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Abstract We prove that the conjugacy problem in right-angled Artin
groups (RAAGs), as well as in a large and natural class of subgroups of
RAAGs, can be solved in linear-time. This class of subgroups contains,
for instance, all graph braid groups (i.e. fundamental groups of configura-
tion spaces of points in graphs), many hyperbolic groups, and it coincides
with the class of fundamental groups of “special cube complexes” studied
independently by Haglund and Wise.
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1 Introduction

It is well known that the conjugacy problem in free groups can be solved in
linear-time by a RAM (random access memory) machine. This result has been
generalized in two different directions. On the one hand, Epstein and Holt [14]
have shown that the conjugacy problem is linear in all word-hyperbolic groups.
On the other hand, Liu, Wrathall and Zeger have proved the analogue result for
all right-angled Artin groups ([23], based on [29]). Note that these groups are
also called “partially commutative groups” or “graph groups” in the literature.

The aim of the present paper is to extend the second approach, in order to
prove linearity of the conjugacy problem in a large class of subgroups of right-
angled Artin groups. Very roughly speaking, the subgroups in question are
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fundamental groups of cubical complexes, sitting inside the right-angled Artin
group in a convex fashion. This class of groups has previously been studied
by Crisp and Wiest [11, 12], and independently by Haglund and Wise [19],
as fundamental groups of so-called special cube complexes (or, more precisely,
A-special cube complexes).

The class of groups considered in this paper contains in particular all graph
braid groups [1, 2, 15, 16, 24] and more generally all state complex groups
[3, 17]. These classes of groups have attracted considerable interest recently,
which stems partially from their close relations to robotics [2, 17]. Indeed, our
results can be interpreted as giving very efficient algorithms for motion planning
of periodic robot movements. However, our results also apply to the various
word-hyperbolic groups discussed in [11, 12] – in particular, to all surface groups
except the three simplest non-orientable ones.

The present paper raises the stakes on the conjecture of Haglund and Wise [19]
that all Artin groups (e.g. braid groups) are virtually fundamental groups of
special cube complexes. If this conjecture was known to be true, then our work
would imply that Artin groups have finite index subgroups where the conjugacy
problem can be solved in linear time.

The plan of the paper is as follows. In the second section we present an alterna-
tive approach to the conjugacy problem in right-angled Artin groups, different
from the one of Liu, Wrathall and Zeger, but rather close in spirit to the methods
of Lalonde and Viennot [22, 28]. In the third section we prove that isometrically
embedded subgroups of right-angled Artin group inherit a linear-time solution
to the conjugacy problem from their supergroups.

2 The conjugacy problem in RAAGs is linear-time

We recall that a right-angled Artin group is a group given by a finite presenta-
tion, where every relation states that some pair of generators commutes. Graph-
ically, a right-angled Artin group A can be specified by a simple graph ΓA ,
where the generators of A correspond to the vertices of ΓA , and a pair of gen-
erators commutes if and only if the corresponding vertices are not connected by
an edge. Note that the opposite convention (connecting commuting generators
by an edge) is also very common, but in the present paper we shall stick to this
convention.

Right-angled Artin groups have been widely studied in the last decades – see [10]
for an excellent survey. Several solutions to the word and conjugacy problem
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have been found. It seems to be difficult to have a complete bibliography of
the large number of articles on these two problems. The first solutions to the
word and the conjugacy problem was obtained by Servatius in [25]. In [27], Van
Wyk constructed a normal form in right-angled Artin groups and proved that
these groups are biautomatic. Indeed, even thought our point of view is very
different from Van Wyk’s, the normal form constructed in the present paper
is the very similar to his. One of the main papers regarding the algorithmic
complexity of these two problems is [23] (based on [29]) by Liu, Wrathall and
Zeger, which proves that they are both of linear complexity.

The word problem in partially commutative monoids has also been widely stud-
ied and numerous papers appeared on that topics. Several approaches appeared
to be successful. In [9], Cartier and Foata constructed a normal form on par-
tially commutative monoids, and then obtained the first solution to the word
problem. This normal form is the restriction of the normal form obtained in [27].
More recently, Viennot introduced in [28] a new tool, the so-called Viennot’s

piling, based on a geometrical representation of partially commutative monoids.
Several works deal with this tool (see for instance [13] and [22]). The Viennot
piling method associates a piling to each element of a partially commutative
monoid and thereby provides a linear-time solution to the words problem in
such a monoid. As remarked by Krob, Mairesse, and Michos in [21], this piling
is canonically related to the normal form constructed in [9]. In [22], Lalonde
introduces and uses the notion of a pyramid in order to study the conjugacy
problem in partially commutative monoids. In the present paper, we are going
to extend the notions of a piling and of a pyramid to the context of right-angled
Artin groups, and use them in order to obtain a linear-time solution (to the word
problem and) to the conjugacy problem. This leads us to introduce the notion
of a cyclic normal form.

In order to get an intuition for the nature of the conjugacy problem in right-
angled Artin groups, let us first consider the relatively easy case of free groups.
Given two cyclic words of length ℓ1 and ℓ2 respectively, there is a two step
algorithm which can be performed in time O(ℓ1 + ℓ2) on a RAM machine:
first each word can be cyclically reduced in time O(ℓ1) and O(ℓ2), respectively.
If the reduced words have different lengths, then they are not conjugate. If
they have the same length ℓ, then they can be compared in time O(ℓ) using
standard pattern matching algorithms, like the Knuth-Morris-Pratt algorithm,
the Boyer-Moore algorithm, or algorithms based on suffix-tree methods – see
[20, 7, 4, 18, 26]. It should be stressed that on a Turing machine these algorithms
take time O(ℓ log(ℓ)).

In the sequel, we assume that A is a fixed right-angled Artin group given
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by a fixed presentation. We denote by {a1, · · · , aN} the generating set of A
associated with this presentation.

The aim of this section is to provide an algorithm which does, very roughly
speaking, the following: given a word w , another word w′ with smaller or equal
length is created in linear time such that w and w′ represent conjugate elements
of A. Furthermore, the word w′ depends only on the conjugacy class in A of the
element represented by w , up to a cyclic permutation of its letters. This yields
a linear-time solution to the conjugacy problem in A because, given words w
and v we can compute the canonical cyclic words w′ and v′ representing their
conjugacy classes, and compare those by one of the algorithms mentioned above.

2.1 The word problem is linear-time

We start by recalling the following classical lemma.

Lemma 1 [25] Any element of A can be represented by a reduced word (one
which does not contain a subword of the form a±1

i xa∓1
i , where all letters of x

commute with ai ). Moreover, any two reduced representatives of the same
element are related by a finite number of commutation relations – no inser-
tions/deletions of trivial pairs are needed.

Now we introduce our main tool, the notion of a piling.

Definition 2 An abstract piling is a collection of N words, one for each gen-
erator ai of A, over the alphabet with three symbols {+,−, 0}.

The word associated with the generator ai will be called the ai -stack of the
abstract piling. The product of two abstract pilings is defined as the piling
obtained by concatenation of the corresponding stacks.

We define a function π⋆ on the set {a±1
1 , . . . , a±1

N }
∗ of words on the 2n let-

ters a1, a
−1
1 , . . . , aN , a−1

N that associates an abstract piling to every word in the
following way: starting with the empty piling, we read the word from left to
right. When a letter aǫ

i is read, we check what the last letter of the ai -stack
of the piling is. If this letter is different from −ǫ (the no-cancellation cases:
the ai -stack is empty, or finishes either with 0 or ǫ), then we append a letter +
or − at the end of the ai -stack of the piling (the sign of ǫ). Moreover, we
also append a letter 0 at the end of each of the aj -stacks associated with a
generator aj that does not commute with the generator ai . On the other hand,
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if the last letter of the ai -stack is −ǫ (the cancellation case), then we erase
this last letter, and we also erase the terminal letter of each of the aj -stacks
of the piling associated with a generator aj that does not commute with the
generator ai – note that the terminal letter of the aj -stack is necessarily “0”.

Definition 3 A piling is an abstract piling in the image of the function π⋆ .
The set of pilings is denoted Π.

We observe that the number of letters + and − occuring in the piling π⋆(w) is
at most equal to the length of the word w . Moreover, it is immediate from the
description of the function π⋆ that, given a word w of length ℓ, the piling π⋆(w)
can be calculated in time O(ℓ) (linear-time).

It may be helpful to keep in mind the following physical interpretation of a
piling: we have N vertical sticks, labelled by the generators a1, . . . , an , with
beads on it; the beads are labelled by +, − or 0 such that when reading
from bottom to top the sequence of labels of the beads on the ai -stick, we
obtain the ai -stack of the piling. A letter ai or a−1

i of the word w corresponds
to a set of beads (which we call a tile), consisting of one bead labelled +
or − on the corresponding stick, and one bead labelled 0 on each of the sticks
corresponding to generators of A which do not commute with ai ; each 0 labelled
bead is connected to the ± labelled bead by a thread. The rule is: on a stick,
adjacent 0-beads can commute with (“slide through”) each other, but 0-beads
do not commute with ±-beads. In this physical model, we construct the image
of a word by adding beads from the top, and removing opposed tiles when one
obtains on a stick two adjacent ±-beads with opposite signs. In fact, when we
are dealing with the word problem we can forget about the threads between
the beads, but they are helpful for thinking about the conjugacy problem.

Example 4 In the group A with group presentation

〈a1, a2, a3, a4 | a1a4 = a4a1 ; a2a3 = a3a2 ; a2a4 = a4a2〉

we can calculate the piling p of the word a−2
2 a−1

4 a3a2a4a1a2a
−1
1 a2

2a
−1
4 as indi-

cated in Figure 1.

The map π⋆ induces a well-defined function π : A → Π because words repre-
senting the same element of A have the same image under π⋆ : the image of
a word is unchanged by applying a commutation relation, and by inserting or
deleting a trivial pair aia

−1
i or a−1

i ai . Now, from the definitions it is immedi-
ate that no cancellation occurs during the construction of the piling π⋆(w) of
a reduced word w . Then, the identity of A is the unique element of A whose
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a a aa2 3 41 a a aa2 3 41 a a aa2 3 41

p=

Figure 1: The pilings of the prefixes a−2

2
a−1

4
a3 and a−2

2
a−1

4
a3a2 , and of the full word

a−2

2
a−1

4
a3a2a4a1a2a

−1

1
a2

2
a−1

4

image by π is the trivial piling, and therefore the word problem is solved in
linear-time: a word w represents the identity if and only if its piling π⋆(w) is
trivial; this piling can be built in linear-time.

The following notion will be extremely useful in the next section when we
consider the conjugacy problem.

Definition 5 Let w be a reduced word.

(i) We say that w is initially normal when w is trivial or when the index of its
first letter is greater or equal to the index of the first letter of any equivalent
reduced word.

(ii) We say that w is normal when all its suffixes are initially normal.

We remark that all the factors of a normal word are normal words.

Proposition 6 Any element of A has a unique normal reduced representative
word.

Proof For any reduced word w = aε1

i1
· · · aεk

ik
, where εj = ±1, we set

Ω(w) = {(r, s) | 1 ≤ r < s ≤ k and ir < is}.

Let a be in A. In order to prove that a has normal reduced representative
word, we choose, among all words representing a, a word w for which the
number #Ω(w) is as small as possible (possibly equal to zero). This word w is
minimal.

We shall prove uniqueness of the normal representative by induction on the
length. If a is of length 1, i.e. if a = aε

i for ǫ = ±1, then uniqueness is obvious.

Now suppose that a has two normal reduced representatives w = aε1

i1
· · · aεk

ik

and w′ = a
ε′
1

i′
1

· · · a
ε′
k

i′
k

. Since the the suffixes of length k − 1 of w and w′ are
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again normal, it is, by induction hypothesis, sufficient to prove that aε1

i1
= a

ε′
1

i′
1

.

Since w and w′ are normal, we have i1 = i′1 . Now, the exponents also have
to be equal by Lemma 1: we can not transform the word aε1

i1
· · · aεk

ik
into the

word a−ε1

i1
a

ε′
2

i′
2

· · · a
ε′
k

i′
k

by using commutation relations only: starting from the

reduced w , no word of the form uaε1

i1
a−ε1

i1
u′ can appear by any sequence of

commutation relations.

In the sequel, we call this unique normal reduced word representing a the
normal form of a.

Proposition 7 There is a linear-time algorithm that associates to each pil-
ing p a normal word σ⋆(p) such that π⋆(σ⋆(p)) = p. Furthermore, for any
element a of A the word σ⋆(π(a)) is the normal form of a.

Example 8 Using the notation of Example 4, the word σ⋆(p) is equal to a−1
4 a3

a−1
2 a1a2a

−1
1 a2a2 . The calculation is shown in Figure 2.

a a
2 a

extract

1 4
a

3
aaa a2 a

a

1 3

2

2 a

a

aaa
4

extract a 2
−1

extracta 2

−1
1aextract extracta 2

extracta 2

1 32 a

3

aaa

1

4

1extracta

1

4

43
a2 a aaa a aa2 3 41

3

1

1

3

a

2 a a

a

aa

4

4

a2 a

extracta 4
−1

13 43
a a

Figure 2: The word σ⋆(p) associated to a piling p

Proof of Proposition 7 Let p be a piling. By definition, this means that
there exists an element a of A such that π(a) = p. In order to prove Proposi-
tion 7, it suffices to find an algorithm for constructing in linear time a word σ⋆(p),
and to prove that σ⋆(p) is a normal reduced representative of a.

We start with the observation that the element a has a reduced representative
starting with the letter a±1

i if and only if the ai -stack of the piling is nonempty
and starts with the letter + or −, respectively (not with the letter 0).
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We associate to p a normal reduced word σ⋆(p) by induction on the number of
letters + and − in p in the following way. If p is empty then σ⋆(p) is the empty
word. Otherwise, let i be the largest index with the property that the ai -stack
of p is nonempty and starts with the letter + or −, not with 0. Then, according
to this sign, we define the first letter of σ⋆(p) to be ai or a−1

i , respectively. Then
we remove the tile consisting of the first letter (+ or −) of the ai -stack, and of
the initial letter (which has to be 0) of each of the aj -stacks associated with a
generator aj that does not commute with ai . What remains is a piling p1 with
strictly fewer letters. Thus the word σ⋆(p1) is already defined, by induction
hypothesis, and we define the word σ⋆(p) by concatenation σ⋆(p) = a±1

i σ⋆(p1).

We claim that the word σ⋆(p) is a normal reduced representative of a; indeed,
in the above construction we see that the first letter of σ⋆(p) is also the first
letter of some reduced representative of a. By induction, the whole word σ⋆(p)
is a reduced representative of a. Moreover, the word σ⋆(p) is initially normal,
by construction, and by induction its suffix σ⋆(p1) is normal. Hence the whole
word σ⋆(p) is normal.

2.2 Cyclic normal forms and pyramidal pilings

We are now ready to attack the conjugacy problem.

2.2.1 Cyclically reduced words and cyclically reduced pilings

We recall that a cycling of a reduced word w is the operation of removing the
first letter of the word, and placing it at the end of the word. A word is called
cyclically reduced if it is reduced and if any word obtained from it by a sequence
of cyclings and commutations is still reduced – in other words, if it is not of the
form x1a

±1
i x2a

∓1
i x3 , where all the letters of x1 and x3 commute with ai . As

far as we know, all known solutions to the conjugacy problem in RAAGs are
based on the following lemma.

Lemma 9 Two cyclically reduced words represent conjugate elements of A if
and only if they are related by a sequence of cyclings and commutation relations.

Therefore two reduced words w1, w2 with letters in {a±1
1 , . . . , a±1

n } represent
conjugate elements of A if and only if there is a sequence of words

w1
red
−→ v1 ↔ v2

red
←− w2

8



where the two arrows labelled “red” represent two sequences of cyclic reductions
down to cyclically reduced words and the arrow ↔ represents a finite sequence
of cyclings and commutation relations.

Definition 10 If, in a piling p, the ai -stack starts (resp. finishes) with a
letter + or −, the bottom ai -tile (resp. the top ai -tile) of p is the sub-piling

formed by the first (resp. last) letter of the ai -stack and the first (resp. last)
letter of the aj -stacks such that ai and aj do not commute in A.

Example 11 With the notation of Example 4, Figure 3 gives an example of
top and bottom tiles of a piling.

4 32 a
3

aaa

cyclic reduction

2 a aaa 1 1 4

Figure 3: a top a2 -tile and a bottom a2 -tile, and the associated cyclic reduction

Definition 12 If in a piling p the ai -stack starts with the letter + and ends
with −, or vice versa, a cyclic reduction is the act of removing both top and
bottom ai -tiles. We say that the piling is cyclically reduced if no cyclic reduction
is possible.

Note that cyclically reducing a piling yields again a piling. We remark that there
is an obvious linear-time algorithm for transforming any piling into a cyclically
reduced one by a finite sequence of cyclic reductions. We also observe that for
a reduced word w ∈ {a±1

1 , . . . , a±1
N }

∗ , cycling of w corresponds to a cycling of
its piling, and that w is cyclically reduced if and only if the piling π⋆(w) is.

Now we have a fast algorithm for cyclically reducing words and pilings. In
contrast to the case of free groups, however, the reduced words which we can
obtain are not unique up to cyclic permutation. In order to circumvent this
problem, we shall introduce in the sequel the notion of a cyclic normal form.

2.2.2 Non-split words and non-split pilings

Our first objective is to restrict the conjugacy problem to the case of non-split

cyclically reduced words ( or pilings). We recall that a graph ΓA is associated
to the right-angled Artin group A.
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Definition 13 Let w be a reduced word different from 1, and let p be its
image by π⋆ . Consider ∆(p) (or ∆(w)) the full subgraph of ΓA whose vertices
are those whose correponding stacks contain at least one bead different from 0
(in other words, the letters ai such that a±1

i occurs in w). Then, the word w
and the piling p are said to be non-split when the graph ∆(p) is connected.

In other words, w is non-split if and only if its set of letters cannot be separated
in two disjoint subsets such that every letter of one of the subset commutes in A
with every letter of the other subset. Clearly, it takes linear-time to obtain the
set of vertices of the graph ∆(p), and constant time (which depends on the
graph ΓA) to decide if ∆(p) is connected. If it is not, it takes still constant time
to determine the connected components ∆1(w), . . . ,∆k(w) of ∆(w). Figure 4
(which still uses the notation of Example 4) contains examples of both split and
non-split pilings.

2 412 3 4
a a aa

31a a

cyclic reduction

aa

Figure 4: The word a−1

1
a2a3a1a

−1

4
is not split, but cyclic reduction yields a word which

is split: a2(a3a
−1

4
) = (a3a

−1

4
)a2

Now, if w is a cyclically reduced word that is split, then it is equivalent to a
product w1 · · ·wk of non-split cyclically reduced words, one for each connected
component ∆i(w) of the graph ∆(w); the graph ∆i(w) is equal to ∆(wi).
Furthermore, once that the connected components ∆1(w), . . . ,∆k(w) of ∆(w)
are computed, appropriate words w1, . . . , wk can be obtained in linear-time.

Remark 14 The following observation will be crucial: if v is another cyclically
reduced word, then then w and v represent conjugate elements if and only if
two conditions are satisfied: firstly the graph ∆(v) is equal to ∆(w); secondly,
if v1, . . . , vk are words such that ∆(vi) = ∆i(v) and such that v is equivalent
to the product v1 · · · vk , then for each index i the words wi and vi represent
conjugate elements.

Therefore, in order to obtain a solution to the conjugacy problem in linear-time
it is enough to consider the case of cyclically reduced non-split words.
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2.2.3 Pyramidal piling and cyclic normal form

To solve the conjugacy problem, we associate in the sequel a cyclic normal word

to each cyclically reduced non-split word. We first do the analogue of this in the
framework of pilings: to each non-split cyclically reduced piling, we associate a
pyramidal piling.

Definition 15 Let p be a non-empty piling, and denote by i the smallest
index such that the ai -stack contains an a±i -bead. We say that the piling p is
pyramidal if the first bead of every aj -stack except the ai -stack is either empty
or starts with the letter 0. In that case, we say that ai is the apex of the
pyramidal piling.

Note that a pyramidal piling has to be non-split.

Lemma 16 (i) Let p is a non-empty piling and denote by i the smallest index
such that the ai -stack of p contains an a±i -bead; then there exists a unique
decomposition p0 · p1 of p such that p1 is a pyramidal piling with ai as apex,
and p0 is a piling without a±i -beads. Furthermore, one has the equality of
words σ⋆(p) = σ⋆(p0)σ

⋆(p1).

(ii) The above decomposition p0 · p1 can be computed in linear-time on the
number of ±-beads of the piling p.

Example 17 Using the notation of Example 4, Figure 5 gives an example of
a decomposition of a piling.

432 1a a aa2 3 41 a aaa

Figure 5: Decomposition of a piling as p0 · p1

Proof of Lemma 16 We start by exhibiting a linear-time algorithm for find-
ing such a decomposition of a given non-empty piling p. Let p0 be the empty
piling. Reading all the stacks (in the index order), obtain in linear-time the
smallest index i for which the ai -stack contains a bead distinct from 0. Then,
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apply iteratively the following recipe: consider the largest index j (necessar-
ily greater than i) for which the aj -stack starts with a letter + or −; then
remove all the beads in the bottom aj -tile, and add them to the top of the
piling p0 . When no more beads can be extracted from the bottom of the pil-
ing p, then the construction of the factor p0 is complete, and what remains
is the piling p1 . This proves the existence part of (i), as well as part (ii).
The formula σ⋆(p) = σ⋆(p0)σ

⋆(p1) is now immediate by construction. For the
uniqueness part of (i), we notice that in any decomposition p = p0 · p1 , the
factor p0 has to contain exactly those tiles that can be extracted on the bottom
from p without extracting any apex bead.

We call the piling p0 the 0-factor of p. Thus the piling p is pyramidal if and
only if its 0-factor is empty.

In our physical interpretation, if i is the smallest index such that the ai -stack
contains a a±i -bead, we can lift up the first a±i -bead along its stick to the first
floor. Then some part of the piling stays on the ground, while some beads are
lifted up. Here it is essential to keep in mind that each 0-bead is connected by
a thread to a ±-bead, and that adjacent 0-beads on a stick can slide through
each other. The factor that stays down is p0 , the factor that is lifted up is p1 .
This latter factor has the structure of an upside-down pyramid supported by
one of the apex-beads, hence the names.

If in a cyclically reduced piling, the ai -stack starts with a letter + or −, then
one can perform a cycling of the bottom tile containing that bead to the top
of the piling, i.e., one can move the initial letter + on the ai -stack, and the
initial letters 0 on the stacks corresponding to letters that do not commute
with ai , to the end of their respective stacks. A physical interpretation (see
Figure 6) of this procedure is obtained by replacing the sticks by concentric
hula hoops. A cycling of a bottom tile corresponds to the operation of cycling
the corresponding tile along the hula hoops.

Proposition 18 There is an algorithm which takes as its input any non-
split cyclically reduced piling p and which outputs a pyramidal piling that is
obtained from the input piling by a finite sequence of cyclings. If the piling
has ℓ beads, then the algorithm requires O(ℓ) cyclings, so its computational
complexity is O(ℓ).

Proof The basic procedure of the algorithm is in two steps; given a cyclically
reduced piling p, first determine the 0-factor p0 of the canonical decomposition

12



3

reduction

cyclic

2
a a

1

0

operation

first cycling

2
a a

1

hold

This piling is pyramidal

p
0

p

a
4

a
31

a
2

a
2

a a
1

a
4

a
4

aa
3

a
3

operation

second cycling

4
a

Figure 6: The calculation of a pyramidal piling

(by the method of Lemma 16). Secondly, cycle all the tiles belonging to p0 in
order to obtain a new piling. This procedure takes time O(ℓ). The algorithm is
simply to iterate this basic procedure until the factor p0 is empty. It remains to
prove that there is a bound on the number of iterations which depends only on
the group A, not on the piling p. In fact, if we denote i the smallest index such
that p contains an ai -tile, and ∆(p) the full subgraph of the defining graph Γ
defined above, we claim that maxaj∈∆(p) dist∆(ai, aj) is an upper bound on
the number of iterations, where each edge of ∆(p) has length 1. This quantity
is finite, because ∆(p) is connected, and is bounded above by N , the number of
generators of the group A (which does not depend on the piling p). This fact is
obvious from the geometrical representation, and the proof is a straightforward
induction: after the first iteration of the basic procedure, no a±j -beads such
that aj is at distance 1 from ai in ∆(p) appear in the 0-factor; after a second
iteration no a±j -beads such that aj is at distance at most 2 from ai in ∆(p)
appear in the 0-factor, and so on.

Now, if w is a non-split reduced word, we can apply the above algorithm to
the piling π(w) to obtain a pyramidal piling p. Then, the words σ⋆(p) and w
represent conjugate elements.

Definition 19 Let w be a word in {a±1
1 , . . . , a±1

n }
∗ that is reduced and cycli-

cally reduced. We say that the word w is a cyclic normal form if it is normal
and all its cyclically conjugate words are normal.

Intuitively, if we regard w as a cyclic word, and we start reading anywhere in the
word, then the first letter that we read must always be the largest-index letter
that can be extracted on the left. For instance, with the notation of Example 4,
the word a−1

4 a3a
−1
2 a1a2a

−1
1 a2a2 is not a cyclic normal form: starting from the
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last letter and reading cyclically, we read out a2a
−1
4 . . . , which is already illegal,

because the letters commute, and a−1
4 has a larger index than a2 , so a−1

4 should
come first. Another example: the word a1a2a

−1
1 a3a

−1
4 a2 is a cyclic normal form.

Our linear-time solution to the conjugacy problem is based on the two following
results.

Proposition 20 If p is a non-split cyclically reduced pyramidal piling, then
σ⋆(p) is a cyclic normal form.

Proposition 21 Two cyclic normal forms represent conjugate elements if and
only if they are equal up to a cyclic permutation.

Proof of Proposition 20 Firstly, we remark that a consequence of Lemma 1
is the following fact: if aǫ, bη are letters (ǫ, η = ±1) and w is a reduced word
such that b−ηw and waǫ are both reduced (i.e. no word equivalent to w
starts and finishes with bη and a−ǫ , respectively) but the word b−ηwaǫ is not
reduced (i.e. waǫ is equivalent to some word that starts with bη ), then aǫ = bη

and all the letters of w commute with a. Now, we know that σ⋆(p) is a
normal cyclically reduced word. For a cyclically reduced word w , the word ww
is cyclically reduced (this follows directly from the above fact, or from the
piling representation), and all the words cyclically conjugate to the former are
subwords of the latter. Therefore, in order to prove the result, it is enough
to prove that the word σ⋆(p)σ⋆(p) is normal. Assume that this is not the
case. Since σ⋆(p) is normal, we can then write σ⋆(p) = w1a

η
j w2 = v1a

ǫ
iv2

such that aη
j w2v1 is initially normal but aη

j w2v1a
ǫ is not. In particular, there

exists aν
k , with k > j , such that a−ν

k aη
j w2v1 is reduced but a−ν

k aη
j w2v1a

ǫ
i is

not. Since aη
j w2v1a

ǫ
i is a subword of σ⋆(p)σ⋆(p), it is reduced. Using the above

fact, we get that aǫ
i = aν

k , and aν
k commute with all the letter of aη

j w2v1 . In
particular, the word σ⋆(p) is equivalent to aν

kv1v2 . This is impossible because k
is greater that j , and p is pyramidal. Therefore, σ⋆(p)σ⋆(p) is normal.

Proof of Proposition 21 The “if” implication is obvious, we have to prove
the “only if” part.

Let w and w′ be two cyclic normal forms that represent conjugate elements.
Let i be the smallest index that appears in w and choose a distinguished
letter aε

i in w . As the words w and w′ are cyclically reduced, there exists a
sequence of words w0 = w→ w1 → · · ·wr = w′ that transforms w into w′ , such
that wi+1 is obtained from wi by a commutation or a cycling transformation.
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We can keep track of the distinguished letter aε
i along the transformations:

write wj = w′
ja

ε
iw

′′
j . Assume the number ℓ of commutations that involve the

distinguished letter is positive. Since w is a normal word, the first commuta-
tion wj → wj+1 that involves aε

i is “from left to right”, i.e. it is of the following
form: wj = w′

j+1a
ε′

i′ a
ε
iw

′′
j and wj+1 = w′

j+1a
ε
ia

ε′

i′ w
′′
j with i′ > i.

Now, consider the last operation wp → wp+1 such that a letter aη
k is exchanged

with the distinguished letter aε
i from left to right: we have wp = w′

p+1a
η
ka

ε
iw

′′
p

and wp+1 = w′
p+1a

ε
ia

η
kw

′′
p . We can also keep track of the distinguished letter aη

k .
As long as the two letters do not cross each other again in the opposite direction,
we have w′′

q w′
q = yqa

η
kzq such that all the letters of yq commute with ak (where

q satisfies q > p). In particular, aε
iw

′′
q w′

q is not initially normal. But w′ is
normal, so the two distinguished letters have to cross each other again in the
opposite direction: there exists s, with p < s < r , such that ws = w′

sa
ε
ia

η
kw

′′
s+1

and ws+1 = w′
sa

η
ka

ε
iw

′′
s+1 . Hence, we have a sequence

wp = w′
p+1a

η
ka

ε
iw

′′
p → v′p+1a

η
ka

ε
iv

′′
p+1 → · · · → v′s−1a

η
ka

ε
iv

′′
s−1 → v′sa

η
ka

ε
iv

′′
s → ws+1

such that each word v′′q v′q is equal to the word yqzqw
′
q . Thus we obtain a

new sequence from w to w′ with only ℓ − 2 commutations that involve the
distinguished letter aε

i .

It follows that we can assume that no commutation involves the distinguished
letter aε

i along the sequence w0 = w → w1 → · · ·wr = w′ . But this implies that
the words aε

iw
′′
1w′

1 and aε
iw

′′
r w′

r are equivalent. As they are both cyclic normal
forms, they are normal words. Therefore they are equal by Proposition 6.
Hence, the words w and w′ are equal up to a cyclic permutation.

Summing up, in order to decide whether two nonsplit cyclically reduced words
represent conjugate elements, it suffices to decide whether their cyclic normal
forms are equal (as cyclic words), and these cyclic normal forms can be calcu-
lated in linear time. More formally, we have

Theorem 22 The conjugacy problem in a right-angled Artin group A is linear-
time on the sum of the lengths of the two input words.

Proof Here is a summary of the algorithm:

Given any two words w and v ,

(i) produce the piling π⋆(w), and then by cyclic reduction a cyclically reduced
piling p; similarly for the word v produce first the piling π⋆(v), and cyclically
reduce it to a piling q ;
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(ii) factorize each of the pilings p and q into non-split factors. If the collection
of subgraphs ∆i(p) and ∆i(q) of the defining graph ΓA do not coincide, output
“NO, w and v do not represent conjugate elements” and stop. Otherwise,

(iii) if p = p(1) · . . . · p(k) and q = q(1) · . . . · q(k) are the factorizations found in
step (ii), then for i = 1, . . . , k do the following

(a) transform the non-split cyclically reduced pilings p(i) and q(i) into pyra-
midal pilings p̃(i) and q̃(i) , using a sequence of cyclings. Then produce
the words in cyclic normal form σ⋆(p(i)) and σ⋆(q(i));

(b) decide whether the words in cylic normal form found in the previous steps
are the same up to cyclic permutation (in linear-time, using a standard
algorithm). If they are not, answer “NO” and stop.

(iv) answer ”YES”.

2.3 Calculating the centralizer of an element

The centralizer of a cyclically reduced element of A has a canonical finite gen-
erating set: suppose that w is a cyclically reduced word, written as a product
of cyclically reduced non-split words w = w1 · · ·wk , c.f. Section 2.2.2. Then,
according to [6], for each i in {1, . . . , k} there exists a unique maximal infinite-
cyclic subgroup of A containing [wi], generated by some cyclically reduced
element [zi], and by [25] the centralizer of [w] in A is generated by

(1) the elements [zi], and

(2) the generators of A which commute with all the generators occurring
in w .

In the next section we will need to algorithmically determine explicit represen-
tatives of these generators, in the special case where the words wi are cyclic
normal forms.

Proposition 23 There is a linear-time algorithm which takes as its input a
cyclically reduced word w , decomposed as a product of words in cyclic normal
form w = w1 · · ·wk , and which outputs the canonical generating set of the
centralizer of w .
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Proof It takes linear time to determine the graph ∆(w), and then constant
time to deduce from this the generators of type (2).

Now we turn to the generators of type (1), i.e. the minimal roots [zi] of the
elements [wi]. As a first step, we claim that periodicity of elements is visible in
their cyclic normal form. More precisely, if one of the words wi is equivalent to
a word of the form z̃ r

i for some word z̃i and some integer r , then the word wi

itself is of the form zr
i , for some word zi . In order to prove this claim, we

observe that z̃i is equivalent to a word zi in cyclic normal form (because the
0-factor of p(z̃i) must divide the 0-factor of p(wi), which is the trivial word).
Now the word zr

i is still in cyclic normal form (c.f. the proof of Proposition 20),
and it is equivalent to wi . Therefore we have zr

i = wi .

We claim that for each of the factors wi , the desired minimal root zi of wi is
detectable in linear-time: we can calculate a pair (zi, r), where zi is a word
and r an integer with zr

i = wi , and r is maximal among all such pairs. Indeed,
this algorithm works as follows: consider the word w∗

i obtained by removing
the first letter from the word wiwi . Then find the starting point of the first
occurrence of wi as a subword of w∗

i – this can be done by standard algorithms,
like the Boyer-Moore algorithm, in time O(ℓi), where ℓi denotes the length of
wi . If this starting point is at the ℓi th letter of w∗ , then there is no periodicity.
If on the other hand the starting point is at the tth letter with t < ℓi , then
let zi be the prefix of wi of length t. By construction we have an equality of
words ziwi = wizi . This implies that the words wi and zi have a common root.
By the choice of zi , this root has to be zi itself and for r := ℓi/t we have an
equality of words wi = zr

i . Finally, by the choice of t, no prefix of wi of length
less than t can be a root of wi , so zi is indeed the minimal root.

3 The conjugacy problem in subgroups of RAAGs

In the previous section we saw that the conjugacy problem in a fixed right-
angled Artin group can be solved in linear-time on a RAM-machine with con-
stant that depends only on the group. In this section we shall prove analogue
results for a large class of subgroups of right-angled Artin groups, namely those
considered in the papers [11, 12], as well as in [19].
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3.1 A class of subgroups of RAAGs

Every right-angled Artin group A admits a finite K(A, 1), called the Salvetti
complex of A, which we shall denote Y and which can be constructed explicitely
from the presentation of A. It is a cubed complex which has one single vertex,
and one edge of length 1 for every generator of A. Moreover, for every n-tuple
of mutually commuting generators of A, there is one (n + 1)-torus in Y . We
equip every cell, of any dimension, of this complex with the flat metric, in the
sense that in the universal cover Ỹ every cell is a Euclidean cube of sidelength 1.
Then the complex is locally CAT(0), and its universal cover Ỹ is CAT(0). For
instance, for the group A = Z

2 = 〈a1, a2 | [a1, a2] = 1〉, the complex Y is a
torus, constructed out of one vertex, two edges, and one square which glued to
the 1-skeleton according to the commutation relation. See [11] for details. The
reader should note that as soon as an orientation is chosen on each edge (i.e.
simple loop) of Y , one obtains an explicit isomorphism between A and π1(Y )
such that the image of each generator ai of A is represented by the simple loop
labelled by ai traversed in the positive direction.

Now, suppose that X is a finite locally CAT (0) cubed complex, and consider
a cubical map Φ: X → Y , sending each open cube of X bijectively and locally
isometrically to a cell of the same dimension in Y . (Here Y still denotes the
Salvetti complex of some right-angled Artin group.) If one of the vertices of X
is designated as its basepoint, then such a mapping induces a homomorphism
Φ∗ : π1(X) → π1(Y ). See Figure 7 for an example where X and Y are 1-
dimensional complexes.

We need some more notation: for any vertex x of X , we denote by Φlk : lk(x,X)→
lk(Φ(x), Y ) the induced map from the link of x in X to the link of Φ(x) in Y
We shall be interested in the following two properties which our map Φ may
have:

• The convexity property: for any vertex x of X , and any two vertices
of lk(Φ(x), Y ) which belong to the image Φlk(lk(x,X)) and which are
connected by an edge, the connecting edge belongs to the image Φlk(lk(x,X)),
as well.

• The injectivity property: the map of universal covers Φ̃ : X̃ → Ỹ is
injective. In particular, Φ∗ : π1(X)→ π1(Y ) is a monomorphism.

We remark that a map Φ satisfying the two hypotheses is a local isometry.
Now, the subgroups of the right-angled Artin group A ∼= π1(Y ) for which we
shall solve the conjugacy problem are the fundamental groups π1(X) of cubical
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complexes X which admit a cubical map Φ: X → Y with the convexity and
injectivity property.

Remark If X and Y are both known to be CAT (0) cube complexes then
the convexity property implies the injectivity property – cf. [11], Theorem 1
and the remark following. Conversely, the two conditions, together with the
knowledge that Y is CAT (0), imply that the complex X is itself CAT (0).

The reader unfamiliar with the geometrical language used in stating the condi-
tions should remember that the convexity and injectivity properties are satisfied
by all the subgroups of right-angled Artin groups discussed in Theorem 1 of [11].
So some typical examples to keep in mind are those given in this paper. More
generally, in order to get a mental image of the class of subgroups satisfying
the two hypotheses, one can think of a subgroup whose Cayley graph sits in the
Cayley graph of A in a “flat” way. Moreover, as proven by Haglund and Wise
([19], Theorem 4.2), for a cubed complex X , the property of admitting map Φ
to a RAAG with the convexity and injectivity property can be characterized
purely in terms of certain combinatorial conditions on the complex X – they
call such complexes special.

General Notation and Conventions for the rest of the section

• We fix once and for all a right-angled Artin group A given by a presenta-
tion with generators a1, . . . , aN , and we denote by Y the cubed complex
associated with A. We fix an orientation on every edge of Y and iden-
tify A with π1(Y ), using the chosen orientations.

• We also fix a finite cubed complex X and Φ: X → Y a cubical map
satisfying the convexity and injectivity condition. Finally, we fix a label
x1, x2, x3, . . . for each vertex of X .

Roughly speaking, our main result is the following

Claim: Using the General Notation and Conventions of this section, the conju-

gacy problem in the group π1(X), with respect to any finite set of generators of

π1(X), is solvable in linear-time.

Phrased in this way, however, this statement is somewhat dissatisfying, because
we have not even stated how the generators of π1(X) are specified. A more
precise statement will be given in Theorem 25 below.

In fact, we will not directly solve the conjugacy problem in the fundamental
group of X , but a more general problem, namely the conjugacy problem in the
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fundamental groupoid of X , in linear-time. First, we explain what precisely
that means.

Let us fix a (positive) orientation for each edge of the complex X by pulling
back along Φ the orientation of edges in Y . An element of the fundamental
groupoid is, by definition, a homotopy class of paths (with fixed endpoints)
from some vertex xi to some vertex xj . Such an element of the fundamental
groupoid can be represented by a finite sequence of successive directed edges,
which may be traversed in the positive or in the negative direction. We shall
call such a sequence an edge path from xi to xj . Similarly in Y we have an
analogue notion of an edge path as a homotopy class of path specified as a
sequence of positively or negatively directed edges.

We shall use the following very convenient way of coding edge paths in X
and Y : in Y , we shall simply identify closed edge paths with words in the
letters a±1

1 , . . . , a±1
N . As for X , the map Φ gives rise to a coding of edge paths

in X by based words.

Definition 24 A based word is a word of the form xiwxj , where xi and xj

are vertices of X , and w is the image under Φ of an edge path in X starting
at xi and ending at xj . The vertex xi is called the base vertex of the based
word.

In other words, the edge path xiwxj is by definition the pullback to X of
the path w in Y which starts at xi and ends at xj . Notice that not every
word of the form xiwxj , with xi and xj vertices of X and w a word with
letters in {a±1

1 , . . . , a±1
N }, is a based word. However, when it is, then it uniquely

determines an edge path in X , because of the injectivity property. For instance,
if xiwxj is a based word, and if the word w can be written as a concatenation
w = w1w2 , then there exists a unique vertex xk such that xiw1xk and xkw2xj

are based words. For an example of based words, see again Figure 7.

Two elements of the fundamental groupoid of X can be multiplied if the termi-
nal vertex of the first coincides with the initial vertex of the second. In terms
of based words, (xiw1xj) · (xjw2xk) = xiw1w2xk . Two loops in X are freely
homotopic if and only if they represent conjugate elements of the fundamental
groupoid. If the loops are represented by based words x1wx1 and x2vx2 , then
this equivalent to the existence of a based word x1ux2 such that the elements
of the fundamental groupoid represented by x1uvu−1x1 and x1wx1 coincide.

Our main result can now be stated precisely. The proof will occupy the whole
rest of the paper:
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Theorem 25 Using the General Notation and Conventions of this section,
given two based words x1wx1 and x2vx2 , one can decide whether they represent
freely homotopic loops in X . Moreover, if w and v have length ℓ1 and ℓ2 ,
respectively, the decision can be performed by an algorithm which takes time
O(ℓ1 + ℓ2) on a RAM machine, where the linear constants depend on X , Y
and Φ only.

3.2 Base points and homotopies in the cubical complex X

Why did we pass to the fundamental groupoid, rather than sticking to the
fundamental group? In other words, why do we pay so much attention to
basepoint issues? By the way of motivation, let us look at a wrong “proof” of
Theorem 25, and see how how we get into trouble if we don’t make basepoints
explicit at every step.

Wrong Claim Let α, β be two closed edge paths in X based at a common
vertex x. Then the loops α and β represent conjugate elements of π1(X) if
and only if the words Φ(α) and Φ(β) represent conjugate elements of A.

Wrong proof of the Wrong Claim The implication “⇒” is obvious. For
“⇐”, we suppose that the words Φ(α) and Φ(β) represent conjugate elements
of π1(Y ), so the loops Φ(α) and Φ(β) in Y are freely homotopic. Thus we can
apply sequences of free reductions, cyclings, and commutation relations (homo-
topies across squares) in Y to each of the two loops so as to transform both
of them into some loop Γ in Y . By the injectivity- and convexity hypothe-
sis, these transformations can be pulled back to free homotopies of the original
loops α and β in X . Therefore α and β are both freely homotopic to some
loop γ in X , i.e. they are freely homotopic.

This proof is almost correct, and our real proof of Theorem 25 shall follow this
outline. The mistake, however, is the conclusion in the very last sentence: we
can only conclude that α and β are freely homotopic to some loops γ and γ′ ,
respectively, where Φ(γ) = Γ = Φ(γ′). Intuitively, the loops γ and γ′ in X may
look like two different “liftings” of Γ, we did not pay attention to basepoints!

An explicit counterexample to the Wrong Claim illustrating the base point
problem is given in Figure 7.

In order to prepare the proof of Theorem 25, let us study what homotopies of
paths in X look like.

If α is an edge path in X giving rise to a based word xiwxj , and if xiw̃xj is a
based word obtained from xiwxj by one application of a commutation relation
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e2

e3

X =
x1 x2

= Y

a2 = Φ(e2)

basepoint

Φ
e1 a1 = Φ(e1) = Φ(e3)

Figure 7: π1(Y ) is the free group on two generators a1 = Φ(e1) = Φ(e3) and a2 =
Φ(e3). The loops e1 and e2e3e

−1

2
are not conjugate as elements of π1(X), whereas

their images in π1(Y ) are. In order to describe the loops in X it is better to use the
based words x1a1x1 and x1a2a1a

−1

2
x1 . The latter is conjugate to x2a1x2 .

(corresponding to a homotopy of a path in Y across a square) then there exists
an edge path α̃ in X , starting from the same vertex as α and homotopic to α,
which gives rise to the based word xiw̃xj – this is an immediate consequence
of the convexity condition. Similarly, free cancellations in w can be realised by
cancellations of backtracking path segments in α.

Let us summarize the situation in even more geometric language. Given a
vertex x of X , it is in general not true that every loop in Y is the image
under Φ of a path in X starting at x. However, when such a pullback of the
loop exists, then it is unique. Moreover, in that case all homotopies of the loop
in Y , except length-increasing ones, can be pulled back to based homotopies of
the path in X .

Let us now look more generally at free homotopies of loops in X , i.e., homo-
topies that move the basepoint.

Definition 26 Suppose that xwx is a based word. A parallel transport of xwx
is a replacement of the vertex x by a vertex x′ , where x′ is obtained from x
by walking along an oriented edge e with the property that the element Φ(e)
of A commutes with all the generators of A occurring in the word w .

Geometrically, this move corresponds to replacing a closed path based at x by a
parallel one based at x′ , where x and x′ are joined by an edge e. The two paths
together bound an annulus-shaped region of X . Notice that, under Φ, the two
paths have the same image w in Y . Another way of moving the basepoint of a
loop is to push it along the loop:

Definition 27 Suppose that w = xy1y2 . . . yℓx is a based word, and denote
by e the unique edge of X that has one of its extremities equal to x and such
that Φ(e) = y1 . A based cycling of the based word w is its replacement by
the word x′y2 . . . yℓy1x

′ , such that the vertex x′ is the second extremity of the
edge e.
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Geometrically, if α is a loop in X based at a vertex x, and described by a
based word xy1y2 . . . yℓx, and if we apply a cycling operation (in the sense of
section 2) to the word y1y2 . . . yℓ , then this cycling can be pulled back to X
to a based cycling of the based word, yielding a loop α̃, which looks exactly
like α, except that it based at a different vertex x′ , “one notch further along
the loop”.

Example 28 In the example of Figure 7, we can apply a based cycling to
the based word x1a2a1a

−1
2 x1 , yielding x2a1a

−1
2 a2x2 . After a cancellation, we

obtain the based word γ2 = x2a1x2 . We note that this is different from the
based word γ1 = x1a1x1 , which was also discussed in that example – in fact,
the based words x2a1x2 and x1a1x1 are not even related by parallel transport
(because Φ(e2) = a2 does not commute with a1 ). As we shall see in Lemma 31,
this implies that the two loops e1 and e2e3e

−1
2 are not freely homotopic in X .

Also note that a cyclic reduction of a word on the generators of A and their
inverses can be decomposed as a cycling, followed by a usual cancellation of
letters, and each of these operations can be pulled back to operations on the
loop in X . Summarizing the last few paragraphs, we have the following

Key Observation 29 If α is a loop in X then all non-length-increasing free
homotopies of the loop Φ(α) in Y can be pulled back to free homotopies of α.
Thus for a based word xwx, all cancellations, applications of commutation re-
lations, cyclings, and cyclic reductions of the word w can be pulled back to
analogue cancellations, commutation relations, and based cyclings of the based
word. Similarly, if x1wx2 is a based word, and if the word w can be trans-
formed into a word w′ by applying cancellations and commutation relations,
then x1w

′x2 is again a based word.

3.3 The linear-time solution to the conjugacy problem

The aim of this subsection is to prove Theorem 25. We recall that we are
considering two based words x1wx1 and x2vx2 representing two loops in X
traversing ℓ1 and ℓ2 edges, respectively. A necessary condition for these loops
being conjugate in the fundamental groupoid of X is that the words w1 and w2

represent conjugate elements of the right-angled Artin group A. In geometric
terms, for the two loops to be freely homotopic in X , their images under Φ
in Y must be freely homotopic. This is a condition which we can check in time
O(ℓ1 + ℓ2) by the results of Section 2. However, this condition is not sufficient,
as seen in Example 28. So let us now try to refine this approach.
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Proposition 30 There is an algorithm with running time O(ℓ1 + ℓ2) whose
input consists of two based words x1wx1 and x2vx2 of lengths ℓ1 and ℓ2 , and
which outputs

(1) either the information that they do not represent freely homotopic loops
in X , or

(2) two based words x′
1w̃1 . . . w̃kx

′
1 and x′

2w̃1 . . . w̃kx
′
2 , representing two loops

in X which are respectively freely homotopic to the original two, and
where the w̃i are mutually commuting cyclic normal forms.

Proof of Proposition 30 As seen in Section 2 we can decide in linear-time
whether w and v represent conjugate elements of A. If they do not, then
the two based words do not represent conjugate elements of the fundamental
groupoid either, and it suffices to output this information (case (1)).

For the rest of the proof we have to deal with the case where w and v do
represent conjugate elements of A.

We already know from Section 2 that the word w can, by a sequence of can-
cellations, commutation relations and cyclings be transformed into a word w′

with the required decomposition w′ = w′
1 . . . w′

k . Moreover, we know how to
calculate the word w′ in linear-time.

We also know from the Key Observation 29 above that the transformation of
the word w into the word w′ can be pulled back to a transformation of the
based word x1wx1 into a based word x3w

′x3 . Our next task is to determine
the corresponing base vertex x3 in linear-time.

We shall fulfill this task by “carrying along information about the base vertex
in X during the algorithm”. While running the algorithm of Section 2, the
only steps that affect the base vertex are the cyclings of pilings (including
cyclic reductions of pilings, which can be decomposed as cyclings, followed by
cancellations of tiles): when we cycle an a±j -tile, we have to determine how
the base vertex is affected. However, this can be done simply by a lookup in a
finite, precalculated list: for every vertex x of X , for every generator aj of A,
and for every ǫ ∈ {−1, 1}, this list must tell us at which vertex of X we arrive
if we pull back the loop aǫ

j ∈ A = π1(Y ) to a path in X starting at x (if that is
possible). Since the algorithm of Section 2 performs a linearly bounded number
of cyclings, we can calculate the new base vertex x3 in time O(ℓ1).

In a similar manner we can algorithmically transform the based word x2vx2

into a word x′
2w̃x′

2 , where w̃ is equipped with an analogue decomposition
w̃ = w̃1 · · · w̃j .
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But since w and v represented conjugate elements of A, we have, by the results
of Section 2, that the words w′ and w̃ are in fact the same, at least after a
reordering of the factors of w′ and a linearly bounded number of cyclings of each
factor w′

i ; in particular, we have j = k . Moreover, the Boyer-Moore algorithm
tells us how many letters from each factor we have to cycle in order to achieve
this. Thus we can transform the based word x3w

′x3 into the based word x′
1w̃x′

1

for some vertex x′
1 , using a reordering of the factors (which does not affect the

base vertex) and a linearly bounded number of based cyclings.

Thus in order to prove Theorem 25, it is enough to prove it for the special
case v = w = w̃1 . . . w̃k , where the words w̃1, . . . , w̃k are mutually commuting
cyclic normal forms. (For instance, this is the situation of Example 28, where we
need to decide if the based words x1a1x1 and x2a1x2 represent freely homotopic
loops in X .) For the rest of the proof of Theorem 25 we fix such a word w̃ ,
with such a decomposition.

Suppose a based word x1ũx2 is such that x1ũw̃ũ−1x1 and x1w̃x1 represent the
same element of the fundamental groupoid. Then in particular the elements
of A represented by ũ and w̃ commute: we have [ũ][w̃][ũ]−1 = [w̃] in A.

As seen in Section 2.3, and using the notation of this section, the word ũ is
equivalent to another word u of the form

u = zp1

1 . . . zpk

k ζ

where p1, . . . , pk are integers and ζ is a word whose letters are generators of A
which commute with, but are different from, all the generators occurring in w ,
and their inverses. We shall call such a word u a word in preferred form. We
define the norm ‖u‖ of u by

‖u‖ =
k∑

i=1

|pi|+ length(ζ)

We are now ready state an algorithmically checkable criterion for x1w̃x1 and
x2w̃x2 representing conjugate elements (i.e. representing freely homotopic loops
in X ):

Lemma 31 The two based words x1w̃x1 and x2w̃x2 represent conjugate ele-
ments in the fundamental groupoid if and only if there exists a based word x1ux2

such that u is a word in preferred form with

‖u‖ 6 #{vertices of X} (1)
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Proof We first suppose that an edge path x1ux2 exists, where u is a word
in preferred form. Then the word uw̃u−1 can be transformed into the word w̃
by a finite number of commutation relations and cancellations (but no length-
increasing transformations). By Key Observation 29, this homotopy can be
pulled back to X , to yield a based homotopy between the paths in X repre-
sented by the based words x1uw̃u−1x1 and x1w̃x1 . In other words, the elements
x1w̃x1 and x2w̃x2 are conjugate, with conjugating element x1ux2 .

Conversely, let us suppose that a conjugating element in the fundamental
groupoid exists, and is represented by a based word x1ũx2 . This means that
there exists an edge path in X from x1 to x2 such that reading out the edge
labels along the path yields the word ũ. As seen before, [ũ] belongs to the
subgroup of A generated the elements [z1], . . . , [zk] and [aj1 ], . . . , [ajm ]. Thus
there is a word u in preferred form which can be obtained from ũ by a sequence
of reductions and commutation relations. By Key Observation 29, x1ux2 is also
a based word, i.e. it also represents an edge path in X .

We have shown the existence of a based word x1ux2 with u a word in preferred
form, and without loss of generality we can suppose that u is chosen so that
‖u‖ is minimal among all such based words.

Now for t in {0, . . . , ‖u‖} let us denote by x(t) the vertex of X obtained by a
walk in X starting at x1 and following the edges of X according to the t first
subwords. Now, if this function

{0, 1, . . . , ‖u‖} −→ {vertices of X} , t 7→ x(t)

is not injective (for instance, if ‖u‖ is larger than the number of vertices of X ),
then there exists a strictly shorter edge path in X represented by a based
word x1u

′x2 with u′ also in preferred form, obtained by cutting out some
segment of the previous edge path (c.f. the paragraph following Definition 24).
This is in contradiction to the choice of u, and we can conclude that we have
‖u‖ 6 #{vertices of X}

Let us now prove that the condition of Lemma 31 can be checked algorithmically
in linear-time, i.e. in time O(ℓ), where ℓ is the length of the word w .

Firstly, recalling that the centralizer of [w̃] is generated by a finite number
of elements (some of them represented by the words z1, . . . , zk and the others
equal to certain generators of A), we observe that there is a universal upper
bound on the number of generators, namely the number of generators of A.
Moreover, as seen in Proposition 23, words representing these generators can
be determined in linear time.
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Now there is a very simpleminded linear-time algorithm to check for the ex-
istence of a conjugating element: for all words u in preferred form satisfying
condition (1) check whether x1ux2 is a based word, i.e. whether there exists
an edge path in X represented by the based word x1ux2 . Indeed, there is a
universal bound on the number of words to be checked, and for each word u
the check takes linear time (since the length of the words zi can grow linearly
with the length of w̃).

Here is a summary of the whole algorithm: given two based words x∗wx∗ and
x∗vx∗ representing loops α and β in X ,

(1) Apply steps (i) and (ii) of the algorithm of Section 2.2, always carrying along
the base vertex, to find graphs ∆j(w) (j = 1, . . . , k), ∆j(v) (j = 1, . . . , k′ ), base
vertices x1 , x2 , and based words x1w1 . . . wkx1 and x2v1 . . . vk′x2 representing
loops that are freely homotopic to α and β .

(2) If k 6= k′ , or if the collections of full subgraphs ∆j(w) and ∆j(v) ⊂ Γ are
not the same, or if for some j between 1 and k the words vj and wj do not
have the same length ℓj , return “NO”.

(3) Apply step (iii)(a) of the algorithm of Section 2.2 to each of the k factors,
always carrying along the base vertices, to transform x1w1 . . . wkx1 into a based
word x3w

′
1 . . . w′

kx3 and similarly x2v1 . . . vkx2 into x′
2w̃1 . . . w̃kx

′
2 , where all

words w′
i and w̃i are cyclic normal forms.

(4) For each factor, use a standard pattern matching algorithm to decide if
w′

i = w̃i as cyclic words. If no, return “NO”. If yes, keep in mind how many
cyclings of each factor w′

i are required to achieve equality w′
i = w̃i as (non-

cyclic) words.

(5) Perform the required based cyclings of x3w
′
1 . . . w′

kx3 to obtain a based word
of the form x′

1w̃1 . . . w̃kx
′
1 .

(6) Calculate the minimal roots zi of the words w̃i , as explained in Section 2.3.
Also determine the set of generators that commute with all the letters occurring
in the words w̃i , but do not occur in any of them.

(7) Check, for all words u in preferred from satisfying condition (1), whether
there exists an edge path in X represented by the based word x′

1ux′
2 . If for one

of the words u the answer is affirmative, then return “YES”. Otherwise return
“NO”.
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