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Architecture and Control of a DFLL for Fine-Grain D VFS in 

GALS Structures 

Carolina Albea1*, Diego Puschini1, Suzanne Lesecq1, Edith Beigné1 and Pascal Vivet1 

 

Abstract — Fine-grain Dynamic Voltage and Frequency Scaling (DVFS) is becoming a requirement 

for Globally-Asynchronous Locally-Synchronous (GALS) architectures. However, the area overhead 

of adding voltage and frequency control engines in each voltage and frequency island must be taken 

into account to optimize the circuit. A small-area fast-reprogrammable Digital Frequency-Locked 

Loop (DFLL) engine is a suited option, since its implementation in 32nm represents 0.0016 mm², 

being 4 to 20 times smaller than classical used techniques such as Phase-Locked Loop (PLL) in the 

same technology. Another relevant aspect with respect to the DFLL is the control design, which must 

be suited for low area hardware. In this paper, an analytical model of the system is deduced from 

accurate Spice simulations. It takes into account the delay introduced by the sensor. From this model, 

an optimal and robust controller with a minimum implementation area is developed. The closed-loop 

system stability as well as the robustness against process and temperature variations are also 

ensured. 

Keywords — Frequency-Locked Loop (FLL), Digitally-Controlled Oscillator (DCO), robust control, 

optimization, system stability, perturbation rejection. 



 

 

1 INTRODUCTION AND RELATED WORKS  

The continuous increase in clock frequency together with technology scaling has generated the 

distribution of a single global clock over a large digital chip tremendously difficult. Globally 

Asynchronous Locally Synchronous (GALS) design alleviates the problem of clock distribution by 

having multiple clocks, each one being distributed on a small area of the chip. An integrated circuit 

with different clock frequency domains appears as a natural enabler for fine-grain power-aware 

architectures. Actually, power consumption is a limiting factor in VLSI integration, especially for 

mobile applications. Dynamic Voltage and Frequency Scaling (DVFS) [1] has proven to be highly 

effective to reduce the power consumption of the chip while meeting the performance requirements 

[2]. The key idea behind local DVFS is to control at fine grain the supply voltage and the frequency 

of an island at runtime to minimize the power consumption of the considered island while satisfying 

the computation/throughput constraints [3]. 

The DVFS techniques mainly rely on two ‘actuators’, namely voltage and frequency actuators. 

These actuators need to be dynamically controlled in order to reduce the power consumption while 

maintaining the required performance. More precisely, the control policy must be carefully designed 

in order to achieve high power efficiency at low area cost. The voltage actuator fixes the supply 

voltage of the Voltage and Frequency Island (VFI). It can be a classical buck converter [4] or a digital 

Vdd-hopping converter [5], [6]. The frequency actuator is a Clock Generator. Its frequency control is 

related to the supply voltage control in order to avoid timing faults [7]. This Clock Generator is 

classically based on a Phase-Locked Loop (PLL) or a Frequency-Locked Loop (FLL).  

Another consequence of technology scaling is the in-die and die-to-die process variability (P- 

variability). From a practical viewpoint, it is becoming increasingly difficult to manufacture 

integrated circuits with tight parametric values [6]. In other words, the circuit performance is 



 

 

becoming more and more unpredictable and the optimum functional frequency can differ from one IP 

to another on the same chip not only due to Process variation but also to Temperature and Voltage 

changes (PVT) over time. As a consequence, in-die process variation means that the optimum 

functional and energetic point of the whole circuit can be found if VFI number i has its functioning 

frequency in the range ],[ max,min, ii FF  [8]. If the clock is generated for the whole circuit, and distributed 

in each VFI, the maximum acceptable frequency (i.e. the one that will ensure no timing fault for any 

VFI) will be { }iFF i ∀= ,maxmax min , leading to a suboptimal circuit functioning, some VFI being 

under-clocked. Therefore, in order to obtain the best possible circuit performance, the clock must be 

locally generated and controlled according to Process, Voltage and Temperature (PVT) variations. 

Recently, control techniques were applied to the problem of DVFS (for instance, see [5], [9]). These 

works only address the closed-loop control of the voltage actuator, this latter implementing a Vdd-

hopping technique.  

1.1 Structure of the closed-lopp system and main objectives 

In the context of the industrial French project LoCoMoTiV1 , a DFLL is selected as second actuator 

(i.e. frequency actuator) due to the area constraint: in a fine-grain GALS context, the DFLL can 

indeed be replicated in each VFI of the size of a processor in a manycore architecture. The frequency 

range at the FLL output is ]4,1[  GHz. The DFLL was implemented in 32nm technology. The layout 

developed is fully compatible with standard cell methodology, to be easily integrated at GALS 

System on Chip (SoC) level. Its area is about 0.0016 mm2 which is 4 to 20 times smaller than a 

classical PLL in the same technology. 

The first objective of the present paper is to propose a particular implementation for the fully 

Digital FLL (DFFL) that was integrated in each VFI of the LoCoMoTiV circuit. Note that this paper 

 
1 Local Compensation of Modern Technology Induced Variability (LoCoMoTiV) is a CEA-LETI Minatec Campus internal Project. 



 

 

is not dedicated to LoCoMoTiV but to the design of the control law embedded in the DFLL that must 

be robust to PVT variability. The general structure of the DFLL (see Figure 1) is composed of three 

main blocks, namely, a Digitally-Controlled Oscillator (DCO) that provides at its output a signal with 

frequency clk_dco, a sensor to measure the frequency at the output of the closed-loop system, and a 

controller that first compares the targeted reference and the measured frequency and then applies 

some “intelligent control”. The controller design strongly depends on the DCO and sensor models. 

Due to PVT-variability, the characteristics of the DCO cannot be considered identical from one VFI 

of the chip to another, nor from one chip to another. Moreover, it evolves with temperature and 

power-supply voltage changes (VT-variability). Thus the closed-loop mechanism at least mitigates 

the performance dispersion. It is remarkable that the whole architecture is digital. 

 

Figure 1.    DFLL block diagram. 

 

The second and main objective of the work presented in this paper is to design a controller for the 

DFLL taking into account the following requirements: 

•  closed-loop stability;  

•  suited performance (no overshoot, no static error, short transient period, see Figure 2); 

•  robustness with respect to PVT variations. The control law that will be implemented within 

the circuit must ensure the “correct” functioning of the DFLL whatever the underlying 
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process parameters, temperature and supply voltage are (within a given range); 

•  low area cost and 

•  exogenous perturbation rejection in the frequency output. 

Therefore, the designed controller must not only guaranty the set-point stabilization, but also other 

criterions. 
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Figure 2.    Overshoot of the frequency output not allowed. 

From accurate Spice simulations, it has been seen that the DCO can be modeled with a linear 

model. Moreover, the sensor introduces a delay that must be taken into account. The system 

characteristic can change due to PVT effects. A simple integral controller that requires a minimum 

implementation area is enough to fulfill all the requirements given above. To tune the control gain, a 

robust and optimal control problem is formulated, for which a functional must be minimized. In order 

to solve this problem some Linear Matrix Inequalities (LMIs) are defined [11]. Satisfying these LMIs 

within the optimal problem, all requirements above are fulfilled by the closed-loop system. 

Consequently, an optimal and robust control law for the DFLL is reached. 

Some simulations under the Matlab/Simulink environment show the powerfulness of the controller 



 

 

proposed. Moreover, the closed-loop system was implemented in RTL, obtaining similar simulation 

results to the ones obtained in Matlab/Simulink. The resulting layout was implemented in the 

LoCoMoTiV circuit in CMOS 32nm. 

1.2 Related Works 

PLL or FLL circuits can be considered good candidates for frequency generation within integrated 

circuits. Both circuits are widely used building blocks. However, new or improved architectures still 

continue to appear in order to meet today constraints induced by technology scaling. PLLs are usually 

considered area consuming [12], which becomes clearly a disadvantage when the PLL has to be 

replicated in each VFI. Note that the stability of the PLL is also usually much more difficult to obtain 

than with an FLL. This is due to the “integrator” that naturally appears in the PLL structure. 

A fully integrated PLL for frequency synthesis in wireless applications with 45nm CMOS 

technology is proposed in [13]. The analog PLL is made of a top-biased VCO, a divider in the 

feedback loop, a Phase/Frequency detector (PFD) and a charge pump. The output frequency ranges 

from 2 to 2.6 GHz. The loop filter is not explicitly reported. The area cost (0.042 mm²) of this analog 

PLL is slightly larger than the one (0.028 mm²) of an all-digital PLL developed in the same 

technology [8]. This latter digital PLL contains a DCO made with tri-state inverters, a digital 

Proportional-Integral (PI) controller and a divider in the feedback loop. The comparison between the 

reference frequency and the divided output frequency is achieved with a bang-bang phase/frequency 

detector (see [15] for a high level architecture scheme of the digital PLL). The output frequency range 

is from 0.84 to 13.3 GHz. 

[16] describes a PLL with leakage current and power supply noise compensation, designed for 

32nm technology. The PLL contains classical elements such as a PFD, a charge pump, a controller, a 

Voltage Controlled Oscillator (VCO, made of a cascade self-biasing current source and a current 



 

 

starved ring oscillator with 11-stage of inverters) and a frequency divider, but also a leakage 

compensator, a Power Supply Noise Compensator (PSNC) and a voltage buffer block in the 

controller. The controller is a classical filtered PID. The output frequency ranges from 40 to 725 

MHz. Results are obtained in simulation and no information on the area cost is given. 

The FLL in [12] is made of two Frequency-to-Voltage Converters (FVC), an operational amplifier 

(equivalent to a subtractor and a simple proportional filter), a VCO (ring oscillator of five delay cells) 

and two frequency dividers. Note that both FVC must be carefully paired to reduce the static error. 

However, due to the control scheme chosen, the static error is unavoidable. Therefore, this scheme 

will not be able to fulfill the requirements given above. With 0.35µm CMOS technology, the total 

active area of the circuit is 0.22 mm². The response time to switch the output frequency from 171 to 

230 MHz is 2 µs. The VCO output frequency ranges from 161 MHz to 256 MHz. 

A digital FLL for low power operation in multicore architecture is described in [17]. The targeted 

application is quite similar to the one of the present work. A tapped ring oscillator is implemented. A 

digital counter senses the FLL output frequency. A compare-subtract bock computes the discrepancy 

between the targeted set point and the frequency measurement. The input of the tapped ring oscillator 

is changed through a shift register when this discrepancy is lower/higher than a given threshold. The 

range of frequencies is between 1.62 and 10.71 GHz. The estimated size is 0.001225 mm². Note that 

the correlation between the frequency discrepancy and the shift is not indicated and the control cannot 

be strictly speaking considered as a classical control scheme. Results are obtained in simulation with 

IBM soi12s0 technology (45nm). 

[18] describes a dual-loop Clock and Data Recovery circuit with frequency-aided acquisition to 

enhance the tracking range. The FLL and PLL activate alternatively. The closed-loop system contains 

a special phase detector, a charge pump, a controller and a VCO built with a voltage/current block 



 

 

and a Current-Controlled Oscillator (ICO). The open-loop transfer function is of 3rd order with a 

double integrator and a filtered Proportional-Derivative filter as controller. Note that due to this 

double integrator, any uncertainty in the capacitor values of the controller will induce stability 

concerns, not acceptable for a safe functioning of the closed loop system. The circuit has been 

fabricated in 0.35µm technology.  

As can be seen, to our knowledge, none of the previously published systems fully satisfy the 

requirements that have been fixed for this circuit design. Therefore, a Fully Digital variability-aware 

DFLL is developed.  

Table I summarizes the characteristics of the frequency generation circuits summarized above. 

TABLE I 
COMPARISON OF FREQUENCY GENERATION CIRCUITS (“-“  MEANS “ MISSING INFORMATION ”) 

Ref. Type 
Tech. 
nm 

Output  
Freq. 

Area 
mm² 

Resp. 
time 

[13] Analog PLL 45 - 0.042 - 

[14] Digital PLL 
45 
 

[0.84; 13.3] GHz 0.028  - 

[16] PLL 32 [40; 725] MHz - - 

[12] FLL 350 [161; 256] MHz 0.22 2 µs 

[17] Digital FLL 45 [1.62; 10.71] GHz 0.001225 - 

[18] Dual digital FLL-PLL 350 1.25 GHz - - 

 

The rest of the paper is organized as follows. Section 2 provides the architecture of the blocks that 

form the DFLL. The analytical models of the DFLL blocks are presented in Section 3. Section 4 is 

dedicated to the control structure that is selected here, and an optimal and robust control problem is 

also formulated. In Section 5, this problem is solved by providing an approach to tune the controller 

gain. The results obtained together with a comparison with state-of-the-art solutions are provided in 

Section 6. The paper ends with conclusions and future work.  



 

 

1.3 Notation 

For a given S, the notation Co(S) denotes the convex hull of set S. The variation of ξ  in two 

consecutive sampling times is given by: 

k1k: ξξξ∆ −= +  (1)  

Finally, 2L  is the space of xk with the norm:  
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2 DFLL   ARCHITECTURE  

In order to model and develop the DFLL control, the architecture that implements the DFLL is 

analyzed in this section. A classic closed-loop DFLL is composed of three main blocks: a DCO, a 

sensor and a controller (see Figure 1). However, for implementation issues, the whole DFLL is split 

in five main elements (see Figure 3): 

•  the Digitally-Controlled Oscillator (DCO)  is composed of a Digital-to-Analog Converter (DAC) 

and a Voltage-Controlled Oscillator (VCO); 

•  the DFLL Control  implements the controller and handles the configuration from the host; 

•  the Clock Counter acts as sensor. It measures the clock generated by the DCO; 

•  the Clk-ref Counter  generates the time reference signals; 

•  the Clk Divider & Selector builds various divider clocks and selects the appropriate one to 

obtain the output clock clk_out. 



 

 

 

Figure 3.    DFLL architecture. 

2.1 Digitally-Controlled Oscillator 

The DCO is the only part of the design that is implemented in custom cells. The VCO (Figure 4) is 

based on a ring oscillator composed of four Voltage Controlled Delay cells (VCD) [19]. The 

propagation delay through these delay cells is controlled by two bias voltages, namely, an upper bias 

and a lower bias. To obtain the DCO, a binary code (Freq) is transformed by two R-2R DACs into an 

upper and a lower bias voltage applied to the VCO. The two DACs are composed of driving buffers 

(simple digital standard cells) and a resistance ladder following an R-2R pattern. The DAC output 

impedance R is set to drive the VCO input. 

 

Figure 4.    DCO architecture. 
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Overall, the linearity of such circuit is affected by stochastic resistance variability, but the absence 

of any analog amplification (no analog buffer or OTA) makes the design extremely compact and more 

robust. Figure 5 shows the frequency characteristics of the post-layout DCO (with extracted R & C 

parasites) in function of the 8-bits binary word input. The Y-axis corresponds to the measured raw 

frequency: this frequency must be divided by 2 to obtain a usable clock frequency with a 50% duty 

ratio. The “nominal” case (curve in the middle) is measured at 25°C with a 1.1 V supply voltage. The 

“best” case (top curve) is obtained with best case parasitic extract (minimum R, minimum C), 

‘FastFast’ transistors, with supply voltage of 1.2 V and a temperature of 125°C. The “worst” case 

simulation is performed with worst case parasitic extract (maximum R, maximum C), ‘SlowSlow’ 

transistors, at 1.0 V supply voltage and a temperature of 0°C. This figure shows also the nominal 

output frequency, which corresponds to 4 GHz for the maximum input. 

 

Figure 5.    DCO characteristic (Measured raw frequency vs. input word). 



 

 

2.2 Sensor 

The feedback sensor is implemented as a synchronous counter. This device counts the number of 

generated clock pulses during a given time period. This reference time is fixed and synchronized with 

an external low frequency clock (100 MHz). In the proposed architecture (see Figure 3), the sensor is 

implemented by the two blocks Clock Counter and Clk-ref Counter. 

The Clk-ref Counter generates two reference control signals from the external low frequency clock, 

which are the count and update signals. The count signal indicates the count period while the update 

signal indicates when the measurement should be read by the Clock Counter. The count period is 

programmable between 1 and 7 reference clock periods. The Clk-ref Counter is implemented as a 

controlled synchronous counter, clocked on clk_ref at 100 MHz. For the nominal case (maximum 

output 4 GHz, see Figure 5), the count period is 5 reference clock periods. 

 

Figure 6.    Synchronous counter: counting chronogram. Here the sampling 
period is refe TT 6= . 

The Clock Counter acts as the real sensor, counting the number of pulses generated by the DCO. It 

is implemented as an asynchronous ripple counter controlled by the count and update signals 

generated by the Clk-ref Counter. Once the update phase starts, the counter is registered to be used by 

the DFLL Control engine, and the counter is cleared to start the next count phase. Figure 6 shows the 
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counting chronogram. Note that for 5 reference clock periods the total sensor delay corresponds to 60 

ns. 

The Clock Counter is fully implemented using the clk_dco domain. Since this counter needs to be 

very fast, the counter is partially conceived as an asynchronous ripple counter. The 2 first bits are 

implemented as a ripple counter; this decreases the maximum input frequency clk_dco from 4 GHz 

(in the nominal case) down to 2 GHz (for bit 0) and down to 1 GHz (for bit 1). Then a standard 

incrementer is used, at 1 GHz, instead of a full carry ripple adder, avoiding a large skew in the output 

bits (see Figure 7). The two input control signals, count and update (generated from the clk_ref 

domain), need to be properly synchronized with clk_dco. A schematic view of the Clock Counter is 

presented in Figure 7. 
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Figure 7.    Counter schematic. 

2.3 Controller 

The controller implemented in this architecture will ensure the proper functioning of the circuit. It 

is designed not only for the closed-loop system to reach the set point, but also to fulfill the 

requirements given in Section 1.1. The controller proposed is described in details in Section 4 while 

the method used to tune its parameter is given in Section 5. 



 

 

This controller must be developed taking into account its hardware implementation and the area 

constraint. 

2.4 Clock Divider and Selector 

The frequency of the DCO output signal is in the range 1 to 4 GHz. This high frequency cannot be 

directly used by digital synchronous circuits for the applications targeted. It is thus required to 

downscale the frequency generated in the MHz range. As a consequence, the following functions are 

provided:  

•  a clock division by a 21 to 216 ratio. This is simply implemented by chained flip-flops. The 

first flip-flop ensures a clean 50% duty-cycle at the DFLL output. The generated DFLL clock 

can therefore be from 2 GHz down to 100 KHz; 

•  a clock selector, which allows dynamically selecting among 2 clock division factors, without 

any glitches. This mechanism can be used to very rapidly switch between two frequencies. 

This can be used for instance for DVFS in coordination with Vdd-Hopping [6]. 

 

3 ANALYTICAL MODELS 

The analytical models for the DFLL blocks (DCO and sensor as shown Figure 1) are derived in this 

section. These models will be used in order to choose the controller structure, taking into account the 

requirements given in Section 1.1. 

3.1 Digitally-Controlled Oscillator 

From accurate Spice simulations, it can be assumed that the DCO has a linear model that evolves 

with respect to Process variation but also to Temperature and Voltage changes (PVT) over time.  



 

 

The DCO model is assumed be 

kwkdcok wBuKbdcoclk ++=_  (3)  

1_ ℜ∈kdcoclk  is the analog frequency output, ℵ∈ku  is coded over 8 bits between 0 and 255, 

respectively. b is the DC-offset, KDCO is a gain. kw  is an energy-bounded signal to take account 

perturbations, and Bw is a constant that defines the perturbation magnitude. In order to consider the 

PVT variation effects, it is assumed that parameters KDCO, b and Bw can change in the intervals 

•  ],[ M
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DCODCO KKK ∈  
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•  ],[ Mm bbb ∈  

3.2 Sensor model 

The sensor, which is a counter, measures the frequency of the DCO output signal. This sensor 

introduces a delay of one-sampling period 

1ksk dco_clkK:M −⋅=  (4)  

Ks is a positive constant that represents the sensor gain. Note that the delay is present in the feedback 

loop, see Figure 1. 

4 CONTROLLER STRUCTURE AND CONTROL PROBLEM STATEMENT  

4.1 Structure of the controller 

From the requirements provided in Section 1 and the models of the DCO and the sensor, the DFLL 

control engine can be selected as a simple digital integral filter: 
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whereK  is the controller gain to be tuned, u is the input of the DCO (see Figure 1) and ε is the 

difference between the Set_point (i.e. the desired output, coded on a byte) and the measurement kM  

given in (4) 

ksk Mintop_SetK: −⋅=ε  (6)  

Then, (5) yields 

k1kks1kk Ku)MSet_pointK(Kuu ε+=−⋅+= −−  (7)  

Note that the choice of (7) for the controller structure will also limit the Silicon area. 

The structure used to implement the controller is made of three arithmetic operators and a 

command register as shown in Figure 8. The first operator (Sum0) calculates the difference between 

the desired output (Set_point) and the measurement from the counter M, representing the frequency of 

the DFLL output signal. This error kε  is affected by the controller gain K  in the Product operator. 

Finally, the last addition (Sum1) and the register (Reg) implement the Backward Euler accumulator, 

being ku  the actual output applied to the DCO and 1−ku  the output at the previous sampling time. 

 

Figure 8.    DFLL control engine. 
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signal, for instance every 6 clk_ref cycles in the present work. This means that a new control value ku  

is computed from to the newly measured counter value Mk and from the previous control value 1−ku  

every 6 clk_ref values.  

The whole data-path logic is implemented using only combinational logic. This logic clearly cannot 

be executed in only one cycle with a 1 GHz clock. Thus a multi-cycle path and its associated control 

logic is used. Note that they are not shown in Figure 8 for the sake of clarity. Finally, ku  is registered, 

to generate a stable value, to be sent out to the DCO. 

The controller gain K  must be selected in such a way that the closed-loop system satisfies the 

whole set of requirements. 

4.2 Closed-loop system 

Define the output error signal with 

ksk dco_clkintop_SetK:e −⋅=  (8)  

Then, from (7), it comes that 11 −− += kskk eKKuu . 

An analytical closed-loop system is obtained. From (3) and (8), the error equation is 

intop_SetKwBuKbe skwkDCOk +−−−=  (9)  

Now, from (9) it follows that 

DCO

s1kw1k
1k K
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u

+−−−
= −−

−  (10)  

Applying (10) in (8), it comes that 

1ks
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Then, the control law in (11) is introduced in the open-loop system (9), leading to the closed-loop 

system 

kw1kw1ksDCO1kk wBwBKeKKee −+−= −−−  (12)  

This can be rewritten in the following linear form: 

,wBwBuBAee 1kwkw1kk1k +++ −++=  (13)  

where 

sDCOKKB,1A −==  (14)  

and 

k1k Keu =+  (15)  

Note that b does not influence the system response. 

4.3 Control problem statement 

Equation (12) can be rewritten in the following explicit closed-loop form, in such a way that a ∞H  

control problem can be formulated: 

1kwkw1kk1k wBwBuBAee +++ −++=  (16)  

1k1k ez ++ =  (17)  

Problem 1: The problem is to find the optimal gain K, such that the controller (7) is robust and the 

system response is the shortest possible without producing an overshoot. Besides, there exists a 

Lyapunov functional 0Vk >  such that k1k VV −+  along the solution of (16) fulfills 

0VV k1k <−+  (18)  

and for any perturbation input, there exists a minimum disturbance attenuation 0* ≥γ  such that, for 



 

 

all *γγ ≥ , the L2 gain between the perturbation vectors kw  and 1kw + , and the output vector 1kz +  is 

less or equal to γ , i.e. 
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The solution to this problem guarantees a suited performance as well as a robust stability and a 

robust disturbance rejection for system (16)-(17). Section 5 solves Problem 1 with an optimal ∞H  

design of the controller. 

5 OPTIMAL ∞H CONTROL DESIGN 

In order to cope with Problem 1, a mathematical manipulation of (16) is performed via a variable 

change. This allows obtaining feasible LMIs for a robustness problem [20]. 

5.1 Model transformation 

Consider 

k1kk ee:y −= +  (20)  

Then, (16) is rewritten in the form [21]: 
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This system can be compactly written as: 
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where 
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5.2 Control design 

Problem 1 will be formulated in terms of Linear Matrix Inequalities (LMIs) [22]. 

Assumption 1: There exists a Lyapunov function ,Vk  with condition (18) and a ,γ such that 
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where [ ]T1kkk wwe: +=ζ is an augmented state vector and 44×ℜ∈Γ  is a symmetric matrix.  

kV  is defined by the Lyapunov function 
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T
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Hereafter, a sufficient condition for asymptotic stability and disturbance rejection is derived. 

Theorem 1: Consider system (16)-(17) with 11K ×ℜ∈  and energy-bounded kw  and 1kw + . If the 

following LMI is satisfied: 
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then the equilibrium of the closed-loop system (16)-(17) is asymptotically stable and there exists ,∗γ  



 

 

such that for ∗<γγ , condition (19) is fulfilled. 

Proof: The goal is to satisfy (24) for both disturbance rejection and asymptotic stability of the 

equilibrium for system (16)-(17). 

Lyapunov method yields: 
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The expression of k1k VV −+  in (24) is replaced by (27) in such a way that the LMIs (26) are 

obtained.� 

5.3 Robust control 

Now, the uncertain parameters given in Section 3 are taken into account in order to guarantee the 

system robustness at the same time than the closed-loop stability as well as disturbance rejection for 

the DFLL system to be ensured. This means that a robust control under parameter uncertainties 

satisfies those properties. For this reason, Theorem 1 is extended in the case of polytopic 

uncertainties. 

Denote 

[ ]wBBK=Ω  (28)  

Assume that { }4,3,2,1j,Co j =∈ ΩΩ  namely 
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being the vertices of the polytope  described by [ ])j(
w

)j(
j w

BKB=Ω  for j=1,2,3,4. 



 

 

Pre- and post-multiplying the LMI (26) by { }1,1,Q,QdiagQ 11=  and taking 0PQ 1
21 >= − and 

1111 QPQP =  the following sufficient condition is achieved. 

Theorem 2: Consider system (16)-(17) with energy-bounded kw  and 1kw + , and 11K ×ℜ∈ . If there 

exist 11T ×ℜ∈  with 1
1TQK −=  such that 
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Then, in the vertices j, the equilibrium is asymptotically stable as well as the disturbances are rejected 

in the entire polytope.  

Proof: This is an extension of Theorem 1 for polytopic uncertainties with some mathematical 

manipulations. Therefore, this theorem proof is straightforward.� 

5.4 Optimal and robust control 

In order to satisfy the whole Problem 1, more assumptions and a lemma are performed. 

Assumption 2: For 0wk ≡ and 0w 1k ≡+ , the poles of the closed-loop system (16) are 

,BK1Z +=  (31)  

If 0Z >  is chosen, overshoots are avoided. In addition, if K is maximized, the response time is the 

shortest possible one [23]. Note that, 1ks1kk eKKuu −− += . 

Remark 1: From Theorem 2, it is ensured that Z<1, that is, the closed-loop system is stable. 

Assumption 3: There exists a functional cost 
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The first term on the right hand side quantifies the response time. Likewise, the other terms (on the 

right hand side) quantify the perturbation attenuation. 

Lemma 1:  Suppose that Assumptions 1, 2 and 3 are fulfilled and 1
)j(T

1
)i( QZQZ = . Then the 

optimal controller gain K for Problem 1 can be found by: 
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where 
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)i( =+=  (34)  

Proof: The optimal Problem 1 is solved by Lemma 1 if condition (19) is fulfilled [24]. � 

For 0wk ≠  and 0w 1k ≠+ , and under zero initial conditions 
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The sum of both sides is 
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For ∞→k , under the zero initial condition 0V0 =  and the positive definitiveness of the Lyapunov 

function, it is proved that 
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Corollary 1: The optimal gain K obtained applying Lemma 1 guaranties both robust stability and 

robust disturbance rejection. It also provides a short transient period without overshoots.   

5.5 Optimal and robust control result 

Now, an optimal and robust control is computed for the DFLL by employing the approach presented 

above. 

Digitally-Controlled Oscillator . The DCO parameters can change within the following intervals: 

[ ] 3
DCO 1030,10K −⋅∈  GHz / LSB (39)  

The perturbation parameter is given by 

[ ]4.0,1.0∈wB  (40)  

 

Sensor. The maximum frequency at the input of the sensor is supposed equal to 5GHz and 

85=sK LSB/GHz.  

 

The optimal control problem (Problem 1) is solved leading to 

,392.0K =  (41)  

together with ,8.1=γ  and 2663.0P1 = . 

6 DFLL  IMPLEMENTATION  

This section deals with implementation issues of the DFLL. Firstly, the design and validation flow 



 

 

is detailed. Then, Matlab/Simulink simulation results are discussed. Finally, the RTL design and 

experimental results are presented. 

6.1 Design and validation flow 

At the first stage of the design-flow, a full custom design has been performed for the DCO, 

validated at Spice level. It was characterized at various PVT corners, obtaining the results shown in 

Figure 5. Based on these results, a Matlab/Simulink model has been adjusted to describe the DCO 

functioning. The DFLL control architecture was then designed and tested in Matlab/Simulink 

applying the methodology proposed in Section 5. The Matlab/Simulink testbench was used to 

perform a fixed-point analysis of the data-path logic in order to optimize the precision and the area 

overhead. 

Then, the implementation was done following the standard RTL methodology: the complete DFLL 

design has been developed in VHDL RTL. For validation proposes, a DCO behavior model has been 

given in VHDL in order to model the unique custom block of the system. A specific RTL test-bench 

has been developed to validate the DFLL behavior and the programming interfaces. 

At the third design-flow level, specific Matlab/Simulink-RTL co-simulations have been performed 

between the RTL DFLL control parts and the Matlab/Simulink model of the DCO. These simulations 

validated the dynamic response and convergence of the real RTL design with the accurate DCO 

Matlab/Simulink model that has been identified from Spice simulation results at the first design-flow 

level. 

The last design-flow level can be realized: synthesis and place&route using CMOS 32nm standard 

cells were performed with standard tools, considering the DCO as an analog macro. Post layout 

simulations on back-annotated Verilog netlist validated the placed and routed design and verified the 

correct timing constraints of the fast clock domains. 



 

 

6.2 Matlab/Simulink simulations 

Simulations in the Matlab/Simulink environment have been performed in such a way that the main 

model features were tested. A fixed-point analysis has been accomplished to determine the number of 

bits and point position needed for each operator and operand of the controller. The Set_point input as 

well as the gain input were fixed to unsigned 8 bits allowing a frequency precision of 20 MHz/LSB 

without clock division. Internal nodes were set as follows: 1−k

ε
 to signed 9 bits, 1−kK

ε
 to signed 17 

bits and fixed point at 8, uk and uk-1 to unsigned 16 bits and fixed point at 8. uk is resized to unsigned 

8 bits prior its application to the DCO input since the DAC input is 8 bits. This bit sizing ensures that 

uk can neither be negative nor greater than the DCO input range.  

Hereafter, some simulations show the robustness of the controller proposed for the DFLL. The 

sampling period is equal 60 ns. 

Remind that the DFLL characteristic curve can change due to PVT variations as shown in Figure 5. 

In order to validate the system robustness with respect to these changes, three different models are 

considered (see Figure 9): 

•  syst 1: 0315.0and1019.8287 -3 −=⋅= bK DCO ; 

•  syst 2: 5785.4and1014.25 -3 =⋅= bK DCO ; 

•  syst 3: 0785.2and1025.5 -3 =⋅= bK DCO . 

The optimal and robust control gain has been fixed with the methodology presented in section 5. 

Therefore, whatever the characteristic of the DCO is, the closed-loop system will behave as expected. 

Moreover, exogenous perturbations at the output of the DCO will be rejected. 



 

 

 

Figure 9.   Variation of the characteristic curves. 

Figure 10 shows the closed-loop response of ”syst 1”, “syst 2” and “syst 3” to a change in the 

Set_point. Note that the offset and the gain of the DCO change, which can happen due to PVT 

variability. These tests show that the equilibrium point is robust with respect to the uncertainty in the 

characteristic curve. Note that the response time at 5% is achieved before the 7th sampling time. 

 

Figure 10.   Evolution of the output frequency for three 
different systems (blue), set point (red) and response time at 
5% (green). 



 

 

Figure 11 shows the frequency output, when the characteristic curve changes (“syst 1”, “syst 2” and 

“syst 3” respectively) and when there is some exogenous perturbations at the output of the system. 

This example shows the robustness of the system when the optimal robust control tuning is 

employed. 

 

Figure 11.   Evolution of the output frequency with 
perturbation and for three different systems. 

6.3 RTL implementation 

Following the various steps of the design and verification flow discussed above, the DFLL control 

developed in the present paper has been implemented in RTL. It must be stated that the DFLL 

together with its controller is fully compatible with standard cell methodology. Figure 12 shows the 

DFLL layout. This layout was implemented in a 32 nm technology. With a total area of 0.0016 mm² 

for the whole DFLL (0.000264 mm² for the DCO and 0.001336 mm² for the controller in standard 

cells) it is 4 to 20 times smaller than classical PLLs in the same technology. The small area overhead 

enables easy integration in each VFI of a GALS SoC, allowing fine-grain DVFS when combined with 

voltage actuators. 



 

 

40 µm

40
 µ

m
DCO

 

Figure 12.   DFLL layout. 

Figure 13 shows the signal evolutions of the VHDL RTL simulations for “syst 1”. Note that the 

intpo_Set  is synchronized when getting into the closed-loop system in order to avoid an impact on 

the DFLL stability. The delay presented by the sensor is seen in sensor_value. These results match the 

ones obtained in the Matlab/Simulink environment, represented in Figure 10. 



 

 

 

Figure 13.   RTL simulation of syst 1. 

 

7 CONCLUSION  

In this paper, a small-area Digital Frequency-Locked Loop (DFLL) engine is employed to implement 

DVFS in GALS architecture. The use of a simple controller has allowed a fully digital 

implementation in standard cells, attaining a small area. Implemented in 32 nm technology, the design 

proposed represents 0.0016 mm2, i.e. from 4 to 20 times smaller than classical techniques used such 

as Phase-Locked Loop (PLL) in the same technology. Likewise, this controller is optimal with respect 

to system performance (short transient response and no overshoot) and perturbation attenuation. 

Another suited property offered by the controller is the robustness with respect to PVT variations. 



 

 

Moreover, the closed-loop system stability is guaranteed whatever the characteristic of the DCO is in 

a given range. Some simulations under Matlab/Simulink show the closed-loop system robustness. 

The DFLL with its controller was implemented in RTL in order to obtain the implementation layout.  

The first version of the DFLL (included the controller proposed in this paper) has been 

implemented in 32 nm technology. The circuit is currently under foundery and performances attained 

on the real chip will be included in the final paper. 
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