Dima Grigoriev
email: dmitry.grigoryev@univ-rennes1.fr

Vladimir Shpilrain

ZERO-KNOWLEDGE AUTHENTICATION SCHEMES FROM ACTIONS ON GRAPHS, GROUPS, OR RINGS

We propose a general way of constructing zero-knowledge authentication schemes from actions of a semigroup on a set, without exploiting any specific algebraic properties of the set acted upon. Then we give several concrete realizations of this general idea, and in particular, we describe several zero-knowledge authentication schemes where forgery (a.k.a. impersonation) is NP-hard. Computationally hard problems that can be employed in these realizations include (Sub)graph Isomorphism, Graph Colorability, Diophantine Problem, and many others.

Introduction

In this paper, we propose a general Feige-Fiat-Shamir-like [START_REF] Feige | Zero knowledge proofs of identity[END_REF] construction of a zeroknowledge authentication scheme from arbitrary actions.

Suppose a (partial) semigroup S acts on a set X, i.e., for s, t ∈ S and x ∈ X, one has (st)(x) = s(t(x)) whenever both sides are defined. For cryptographic purposes, it is good to have an action which is "hard-to-invert". We deliberately avoid using the "one-way function" terminology here because we do not want to be distracted by formal definitions that are outside of the main focus of this paper. For a rigorous definition of a one-way function, we just refer to one of the well-established sources, such as [START_REF] Goldreich | Foundations of cryptography[END_REF]. It is sufficient for our purposes to use an intuitive idea of a hard-to-invert action which is as follows. Let X and Y be two sets such that complexity |u| is defined for all elements u of either set. A function f : X → Y is hard-to-invert if computing f (x) takes time polynomial in |x| for any x ∈ X (which implies, in particular, that complexity of f (x) is bounded by a polynomial function of |x|), but there is no known algorithm that would compute some f -1 (y) in polynomial time in |y| for every y ∈ f (X).

In our context of actions, we typically consider hard-to-invert functions of the type f x : s → s(x); in particular, a secret is usually a mapping, which makes our approach different from what was considered before. This idea allows us to construct a general Feige-Fiat-Shamir-like zero-knowledge authentication scheme from arbitrary actions, see the next Section 2. Then, in the subsequent sections, we give several concrete realizations of this general idea, and in particular, we describe several zero-knowledge authentication schemes where recovering the prover's secret key from her public key is an NP-hard problem. We note however that what really matters for cryptographic security is computational intractability of a problem on a generic set of inputs, i.e., the problem should be hard on "most" randomly selected inputs. For a precise definition of the "generic-NP" class, we refer to [START_REF] Myasnikov | Group-based cryptography[END_REF]. Here we just say that some of the problems that we employ in the present paper, e.g. Graph Colorability, are likely to be generically NP-hard, which makes them quite attractive for cryptographic applications.

We also address an apparently easier task of forgery (a.k.a. misrepresentation, a.k.a. impersonation), and show that in most of our schemes this, too, is equivalent for the adversary to solving an NP-hard problem. To be more specific, by forgery we mean the scenario where the adversary enters the authentication process at the commitment step, and then has to respond to the challenge properly.

Finally, we note that there were other attempts at constructing zero-knowledge authentication schemes based on NP-hard problems (e.g. [START_REF] Caballero-Gil | Strong Solutions to the Identification Problem[END_REF], [START_REF] Caballero-Gil | A Zero-Knowledge Identification Scheme Based on an Average-Case NP-Complete Problem[END_REF]), but these constructions are less transparent, and it is not immediately clear how and why they work.

Two protocols

In this section, we give a description of two generic zero-knowledge authentication protocols. Here Alice is the prover and Bob the verifier.

2.1. Protocol I. Suppose a set S acts on a set X, i.e., for any s ∈ S and x ∈ X, the element s(x) ∈ X is well-defined.

(1) Alice's public key consists of sets S, X, an element x ∈ X, and an element u = s(x) for some randomly selected s ∈ S, which is her private key. (2) To begin authentication, Alice selects an element t ∈ S and sends the element v = t(s(x)) ∈ X, called the commitment, to Bob. (3) Bob chooses a random bit c, called the challenge, and sends it to Alice.

• If c = 0, then Alice sends the element t to Bob, and Bob checks if the equality v = t(u) is satisfied. If it is, then Bob accepts the authentication. • If c = 1, then Alice sends the composition ts to Bob, and Bob checks if the equality v = ts(x) is satisfied. If it is, then Bob accepts the authentication.

2.2. Protocol II. In this protocol, the hardness of obtaining the "permanent" private key for the adversary can be based on "most any" search problem; we give some concrete examples in the following sections, whereas in this section, we give a generic protocol.

(1) Alice's public key consists of a set S that has a property P. Her private key is a proof (or a "witness") that S does have this property. We are also assuming that the property P is preserved by isomorphisms. (2) To begin authentication, Alice selects an isomorphism ϕ : S → S 1 and sends the set S 1 (the commitment) to Bob. (3) Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the isomorphism ϕ to Bob, and Bob checks (i) if

ϕ(S) = S 1 and (ii) if ϕ is an isomorphism. • If c = 1,
then Alice sends a proof of the fact that S 1 has the property P to Bob, and Bob checks its validity. The following proposition says that in the Protocol II, successful forgery is equivalent for the adversary to finding Alice's private key from her public key, which is equivalent, in turn, to giving a proof (or a "witness") that S does have the property P. The latter problem can be selected from a large pool of NP-hard problems (see e.g. [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]).

Proposition 1. Suppose that after several runs of steps (2)-(3) of the above Protocol II, both values of c are encountered. Then successful forgery in such a protocol is equivalent to finding a proof of the fact that S has the property P.

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes with the commitment step by sending her own commitment S ′ 1 to Bob. Since she should be prepared to respond to the challenge c = 0, she should know an isomorphism ϕ ′ : S → S ′ 1 . On the other hand, since she should be prepared for the challenge c = 1, she should know a proof of the fact that S ′ 1 has the property P. Therefore, since ϕ ′ is invertible, this implies that she can produce a proof of the fact that S has the property P. This completes the proof in one direction.

The other direction is trivial.

Remark 1. We note that finding a proof of the fact that a given S has a property P is not a decision problem, but rather a search problem (sometimes also called a promise problem), so we cannot formally allocate it to one of the established complexity classes. However, we observe that, if there were an algorithm A that would produce, for any S having a property P, a proof of that fact in time bounded by a polynomial P (|S|) in the "size" |S| of S, then, given an arbitrary S ′ , we could run the algorithm A on S ′ , and if it would not produce a proof of S ′ having the property P after running over the time P (|S ′ |), we could conclude that S ′ does not have the property P, thereby solving the corresponding decision problem in polynomial time.

Graph isomorphism

In this section, we describe a realization of the Protocol I from Section 2 (actually, it also fits in with the Protocol II), based on the Graph Isomorphism problem. We note that this decision problem is in the class NP, but it is not known to be NP-hard. Moreover, generic instances of this problem are easy, because two random graphs are typically non-isomorphic for trivial reasons. However, the problem that we actually use in the protocol below, is a promise problem: given two isomorphic graphs, find a particular isomorphism between them. This is not a decision problem; therefore, if we want to allocate it to one of the established complexity classes, we need some kind of "stratification" to convert it to a decision problem. This can be done as follows. Any isomorphism of a graph Γ on n vertices can be identified with a permutation of the tuple (1, 2, . . . , n), i.e., with an element of the symmetric group S n . If we choose a set of generators {g i } of S n , we can ask whether or not there is an isomorphism between two given graphs Γ and Γ 1 , which can be represented as a product of at most k generators g i . To the best of our knowledge, the question of NP-hardness of this problem has not been addressed in the literature, but it looks like a really interesting and important problem.

(1) Alice's public key consists of two isomorphic graphs, Γ and Γ 1 , and her private key is an isomorphism ϕ : Γ → Γ 1 .

(2) To begin authentication, Alice selects an isomorphism ψ : Γ 1 → Γ 2 , and sends the graph Γ 2 (the commitment) to Bob. (3) Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the isomorphism ψ to Bob, and Bob checks if ψ(Γ 1) = Γ 2 and if ψ is an isomorphism. • If c = 1, then Alice sends the composition ψϕ = ψ(ϕ) to Bob, and Bob checks if ψϕ(Γ) = Γ 2 and if ψϕ is an isomorphism. A couple of comments are in order.

• As it is usual with Feige-Fiat-Shamir-like authentication protocols, steps (2)-(3) of this protocol have to be iterated several times to prevent a successful forgery with non-negligible probability. • When we say that Alice "sends" (or "publishes") a graph, that means that Alice sends or publishes its adjacency matrix. Thus, the size of Alice's public key is 2n 2 , where n is the number of vertices in Γ. • When we say that Alice sends an isomorphism, that means that Alice sends a permutation of the tuple (1, 2, . . . , n), where n is the number of vertices in the graph in question. Thus, the size of Alice's private key is approximately n log n. • When we say that Alice "selects an isomorphism", that means that Alice selects a random permutation from the group S n ; there is extensive literature on how to do this efficiently, see e.g. [START_REF] Seress | Permutation Group Algorithms[END_REF].

Proposition 2. Suppose that after several runs of steps (2)-(3) of the above protocol, both values of c are encountered. Then successful forgery in such a protocol is equivalent to finding an isomorphism between Γ and Γ 1 .

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes with the commitment step by sending her own commitment Γ ′ 2 to Bob. Since she should be prepared to respond to the challenge c = 0, she should know an isomorphism ψ ′ between Γ and Γ ′ 2 . On the other hand, since she should be prepared for the challenge c = 1, she should be able to produce the composition ψ ′ ϕ = ψ ′ (ϕ). Since she knows ψ ′ and since ψ ′ is invertible, this implies that she can produce ϕ. This completes the proof in one direction.

The other direction is trivial.

Subgraph isomorphism

In this section, we describe another realization of the Protocol I from Section 2, based on the Subgraph Isomorphism problem. It is very similar to the Graph Isomorphism problem, but it is known to be NP-hard, see e.g. [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]Problem GT48]. We also note that this problem contains many other problems about graphs, including the Hamiltonian Circuit problem, as special cases. The problem is: given two graphs Γ 1 and Γ 2 , find out whether or not Γ 1 is isomorphic to a subgraph of Γ 2 . The relevant authentication protocol is similar to that in Section 3.

(1) Alice's public key consists of two graphs, Γ and Λ 1 . Alice's private key is a subgraph Γ 1 of Λ 1 and an isomorphism ϕ : Γ → Γ 1 .

(2) To begin authentication, Alice selects an isomorphism ψ : Λ 1 → Γ 2 , then embeds Γ 2 into a bigger graph Λ 2 , and sends the graph Λ 2 (the commitment) to Bob. (3) Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the subgraph Γ 2 and the isomorphism ψ to Bob, and Bob checks if ψ(Λ 1) = Γ 2 and if ψ is an isomorphism. • If c = 1, then Alice sends the subgraph Γ 2 and the composition ψϕ = ψ(ϕ) to Bob, and Bob checks whether ψϕ(Γ) = Γ 2 and whether ψϕ is an isomorphism. Again, a couple of comments are in order.

• The Subgraph Isomorphism problem is NP-complete, see e.g. [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF].

• When we say that Alice "sends a subgraph" of a bigger graph, that means that Alice sends the numbers {m 1 , m 2 , . . . , m n } of vertices that define this subgraph in the bigger graph. When she sends such a subgraph together with an isomorphism from another (sub)graph, she sends a map (k 1 , k 2 , . . . , k n) → (m 1 , m 2 , . . . , m n) between the vertices. • Compared to the protocol in Section 3, the size of Alice's public key is somewhat bigger because Alice has to embed one of the isomorphic graphs into a bigger graph. The size of Alice's private key is about the same as in the protocol of Section 3.

Graph colorability

Graph colorability (more precisely, k-colorability) appears as problem [GT4] on the list of NP-complete problems in [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]. We include an authentication protocol based on this problem here as a special case of the Protocol II from Section 2. We note that a (rather peculiar) variant of this problem was shown to be NP-hard on average in [START_REF] Venkatesan | Random Instances of a Graph Coloring Problem are Hard[END_REF] (the latter paper deals with edge coloring though).

(1) Alice's public key is a k-colorable graph Γ, and her private key is a k-coloring of Γ, for some (public) k. (2) To begin authentication, Alice selects an isomorphism ψ : Γ → Γ 1 , and sends the graph Γ 1 (the commitment) to Bob. (3) Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the isomorphism ψ to Bob. Bob verifies that ψ is, indeed, an isomorphism from Γ onto Γ 1 .

• If c = 1, then Alice sends a k-coloring of Γ 1 to Bob. Bob verifies that this is, indeed, a k-coloring of Γ 1 .
Again, a couple of comments are in order.

• It is obvious that if Γ is k-colorable and Γ 1 is isomorphic to Γ, then Γ 1 is k-colorable, too. • When we say that Alice "sends a k-coloring", that means that Alice sends a set of pairs (v i , n i), where v i is a vertex and n i are integers between 1 and k such that, if v i is adjacent to v j , then n i = n j .

• Alice's algorithm for creating her public key (i.e., a k-colorable graph Γ) is as follows. First she selects a number n of vertices; then she partitions n into a sum of k positive integers: n = n 1 + . . . + n k . Now the vertex set V of the graph Γ will be the union of the sets V i of cardinality n i . No two vertices that belong to the same V i will be adjacent, and any two vertices that belong to different V i will be adjacent with probability 1 2 . The k-coloring of Γ) is then obvious: all vertices in the set V i are colored in color i. Proposition 3. Suppose that after several runs of steps (2)-(3) of the above protocol, both values of c are encountered. Then successful forgery is equivalent to finding a k-coloring of Γ.

The proof is almost exactly the same as that of Proposition 2.

Endomorphisms of groups or rings

In this section, we describe a realization of the Protocol II (it also fits in with the Protocol I) from Section 2 based on an algebraic problem known as the endomorphism problem, which can be formulated as follows. Given a group (or a semigroup, or a ring, or whatever) G and two elements g, h ∈ G, find out whether or not there is an endomorphism of G (i.e., a homomorphism of G into itself) that takes g to h.

For some particular groups (and rings), the endomorphism problem is known to be equivalent to the Diophantine problem (see [START_REF] Roman'kov | Unsolvability of the problem of endomorphic reducibility in free nilpotent groups and in free rings[END_REF][START_REF] Roman'kov | Equations in free metabelian groups[END_REF]), and therefore the decision problem in these groups is algorithmically unsolvable, which implies that the related search problem does not admit a solution in time bounded by any recursive function of the size of an input.

Below we give a description of the authentication protocol based on the endomorphism problem, without specifying a platform group (or a ring), and then discuss possible platforms.

(1) Alice's public key consists of a group (or a ring) G and two elements g, h ∈ G, such that ϕ(g) = h for some endomorphism ϕ ∈ End(G). This ϕ is Alice's private key. (2) To begin authentication, Alice selects an automorphism ψ of G and sends the element v = ψ(h) (the commitment) to Bob.

• If c = 0, then Alice sends the automorphism ψ to Bob, and Bob checks whether v = ψ(h) and whether ψ is an automorphism. • If c = 1, then Alice sends the composite endomorphism ψϕ = ψ(ϕ) to Bob, and Bob checks whether ψϕ(g) = v and whether ψϕ is an endomorphism.

Here we point out that checking whether a given map is an endomorphism (or an automorphism) depends on how the platform group G is given. If, for example, G is given by generators and defining relators, then checking whether a given map is an endomorphism of G amounts to checking whether every defining relator is taken by this map to an element equal to 1 in G. Thus, the word problem in G (see e.g. [START_REF] Lyndon | Combinatorial Group Theory[END_REF] or [START_REF] Myasnikov | Group-based cryptography[END_REF]) has to be efficiently solvable.

Acknowledgement. The first author is grateful to Max Planck Institut für Mathematik, Bonn for its hospitality during the work on this paper.

Research of the second author was partially supported by the NSF grant DMS-0405105.

Checking whether a given map is an automorphism is more complex, and there is no general recipe for doing that, although for a particular platform group that we describe in subsection 6.1 this can be done very efficiently. In general, it would make sense for Alice to supply a proof (at the response step) that her ψ is an automorphism; this proof would then depend on an algorithm Alice used to produce ψ. Proposition 4. Suppose that after several runs of steps (2)-(3) of the above protocol, both values of c are encountered. Then successful forgery is equivalent to finding an endomorphism ϕ such that ϕ(g) = h, and is therefore NP-hard in some groups (and rings) G.

Again, the proof is almost exactly the same as that of Proposition 2. We also note that in [START_REF] Grigoriev | On the complexity of the "wild" matrix problems, of the isomorphism of algebras and graphs[END_REF], a class of rings is designed for which the problem of existence of an endomorphism between two given rings from this class is NP-hard.

A particular example of a group with the NP-hard endomorphism problem is given in the following subsection. Roman'kov [START_REF] Roman'kov | Equations in free metabelian groups[END_REF] showed that, given any Diophantine equation E, one can efficiently (in linear time in the "length" of E) construct a pair of elements u, v of the group M 2 , such that to any solution of the equation E, there corresponds an endomorphism of M 2 that takes u to v, and vice versa. Therefore, there are pairs of elements of M 2 for which the endomorphism problem is NP-hard (see e.g. [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]Problem AN8]). Thus, if a free metabelian group is used as the platform for the protocol in this section, then, by Proposition 4, forgery in that protocol is NP-hard. acts on Z * p by automorphisms, via the exponentiation, this can be used as the platform for the Protocol I. In this case, forgery is equivalent to solving the discrete logarithm problem, by Proposition 4.