possibilities for futher
investigations are identified and briefly discussed in the
following.

Further Simplifications by Considering Degree
Intervals: It would be interesting to consider the sub-
suming of the nodes in each concentric level not strictly
under the condition of identical degrees, but by having
similar degrees (i.e. comprised within specific intervals).
Such a modification would immediately contribute to
a further reduction of the overall number of equivalent
nodes, making the equivalent models more compact. It
would be interesting to quantify the effect of such a sim-



FIG. 10: The power spectra obtained for the number of spikes produced by the whole original WS networks.

plification on the accuracy of the respective predictions
of the dynamical features.

Modular Equivalent Model with Non-Uniform
Degrees: Because of the finer level of representation
allowed by the currently reported equivalent model, it
would be potentially useful to extend the previous equiv-
alent models used to explain and predict avalanches and
activation confinement inside communities.

Oscillation Analysis with Action Potentials:
While the current work, analogously to the previous
works [16–20], considered the activation of each spike
to be equally distributed amongst the outgoing edges
(i.e. axons), it would be interesting to consider the more
biologically-realistic hypothesis that the spikes have con-
stant amplitude (action potential). Preliminary investi-
gations have already indicated that avalanches, activa-
tion confinement and oscillations are all present in this
type of non-linear dynamics. However, it would be inter-
esting to perform more systematic related investigations.

Chaos and Chaos Control: The particularly com-
plex spiking patterns obtained after the main avalanche
suggest that the dynamics of the considered networks
may be chaotic. It would be particularly promising to
apply methods from dynamics systems, such as delay
diagrams and fractal dimensions, in order to search for
chaotic behavior in the integrate-and-fire complex neu-
ronal networks. Another interesting perspective would be
to apply concepts from chaos control in order to interfere
with the several remarkable aspects of the investigated
dynamics.

Distinct Weights: So far, we have been limited to

integrate-and-fire complex neuronal networks containing
identical weights. Indeed, the weights have only been
used in order to obtain the respective equivalent models.
In this case, the weights correspond to the proportions of
the activations (edges) which are sent to each equivalent
node. It would be interesting to consider complex neu-
ronal networks incorporating weights, in order to inves-
tigate the effects of such distributions on the respective
dynamics.

Investigation of Oscillations in Other Theoret-
ical Complex Networks Models: Because of space
restrictions, the oscillatory behavior of integrate-and-fire
complex neuronal networks described in this work has
been restricted to a uniformly-random and a small-world
theoretical models of complex networks. It would be par-
ticularly promising to extend such an investigation to
other important types of network topologies, especially
scale free and geographical. The consideration of the
highly regular knitted structures [33] would also be in-
teresting.

Applications to Real-World Problems: Though
we have so far considered the oscillations in theoretical
models of complex neuronal networks, the respective con-
cepts and methods are immediately applicable to real-
world networks. Of particular interest would be to char-
acterize and model the neuronal network of C. elegans,
as well as cortical networks.



FIG. 11: The relationships between the total number of spikes per time step generated by each neuron and the respective
degrees, all the considered WS configurations. The number of spikes were counted during 1000 time steps.
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FIG. 13: The total number of spikes along time t for the ER configurations as predicted by the respective equivalent models.

FIG. 14: The power spectra predicted by the respective equivalent models for the ER configurations.


