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ABSTRACT

Motion segmentation methods are effective for tracking video
objects. However, objects segmentation methods based on
motion need to know the global motion of the video in order
to back-compensate it before computing the segmentation. In
this paper1, we propose a method which estimates the global
motion of a High Definition (HD) video shot and then seg-
ments it using the remaining motion information. First, we
develop a fast method for multi-resolution motion estimation
based on spatio-temporal tubes. So we get a homogeneous
motion vectors field (one vector per tube). From this motion
field, we use a robust approach to estimate the parameters of
the affine model that characterizes the global motion of the
shot. After back-compensation of the video shot global mo-
tion, the remaining motion vectors are used to achieve the
motion segmentation and extract the video objects.

Index Terms— Robust Motion Segmentation, Global Mo-
tion Estimation, Multi-Resolution Motion Estimation, Spatio-
Temporal Tubes.

1. INTRODUCTION

The methods for tracking video objects are efficient to encode
a video shot. Indeed, one possible strategy is to use adapted
coding parameters for coding a given video object during all
its lifespan. By video object, we mean typically, a spatio-
temporal shape characterized by its texture, its color, and its
own motion that differs from the global motion of the shot.

In order to track spatio-temporal objects in a video se-
quence, they need to be segmented. In the literature, sev-
eral kinds of methods are described. These different methods
use spatial and/or temporal [1, 2, 3] information to segment
the objects. In the case of temporal information, it is nec-
essary (when the camera moves) to know the global motion
of the video to perform an effective video objects segmenta-
tion. Horn and Schunck [4] proposed to determine the optical

1This research was carried out within the framework of the ArchiPEG
project financed by the ANR (convention N◦ANR05RIAM01401).

flow between two frames. Thus, it allows to obtain informa-
tion about the moving objects. Otherwise, the motion para-
metric model of the successive frames can be estimated [5].
Once the motion model is known, the global motion is back-
compensated, and only the moving objects remain with their
local motion information. In our method, we use a motion
information per block, but for a group of frames (GOF), to
estimate the global motion and realize the motion segmenta-
tion. This motion estimation needs to reflect as much as pos-
sible the real motion (i.e. the motion vectors of the scene real
objects) of the block to give the right information to be pro-
cessed. Exactly we use a motion estimation method which,
considering several successive reference frames, estimates the
motion of spatio-temporal tubes [6], with the hypothesis of
an uniform motion along the GOF. Once, we have the mo-
tion vectors of the tubes, the second step is the estimation of
the global motion. We adapt the motion vectors accumulation
method described by Coudray [7] to estimate robustly the pa-
rameters of an affine motion model from the obtained motion
vectors. Then, the global motion is compensated, and only the
vectors which belong to moving objects remain non null. For
the last step we realize the motion segmentation from them.

In the following section, we present the fast multi-resolut-
ion motion estimation method based on tubes. In section 3,
we describe the robust computation of the global motion pa-
rameters, and in section 4, the motion segmentation method
is given. Finally, we show the simulation results in section 5,
and we conclude in section 6.

2. FAST MULTI-RESOLUTION MOTION
ESTIMATION BASED ON TUBES

To obtain motion information correlated with the motions of
real life objects in the video shot, we consider several suc-
cessive frames and we make the assumption of an uniform
motion between them. The fixing’s time of the Human Visual
System (SVH) is about 200 ms [8], so as the next generation
of HDTV will use 1920×1080 as frame definition in progres-
sive mode with a frame rate of 50 Hz, our method will use a



GOF composed of nine frames (180ms). Thus, we ensure the
coherence of the motion along a perceptually significant du-
ration. The current frame is at the center of the GOF. So, four
past frames, and four future frames are located around it. We
use the information along these nine frames to constrain the
motion estimation, and obtain motion vectors more correlated
with the real motion. In practice, we use only five frames from
the GOF to evaluate the motion vectors, as illustrated in fig-
ure 1. We consider an uniform motion and we create a spatio-
temporal tube. The tube allows to track a given block aligned
on several successive frames. This constraint produces a mo-
tion vectors field more homogeneous (smoother) and more
correlated with the real motion.
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Fig. 1. Spatio-temporal tube: the five frames used to determine the
motion vector of a given block.

We adapt the multi-resolution motion estimation method
introduced by Péchard et al. [6] because it is well suited
to deal with HD videos. The HD frames are spatially fil-
tered and sub-sampled by a factor of six (first the frames
are sub-sampled by a factor of two, and then by a factor of
three), because the cutting in radial frequencies of the HVS
is not dyadic and the angular selectivity varies with the ra-
dial frequency. Before each sub-sampling step, an appropri-
ate (half-bandwidth, and then one-third bandwidth) low-pass
filter is performed to avoid aliasing. From the filtered and
spatially sub-sampled frames, we compute the motion esti-
mation. Each block is simultaneously compared to its poten-
tially corresponding blocks aligned in the previous frames and
in the next frames, as illustrated in figure 1. The global error,
MSEG =

∑
k MSEk with k = −4,−2,+2,+4, is the sum

of the four Mean Square Errors (MSE) between the current
block and its corresponding blocks in the previous frames and
in the next frames. The index k represents the positions of the
reference frames in comparison to the current frame. MSEk

takes into account the three YUV components of each block.
The chosen motion vector of a tube gives the lowest MSEG

between the current block and its corresponding blocks in the
four frames. The motion vectors are first estimated at the low-
est resolution. Then, they are up-scaled appropriately to the
higher resolution to be used as an initial search point for the
motion estimation at the new resolution. These aligned blocks
constitute a spatio-temporal tube.

Finally we get a motion vectors field with one vector per
tube, each motion vector is applied to the block of the image
Ft in the center of the tube. This motion vectors field is the
input of the next process : the global motion estimation.

3. ROBUST GLOBAL MOTION ESTIMATION

Once we computed the motion estimation, the obtained mo-
tion vectors reflect more effectively the motion of the real life
objects. The next step is to identify the parameters of the
global motion of the GOF from this motion vectors field. Sev-
eral models exist to estimate the global motion of a video, we
use an affine model with six parameters as written in Eq. 1:(
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)
, (1)

where ai (i = 1 . . . 4) are the deformation parameters (ex-
actly a1 and a4 characterized the zoom, and a2 and a3 the
rotation), tx and ty are the translation parameters. Vx, Vy , x
and y are respectively the horizontal and vertical components
of each motion vector, and the spatial position of the block in
the image Ft.

3.1. Global motion parameters estimation

We adapt the method introduce by Coudray [7] who estimated
the global motion from a MPEG2 stream. For us the basic
information used to estimate the global motion is a motion
vectors field, one motion vector per tube. We estimate the
parameters of the affine model from the motion vectors field
using the following equations:

a1 = ∂Vx
∂x

, a4 =
∂Vy

∂y
, a2 = ∂Vx

∂y
, a3 =

∂Vy

∂x
,

tx = Vx − a1.x− a2.y, ty = Vy − a3.x− a4.y.
(2)

The global motion is often due to the camera motion,
which can be relatively complex. As a zoom or a rotation
affects the estimation of the translation parameters (because
all these parameters are correlated), the global motion esti-
mation (GME) is realized in two steps. First, we compute the
deformation parameters from each motion vector. Each cal-
culated derivative produces an assumption for the correspond-
ing global motion parameters. To find the main assumption
(with the highest probability) that matches the global motion
parameter, the unit assumptions are accumulated in an his-
togram (one respective histogram for each global parameter).
In order to gather the close assumptions, they are weighted
using a Gaussian distribution.

The localization of the main peak of a given histogram
produces the value retained for the corresponding parameter
of the global motion model. To refine the localization of a
main parameter, a least squares method is used to estimate
the bend around the found position. Once the deformation
parameters have been identified, they are used to compensate
the original motion vectors field. Thus, the remaining vectors
correspond only to the translation motions. These remaining
motion vectors are then accumulated in a two dimensions his-
togram using a weighted Gaussian distribution (see Eq. 3):

G(x, y) =
1

2πσ2
e
− x2+y2

2σ2 , (3)



where x and y represent the compensated components of
the motion vectors Vx and Vy respectively. The main values
of the translation parameters are obtained by the localization
of the main peak in the two dimensions histogram. For the
last step the motion vectors are also compensated with the
obtained translation parameters.

3.2. Weights of confidence for a robust estimation

For a given block of Ft (see figure 1), the motion vector ob-
tained from the motion estimation minimizes the MSE. If the
blocks of the tube are located inside a uniform region in the
images, the matching of blocks is not confident. Thus, the
blocks of the tube are not necessarily the blocks that belong to
the real object. In this case, the motion vector associated with
the tube could not reflect the real motion. To be robust, such
motion vectors should not contribute to the GME. For this rea-
son the motion vector contribution has to be weighted in func-
tion of the spatio-temporal content of the blocks belonging to
the tube. Briefly, the motion vectors from highly textured and
oriented areas give more reliable information about the real
motion than those which belong to uniform areas. Hence we
exploit the spatial activity of the tube to qualify it. To com-
pute the spatial activity of the blocks, we use spatial gradients.
The higher the spatial gradients of the tube blocks, the more
confident its motion vector is.

For each block, we use two spatial gradients, ∆V and
∆H , which are respectively the average vertical and the av-
erage horizontal gradients. Depending on these features, a
block may be labeled as a smooth, a fairly textured, or a
highly textured area.

A block labeled as a highly textured area, can be it in only
one direction, i.e. one of the two spatial gradients is high
and the other is low. If the global motion is a translation in
the same direction (vertical or horizontal) as the textured area,
then the motion vectors of the blocks located in that region are
not confident. So we distinguish the two spatial gradients. In
practice, the confidence granted to the two components of the
motion vector is calculated in a suitable way according to the
blocks spatial gradients (Ψ(∆H) and Ψ(∆V )). The function
Ψ, to obtain the weights according to the spatial gradients, is
computed as following (as illustrated in figure 2):

Ψ(x) =

{
(x

8
)3/2, x ≤ 8

1−Ψ(16− x), 8 < x < 16
1 otherwise

(4)

Figure 2 shows the weights of confidence for a GOF of the
HD video sequence Shields. We observe that the maps that
illustrate the weights of confidence of the GOF are different
according to the orientations of the spatial gradients.

From now, to achieve a robust estimation of the global
motion parameters, instead of the derivatives of the tube mo-
tion vectors, we use their weighted versions for their accumu-
lation as described in the previous sub-section.
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(a) Representation of the confidence
function.

(b) Picture from the video sequence
Shields. Exactly this picture is used as Ft.

(c) Map of the weights for the horizontal
gradients (white = 1, black = 0).

(d) Map of the weights for the vertical
gradients (white = 1, black = 0).

Fig. 2. Illustration of the confidence function.

4. MOTION-BASED SEGMENTATION

For the GME, we determined the translation parameters by
the localization of the maximum in the accumulation histogram
of the already compensated motion vectors. Assuming that
each histogram peak represents an object motion, we do not
retain only the main peak but all of them to segment the GOF.

In practice the first step consists of eliminating the noise.
A reject threshold is defined empirically and all the values un-
der it are fixed to zero. From the first detected peak which cor-
responds to the global maximum in the accumulation space,
for all the positions connected to this peak, a local gradient is
computed. This gradient is the difference between the popu-
lations of the two connected cells but in the direction of the
maximum. As long as the gradient is positive, the tested posi-
tion is considered as belonging to the peak, and the algorithm
is iterated with the connected cells. At the end, all the posi-
tions belonging to the main peak are labeled. A new maxi-
mum is then detected among all the remaining (not labeled)
cells, and the algorithm is iterated as long as there remain non
null cells without label. If one cell is labeled as belonging to
several peaks, it is linked to the closest peak.

5. SIMULATION RESULTS

We used one 1080p (Tractor), and two 720p (Shields and New
mobile calendar) HD sequences from SVT [9]. These video
sequences present different motions of the camera, and they
contain one or several moving objects. We compare the re-
sults of our GME method to those from the Motion2D soft-
ware [10]. Motion2D processes from a dense motion vectors
field, and estimates robustly the parameters of the global mo-
tion using a multi-resolution least mean squares method (it is
currently the reference method for the GME). As Motion2D
computes the parameters of the global motion for two suc-
cessive frames, we combine the obtained parameters for nine
consecutive frames in order to compare them with ours. Fig-
ure 3 shows some characteristic results obtained with the New
mobile calendar video sequence. The x-axis represents the
GOF index. The global deformation parameters for the zoom



(a1 and a4) are not presented because they are estimated as
near from zero according to the two methods. Excepted a
slow zoom out, the only motions of the camera are transla-
tions. The two distinct objects (the calendar and the train)
have their own translational motion. As result, Motion2D es-
timates the combination of the two objects translations as a
global rotation, our method performs better and find only the
objects translations. As a consequence, our estimation of the
global translation is more accurate too. This result is specially
due to the high regularity of our motion vectors field based on
spatio-temporal tubes.
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Fig. 3. Estimation of the global rotation parameters and the global
translation parameters using our GME method (•) or Motion2D (+)
for the New mobile calendar video sequence.

Figure 4 shows the results of the motion segmentation af-
ter our GME method for the three GOF. In the map (a), we ob-
serve clearly two different regions, which are the background
and the moving man. The map (b) shows the result of the mo-
tion segmentation for one GOF of the video sequence Trac-
tor. As the motion of the camera is a translation, uncovered
areas appear on the sides of the map. So, the blocks located
on these sides are not correctly segmented. But we observe
that the tractor is clearly segmented in respect to the back-
ground. The tractor itself is segmented in different regions
which are its “body” and the seeder. However, the wheels are
not correctly segmented. Indeed, their motion is complex, as
it is a combination of a rotation and a translation. In the last
map (c), we observe clearly the different objects of the GOF
(the background, the calendar and the train), but there are still
some isolated blocks. Indeed, the motion vectors from these
uniform areas are not confident for motion segmentation.

6. CONCLUSIONS

In this paper, we presented a motion segmentation method for
HD sequences. First, a fast multi-resolution motion estima-
tion based on spatio-temporal tubes using several reference
frames is realized in order to obtain a field of motion vec-
tors (one vector per tube) for the GOF (nine frames, with the

(a) Map for the GOF of Shields sequence (b) Map for the GOF of Tractor sequence

(c) Map for the GOF of New mobile calendar sequence

Fig. 4. Motion segmentation maps for the three GOF.

assumption that the motion is uniform along it). The (deriva-
tives) motion vectors are weighted according to the spatial
activity of the tube, and accumulated in histograms. Then, we
estimate robustly the global motion parameters of an affine
model. The global motion is then back-compensated, and
from the remaining accumulated motion vectors (with the as-
sumption that each peak represents one object motion) the
other peaks are extracted in order to achieve the motion based
segmentation.
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