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A pseudosimilarity approach to a steady free convection

flow

ZAKIA HAMMOUCH*
LAMFA, CNRS UMR 6140, Universitle Picardie Jules Verne,
Faculte de Mattematiques et d’'Informatique, 33, rue Saint-Leu 80039 AgjiErance

Abstract

In this communication we deal with the exact solutions chfigseudosimilarity” of a steady free convection prob-
lem studied by by Kumaran and Pop (2006). They showed theg tkeno similarity solution for the case of a wall
temperature a$,,(z) ~ 2 (resp. a wall heat flux ag,(z) ~ =~ %, and a dimensionless heat transfer coefficient
hw(z) ~ z~1). We shall present some results about existence and astjoipébaviour of new exact solutions of the
resulting boundary value problem for each case.
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PACS: 44.20.+h, 44.25.+f, 47.15.Cb.

1. Introduction

Heat and mass transfer in saturated porous media occurg/wid@atural phenomena and indus-
trial applications, such as extrusion of polymers, cordimicasting, colling of metallic plates,etc.
More details about the existing literature on this subject be found in the books (Neild and Be-
jan, 1999; Vafai, 2000; Pop and Ingham, 2001) and the refeetherein.
Recently Kumaran and Pop (2006) presented some originaltsesbout a particular case of this
phenomena. They considered a fluid (water) characterizedrelationship between the tempera-
tureT and the density

P ; Pe = _7(T - Tc)Qv (11)
wherep, is the maximum density in the liquid phase, and the fluid thermal expansion coeffi-
cient of water ati°C'. We note that equatiofi (1.1) have been obtained by Gorer6j196is kind
of problems have been the subject of many papers, see fances{Soundalgekar, 1980; Black el
al., 1984; Poulikakos, 1984).
In (Kumaran and Pop, 2006), the authors studied the freeemtion about an impermeable flat
plate embedded in a porous medium filled with water near tbmity of its density maximum
associated with the temperature4st” at atmospheric pressure with the conditiofx, cc) = 0
(uniform free stream velocity). They showed analyticaliglaumerically, the existence of multi-
ple similarity solutions to the governing boundary layeuaiipns for a class of problems namely,
wall temperature (VWTZ,(z) = z™), variable heat flux (VHFg,, (z) = 2= ), or variable heat
transfer coefficient (VHTCh,,(z) = x%). They also gave a nonexistence result far —%),
this singular case will be the main goal of the present ingasbn. We shall adopt a pseudosimi-
larity approach to construct exact solutions for the r@sglboundary value problem and to study
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their precise asymptotic behaviour.
According to Pop and Ingham (2001), the physical model isrilesd by the following equations

uly, + 0T, =T, (1.2)

Supplemented by one of the following conditions

T(x,0) =a™ (VWT),
{ T,(z,0) =2 "= (VHF), (1.3)
—AT,(z,0) =25 (VHTC).

Whereu andv are the velocity components alom@ndy axes, respectively; is the fluid temper-
ature and the exponent is a real number.

In the usual way, we introduce the stream functiorfsatisfyingu = v, andv = —,). Then the
above model can be expressed in a simpler form

by, = T2
UyTe — wr yyv (1.4)
@Z)gﬁ(l‘ 0) Uy hmy—>00 ’ll)y(l‘, y) =0.

Define the similarity transformations

Y(x,y) =2"f(n), T(x,y)=a2"0(n), n=yr, (1.5)

wheref is the dimensionless stream-functidns the dimensionless temperatunas the similar-
ity variable, and the real numberands satisfy the relations+s = 1,r—s = 2m andp = 2’“—;1

Injecting (I.b) in [1.4) we get

f/ = 927
0"+ 2 f§ —mf'9 =0, (1.6)
f(0) = fu, 0(c0) =0,

subject to one of the following conditions

0(0) = (a),
0'(0) = (), (1.7)
0'(0) + ( ) 0 (o)

Where f,, = ——=-wv,, (the suction/injection parameter), and the prime denoiiésrentiation
with respect to;.
The boundary value problerh (IL.6) , for = —%, under the condition (iy; = a, b, ¢, will be the

studied in detail in the next section.

2+1

2. The pseudosimilarity solution

Magyari et al. (2002) have studied the well-known free catiee boundary layer flow problem
about a vertical flat plate with an inverse-linear tempegatlistributionT’, (v) = T, + < where
a > 0, under the conditiomn(xz,o00) = 0. They have shown that the similarity solutions in the



classical form are missing, and proved that in order to aveecthis difficulty, the stream function
1 has to be shifted by the termlog(z), o > 0 in order to get exact solutions. In this section we
adopt the same concept to obtain exact solutions for pro(fle-(I1.6), under the conditiof (1.4),
whenm = —%. First, we study the case of a Variable Wall Temperature.

e The (VWT) flow

In this situation, the wall temperature is given by

Ty(x) = 773, (2.1)
Following the work (Magyari et al., 2002), we define the nexeain-function
U(x,y) = Fn, ). (2.2)
If m = —% we deduce from the previous section that{ 0, s = 1) and then the pseudosimilarity
transformations are defined by
U(z,y) = Fp,0), T(ry)=a:0(n2), 1=y 2, (2.3)

whereF is the modified dimensionless stream-functiéns the dimensionless temperature and
is the pseudo-similarity variable, substituting[in 1.5 wbtain

F, =02
(2.4)
Oy + %Fn@ =1F,0, — 2F,0,.

As in (Ibrahim and Hassanien, 2001), the te®n can be neglected and we may assume that
6 = ©(n,z) (then the termf,, can also be neglected). By writinki(n,z) = f(n) + h(x),

equation [[T}4) yields

! _ 2
{ g” —|_— zf”(? = —zh'0'. (2.5)
Hence there exists a real numlaesuch that
=0
xh' = o, (2.6)

0"+ 1f'0+ 06 =0.

The integration of the second equation givés) = o log(z) + cst, and then the new stream-
function is given by (z,y) = f(n) + olog(z) + ¢st. Coming back to problenf (3.4), we see that
o has a physical meaning sinee= —v,, (the suction parameter).

In the remainder, we deal with the following boundary valuebem

=6
0" + 16+ 06 =0, 2.7)
0(0) =1, 6(c0) = 0.

Let us notice that the no-slip conditigit0) is not required, in fact it can be any real number (see
(Hammouch, 2006) for more details). On the other hand, thstiution of (2.7) in .7), gives
an unforced Duffing equation (Panayotoukanos et al., 2002)

0" + %03 +06 =0 (2.8)
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with the conditions
0(0) =1, 6(c0)=0. (2.9)

whose study in the phase plane reveals the stability of tigguarequilibrium point0, 0) is related
to the sign otr. Fisrt of all we show that has to be positive, for this sake we define the Lyapunov
function for equation[(2]8) by

1
vwn:9+1¢, (2.10)

which is positive and satisfiég () = —o#'>. If we assume that < 0, V is monotonic increasing
and then conditio(oco) = 0 could not be satisfied. Then, the real numbes assumed to be
positive, it follows that the equilibrium poir(D, 0) is globally asymptotically stable and all local
solutions of [Z]8){(Z]9) remain bounded and tend to zerofatity.

However, we remark that we cannot exclude the existence @llaisg solutions for smallest
values ofo (see Figure. 1).

-0.6- 0=01,012,..,0.2 N

Figurel Temperature Profiles as a functiompfor small values ot and#’(0) = —0.1, for the case (VWT).

To establish the existence of monotonic decreasing pestiutions to[(2]8)F(.9), we shall adopt
a Crocco variables approach (Nachman and Callegari, 18&0nura and Ushijima, 2004). For
the sake of simplicity, we assume that the functiom) (which can be regarded as an independent
variable) is strictly monotoni¢d’ < 0, for n > 0). Actually, solutions which are increasing on
some interval0, ry) may exist, although this case can be studied in an analogays w

Let n(#) denote the inverse function éfn). Defining

s=6, and  o(s) = —0(n(s)), (2.12)
leads to )
¢¢:a¢—§§ 0<s<l, (2.12)
under the conditions
»(0)=0 and  ¢(oc0) = 0. (2.13)

Integrating ovex0, s) leads to
1 [ 73
s) =08 — = ——dr, s€(0,1). 2.14
o) =os—3 [ = 0.1 (2.14)
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To classify the pseudosimilarity solutions fo {1.5)(1¥8¢ study the solutions of the more simpler
integral equation[(2.14) with the conditioris (2.13). Weicmthat there is some analogy between
problem [2.B){(2]9) and the following one:

Find the traveling-wave (TW) solutiort$(z, t) = 6(x — ot), with the conditiord(co) = 0, (where

o is the wave speed), for a special case of the Fisher-KPPiequat

Uy = U + U (2.15)

In the light of the work by Gilding and Kersner (2005) conagegnthis kind of problems (2.15),
we deduce the existence of a threshold vaitisuch that existence and uniqueness of solution to
(B.9)-(2.9) is guaranteed if = o*. While for o > ¢* there are multiple solutions.

Now we pay attention to get estimation fet, and to study the precise asymptotic behaviof of

S . 2
asn — oo. Multiplying equation [2.7]2) by- leads to
S

(%)l+ (¢_05)2 =02

52
then N
(2) 2
S S
A simple integration ovef0, 1) gives
1
o(1) + 5 <o, (2.16)
consequently
o > % (2.17)

Now we proceed to determine the largd&ehavior of these solutions. For this sake, we will exploit
an idea of Brézis et al. (1986). First we show that for lajgee have the following limits

/ /

lim — = —o (%) or lim 7= 0 (%x). (2.18)

Actually, settingy(n) = % gives

2

0
x’+o—x+x2+5 =0, (2.19)

for all n € (0,00). Because thab(s) < os we get that the functiory is negative and bounded
(—o < x(n) < 0), then forp largex has a finite limit, say. This limit satisfied* + /o = 0 which

leads to [2.18).
Assume now thatx) holds, then we have for all € (0,1)
1.9(s) Sy @ e(r))dr
By the L'Hopital rule, we get
1 .9(s) 1
lim —[—2 —g] = —— 2.21
lim 5[~ —o]=—¢ (2.21)
then
83
o(s) ~os+ — as s—0 (2.22)
60



Next, we assume that£) holds, from equatior (2.12) we get immediately

3

é(s) ~ > as s— 0. (2.23)
20
Coming back to problen (2.8)-(2.9) we conclude that
-Foro = o*; O ~e m (exponential decay).
-Foro > o*: 0~/ (algebraic decay).

In the remainder we shall obtain some estimatesfd). We stress that the real numbgil) =

—6'(0) plays the role of the shooting parameter for problgn] (228))( We note also that equation
. , . 1

(B-18) gives a lower estimation féf(0), actually we havé’ (0) = —¢(1) > —/o? — 3

To obtain an upper estimation féf(0) we look for a positive solution td_(2.8)-(2.9) such that

¢ :=6'(0) > 0. In the above analysis, we have said that for any 0 the (unique) local solution

to (2.8)-(2.9) with the initial conditio(0) = 1, is global and goes to zero at infinity. Sin¢e

is positive there exists a positive numbgrsuch that? is monotonic increasing o0, n.) and

¢'(n;) = 0. Setting\ = 6(n;) andd, = 6(n + n.) for all n > 0. The shifted functiord, is a

solution to [2.B){(2]9) with the initial condition

9((0) =A> 1, 9’((0) =0.

Using the transformations

n— A7, and 0, — T

Clearly the functiord, is a solution to the following problem

0! + 00 + A% =0,
(2.24)
077(0) =1, 01((0) =0, HC(OO) =0,
wheres, = A\ ~%0.
Thanks to the above analysis, probldm (P.24) has positiuiso if and only if
A
> —. 2.25
> (2.25)
On the other hand, integratinfy (2] 24) ovérr.) gives
[
oA+ 5/ 0 (n)dn = ¢ +o.
0
From which we deduce that\ < ¢ + o. Hence inequality[(2.25) is satisfied if
ggo—(a 3—1). (2.26)

In conclusion, under the (VWT) condition, problejn {2.8)92(a) admits multiple solutions (flows).

Every solution is uniquely parametrized by the skin-foatparametef’ (0) € [—, [o? — 1 0 (oV3 - 1)]

37
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Figure2 Temperature Profiles as a functiompfor various values of and related values @&f (0), for the case
(VWT).

e The (VHF) flow

This flow is characterized by the wall heat flgw(z) = 2~z and the wall temperatufg, (z) = 0.

In this case, we study problefn (2.8),(2.9) supplementedcbbgition (b).

First we note that it is a solution to [(Z]8)f(2]9) the(+-¢) is also a solution. Hence The above
analysis for (VWT) can be extended to the case of a (VHF) flomnggquently, multiple solutions
exist if a lateral injection is applied with an injection pareter sufficiently largev(, = o > %).

e The (VHTC) flow

Consider now the case of (VHTC) floy (R.§)-(2.9)-(c). In swituation the dimensionless heat
transfer coefficient is given b¥,(z) = z~!. Taking into account condition (c), we look for
solution satisfying

0(0) = —0(0) = x,

wherex is positive constant. Introducing the new variables

K

n — K, and 60—

we find the new problem

0" + % +0.0 =0 with 0k = 3,
(2.27)
0(0)=1, ¢(0)=—-x2 0(c0)=0

Using the same arguments as for the (VWT) flow, we deduce lilea¢ texists a minimal valug'
such that problen{(2.27) has positive solutions onby,if> o,*, more precisely* > %\/g Every

solution is parametrized by (0) € [—@ [02 — 35,04 (0,V3 — 1)} .



3. Conclusion

In the present paper, we have showed how to construct eXatioss by introducing an additional
logarithmic term in the usual stream-function. The reléyanblem has been studied via a Crocco
transformation combined with an integral equation methidte following conclusions have been
made as a result of our investigation:

e There is existence of a minimal valaé (suction or injection) such that multiple solutions exit
only for ¢ > ¢* and uniqueness holds for= o*.

e Solutions forc = ¢* exhibit an exponential decay while for > ¢* all solution are decaying
algebraically.
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