
HAL Id: hal-00252055
https://hal.science/hal-00252055

Submitted on 12 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of deformations of photolithographic objects.
A. Touati, Serge Corbel, Jean-Pierre Corriou

To cite this version:
A. Touati, Serge Corbel, Jean-Pierre Corriou. Modeling of deformations of photolithographic objects..
Multidiscipline Modeling in Materials and Structures, 2008, 4 (1), pp.89-104 (16). �hal-00252055�

https://hal.science/hal-00252055
https://hal.archives-ouvertes.fr


Modeling of deformations of photolithographic objects

A. Touatia, S. Corbela and J.P. Corrioub∗
a DCPR-CNRS-ENSIC-INPL

bLSGC-CNRS-ENSIC-INPL , 1 rue Grandville , BP 20451 54001 Nancy Cedex

Abstract

Photolithography allows the fabrication of a solid polymer object through polymerization of a monomer
resin by means of a laser source guided according to the data of computer aided design. However,
one drawback of this method is the inaccuracy of the dimensions of the objectsrelated to the shrinkage
phenomenon which depends on the polymerization, on the laser flux and on the used sweeping procedure.
In this paper, the deformation of an isolated voxel (elementary volume) or a voxel interacting with its
neighbor is described. This simulation is based on a kinetic model that takes intoaccount the gel effect
and a model of volumetric variation due to the difference of the length of the bonds between the monomer
and polymer molecules.
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1 Introduction

The techniques of fast prototyping nowadays [1] meet a large industrialsuccess for the fabrication of pro-
totype objects [2, 3]. Among them, photolithography [4, 5] which is based onspace photopolymerization
of a monomer resin [6] is a process that suffers from drawbacks suchas shrinkage and aging [7]. The
shrinkage is related to the liquid-solid transformation and induces a contraction of the irradiated volume.
This contraction is not homogeneous and consequently gives rise to internal stresses which themselves
provoke a deformation of the final object. To remedy to that problem, two main directions of research
have been studied. The first one consists in acting on the material by using aresin with a low shrinkage
[8, 9, 10], a resin charged by a rigid material or a powder suspension ina liquid resin [11]. In the sec-
ond manner, the system is directly influenced and especially new motives of filling the layers are used
[12, 13] in order to reduce the deformations. This latter solution needs the understanding of the kinetics
of shrinkage and deformation. In this study, the deformation of an isolated voxel (elementary volume) or
a voxel interacting with its neighbor is described. A model of the photopolymerization reaction taking
into account the gel effect and a quantitative model based on the previous one to describe the volumetric
shrinkage of the polymer constitute the total model used in the simulation.

∗e-mail: corriou@ensic.inpl-nancy.fr

1



2 Model of the polymerization kinetics

During a photopolymerization, the variation of the irradiated volume follows a sigmoidal curve when the
resin is irradiated by a light of convenient photonic energy (Fig. 1). It iscomposed of three zones:

- the first one, where the volume varies slowly, corresponds to the start of the reaction, consumption of
the inhibitors, creation of active sites ...,

- the second one, where the volume varies rapidly, is linked to the polymerization in a medium which
is still liquid,

- the third one, where the volume is nearly constant, corresponds to the reticulation which leads to a
material strictly insoluble in the liquid resin.

The kinetics of such a reaction can be schematically represented according to the following mechanism
[14, 15, 16]

photochemical initiation A + hν
Iaφ
−→ 2R· (1)

propagation of "‘type 1" R· + M
k1−→ P ·

1 ∆V0 (2)

P ·

1 + M
k1−→ P ·

1 ∆V0 (3)

P ·

1 + P ·

1

k1−→ P ·

2 ∆V1 (4)

propagation of "‘type 2" P ·

2 + P ·

1

k2−→ P ·

1 ∆V1 (5)

P ·

2 + M
k2−→ P ·

2 ∆V0 (6)

P ·

2 + P ·

2

k2−→ P ·

2 ∆V2 (7)

P ·

2 + P ·

1

k2−→ P ·

n ∆V2 (8)

P ·

2 + P ·

2

k2−→ P ·

n ∆V2 (9)

propagation of "‘type 3" P ·

n + M
k3−→ P ·

n ∆V0 (10)

termination P ·

1 + P ·

1

k1−→ N ∆V0 (11)

P ·

2 + P ·

2

k2−→ N ∆V2 (12)

P ·

n + P ·

n
k3−→ N ∆V2 (13)

It is assumed that the chemical reactivity of the macroradicals (having the same number of active
sites) is practically the same whatever the chain length, i.e. they are kinetically indiscernible.

In all the stages of "type 1" propagation, the macroradicals have a single active center. We consider
that the reaction constants are equal tok1. For the stages of "type 2" propagation, the macroradicals have
two active centers and consequently, they are more reactive than those of "type 1". Their kinetic constants
k2 are equal and arbitrarily fixed at10k1. In the stages of "type 3" propagation, the macroradicals have
more than two active centers and the kinetic constantk3 is similarly taken as100k2.

2.1 Kinetic model

The kinetic model corresponding to the previous reaction mechanism is composed by the following
differential equations

d[R·]
dt = Iaφ − k1 [R·] [M ] (14)
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d[M ]
dt = −k1 [R·] [M ] − k1 [P ·

1 ] [M ] − k2 [P ·

2 ] [M ] − k3 [P ·

3 ] [M ] (15)

d[P ·

1 ]
dt = k1 [R·] [M ] − 4 k1 [P ·

1 ]2 − k2 [P ·

1 ] [P ·

2 ] (16)

d[P ·

2 ]
dt = k1 [P ·

1 ]2 − 2 k2 [P ·

1 ] [P ·

2 ] − 5 k2 [P ·

2 ]2 (17)

d[P ·

n]
dt = k2 [P ·

1 ] [P ·

2 ] + k2 [P ·

2 ]2 − 2 k3 [P ·

n]2 (18)

2.1.1 Kinetic constants of the reactions

The considered model takes into account the gel effect, i.e. the confiningof the reactive species in the
reacting medium and consequently the limitation of the conversion rate. An apparent kinetic constant
equal to

Ki =
ki kD

ki + kD

i = 1, 2, 3 (19)

has been used for each reaction stage whereki is a kinetic propagation constant following Arrhenius law

ki = k0

i exp

(

−Ei

RT

)

(20)

andkD a term for the diffusion of molecules in the medium [17]

kD = 2.2 106
T

η
(21)

with T temperature of the medium (K),R gas constant (J.mol−1.K−1), Ei propagation activation energy
(J.mol−1), η viscosity of the medium (Pa.s).

At the beginning of the reticulating photopolymerization reaction, the system is liquid (more or less
viscous according to its nature), then it transforms itself into a transient gelstate and finally, in a rapid
way, into a dense solid. An approximate expression of the medium viscosity [14] which takes into
account the change of state: liquid→ gel→ solid, is

η = η0 exp

(

χ

χ∞ − χ

)

(22)

with χ the conversion rate of the monomer andχ∞ the final conversion rate.
Experimentally, the conversion rate for a diacrylic monomer does not exceed 60 or 70% due to the

capturing of the macroradicals which can no more react. Whenχ tends towards 0.6, the viscosity tends
towards a very large value (fixed as a finite value in the model simulation,109 Pa.s ). Whenη is expressed
with respect to the number of monomer unitsxm(t) remaining at timet in the reaction medium, it gives

η = η0 exp

[

λ

(

1

xm(t)
−

1

xm(t0)

)]

(23)

with η0 = 10−3 Pa.s,λ is a constant such thatη = 109 Pa.s whenχ = 0.6 andxm(t0) is the initial
number of monomer units.

2.1.2 Relation between the intensity of the absorbed light and the depth of polymerization

The intensityIt transmitted through an absorbing medium follows Beer-Lambert law

It(z) = I0 exp(−ǫλcz) (24)

with I0 intensity of the incident flux,ǫλ extinction coefficient at wavelengthλ, c concentration in absorb-
ing species andz thickness of the medium.
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The light intensity absorbed by an elementary layer of thicknessdz at depthz is

Ia,z(dz) = −dIt(z) = ǫλ c I0 exp(−ǫλ c z) dz (25)

If an elementary volume (voxel) which is a square parallelepiped is subdivided intonmax layers of
thickness∆z (Fig. 1) and if the absorption is supposed to be homogeneous in each layer, the absorbed
flux in thenth layer is

Iabs = I0 {exp [−ǫλ c (n − 1)∆z] − exp [−ǫλ c n ∆z]} (26)

In order to eliminate the factor(ǫλ c) related to the initiator, a transmission rateτz,trans equal to the
ratio between the incident intensity and that transmitted at depthz0, with z0 total thickness of the sample
is defined

τz,trans =
It(z0)

I0

= exp(−ǫλ c z0) (27)

with

z0 = −
ln(τz,trans)

ǫλ c
= nmax ∆z (28)

from which the intensity absorbed by a layern results

Iabs = I0

{

exp

[

n − 1

nmax

ln(τz,trans)

]

− exp

[

n

nmax

ln(τz,trans)

]}

(29)

with I0 andIabs in E.mm−2.s−1 (E : Einstein).

2.2 Simulation results

The numerical data [14] have been used for simulation are given in Table 1.

Table 1: Numerical data for simulation

xm(t0) = 200 τz,trans = 0.01
I0 = 3.10−7 E.mm−2.s−1 φ = 0.5 mol.E−1

l0 = 1 mm k0
1 = 8.7 105 l.mol−1.s−1

z0 = 0.5 mm E1 = 4.7 J.mol−1

nmax = 10 R = 8.314 J.mol−1.K−1

The results, presented on Figure 2, show the variation of the monomer conversion with respect to
time for the different layers. It can be noticed that these layers have an inflexion all the more pronounced
as the layer is close to the free surface of the resin, which is consistent withphysics laws. On the other
side, each curve has a sigmoidal shape: the reaction of the molecules is slowat the beginning than it
becomes faster due to the reticulation of the medium (several sites are active), then it decreases because
of the macroradicals which are enclosed.

3 Model of the volumetric variation

The transformation monomer-polymer is accompanied by a decrease of the irradiated volume or volu-
metric shrinkage which follows a sigmoidal curve (Fig. 3). The model described by Fig. 1 has been used
to represent it.
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3.1 Volumetric model

The principal of the simulation model is the following: a variation of the elementaryvolume is associated
to each stage of the kinetic model given by equations (1) to (13), this variation depends on the size
of the reacting molecules. A small volumetric variation∆V0 is associated to the conversion of the
monomer molecules, a large volumetric variation∆V1 is associated to the macroradicals having a single
active center, and a larger volumetric variation∆V2 is associated to the macroradicals having more
than one active center (the volumetric variation due to reticulation increases with the number of active
centers). The volumetric variation for each reaction stage is determined in thefollowing manner: the time
derivative of the volume times the sum of the concentrations of the differentreactive species figuring in
the equation of the reaction stage is equal to the product of the rate of that stage by the elementary
volumetric variation. This calculation results in

Stage (1) −[M ]
dV

dt
= k1 [R·] [M ] ∆V0 (30)

Stage (2) −[M ]
dV

dt
= k1 [P ·

1 ] [M ] ∆V0 (31)

Stage (3) ([P ·

2 ] − 2 [P ·

1 ])
dV

dt
= k1 [P ·

1 ]2 ∆V1 (32)

Stage (4) −[P ·

2 ]
dV

dt
= k1 [P ·

1 ] [P ·

2 ] ∆V1 (33)

Stage (5) −[M ]
dV

dt
= k2 [P ·

2 ] [M ] ∆V0 (34)

Stage (6) −[P ·

2 ]
dV

dt
= k2 [P ·

2 ]2 ∆V2 (35)

Stage (7) ([P ·

n] − [P ·

1 ] − [P ·

2 ])
dV

dt
= k2 [P ·

1 ] [P ·

2 ] ∆V2 (36)

Stage (8) ([P ·

n] − 2 [P ·

2 ])
dV

dt
= k2 [P ·

2 ]2 ∆V2 (37)

Stage (9) −[M ]
dV

dt
= k3 [P ·

n] [M ] ∆V0 (38)

Stage (10) −2 [P ·

1 ]
dV

dt
= k1 [P ·

1 ]2 ∆V0 (39)

Stage (11) −2 [P ·

2 ]
dV

dt
= k2 [P ·

2 ]2 ∆V2 (40)

Stage (12) −2 [P ·

n]
dV

dt
= k3 [P ·

n]2 ∆V2 (41)

The total volumetric variation results

−dV
dt = k1 [R·] ∆V0 + k1 [P ·

1 ] ∆V0 +
k1 [P ·

1 ]2

2 [P ·

1 ] − [P ·

2 ]
∆V1 + k1 [P ·

1 ] ∆V1 + k2 [P ·

2 ] ∆V0

+k2 [P ·

2 ] ∆V2 +
k2 [P ·

1 ] [P ·

2 ]
[P ·

1 ] + [P ·

2 ] − [P ·

n]
∆V2 +

k2 [P ·

2 ]2

2 [P ·

2 ] − [P ·

n]
∆V2

+k3 [P ·

n] ∆V0 + k1

2 [P ·

1 ] ∆V0 + k2

2 [P ·

2 ] ∆V2 + k3

2 [P ·

n] ∆V2

(42)

Let us assume that the elementary volumetric variations∆V1 and∆V2 are proportional to∆V0 as

∆V1 = β1 ∆V0 and: ∆V2 = β2 ∆V0 (43)

whereβ1 andβ2 are coefficients estimated by an optimization procedure so as to minimize the deviation
between the simulated curves∆V/V = f(t) and the experimental data. The analytical expression of
∆V0 can be obtained in the following manner: as the final volumeVfin of the polymerized sample is
known, it is possible to define a shrinkage rateαmax such that

Vfin − V0 = −αmax V0 (44)
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with V0 initial volume of the monomer. At timet, the volume of the sample is

V (t) =

∫ t

0

dV

dx
dx + V0 (45)

such that, at the end of reaction at timetfin, the volumetric variation is given by equation (44). The
following approximation of the integral can be performed

∑

i=0

N

(

∆V

∆t

)

i

∆tint ≈ −αmax V0 (46)

with i such thatti = i∆tint, ∆tint the time integration step andtfin = N∆tint. The relative volumetric
variation can be formulated for interval[ti, ti + ∆tint] as

(

∆V

∆t

)

i

= −f0(ti)∆V0 − f1(ti)∆V1 − f2(ti)∆V2 = −[f0(ti) + β1 f1(ti) + β2 f2(ti)] ∆V0 (47)

wheref0(ti), f1(ti) andf2(ti) depend on the concentrations of the active species of the medium at time
ti. The total volumetric variation results

N
∑

i=0

(

∆V

∆t

)

i

∆tint ≈ −∆V0 ∆tint

tfin
∑

ti=0

[f0(ti) + β1 f1(ti) + β2 f2(ti)] (48)

hence

∆V0 ≈
αmax V0

∆tint

tfin
∑

ti=0

[f0(ti) + β1 f1(ti) + β2 f2(ti)]

(49)

Thus the value of∆V0 depends on two experimental parametersV0 andαmax and on both parameters of
the volumetric variationβ1 andβ2.

3.2 Simulation results

The relative volumetric variation with respect to time is represented on Figure 4(for β1 = β2 = 1) and
Figure 5 (forβ1 = 10 andβ2 = 100). The choice of the values ofβ1 andβ2 is arbitrary and its objective
is to study the effect of these parameters on the volumetric shrinkage. The numerical data are the same
as those used in section 2.3 withαmax = 0.15. The curves have the same shape in both cases but the
volumetric decrease is more important in the second case. Indeed, only fivestages (equations (30), (31),
(34), (38) and (39)) among the twelve composing the kinetic model lead to a variation ∆V0 (due to a
transformation of the monomer) and moreover, as the reaction progresses, the monomer is consumed.

4 Model of a vortex deformation

4.1 Description of the geometrical simulation

Assume that the laser ray has a square cross section of side 1 mm and that itis perpendicular to the
monomer surface. Thus the polymerized voxel has a cross section of 1 mm2 and a depthz0. In the
simulation model, the voxel is divided intonmax layers of thickness∆z at t = 0 (Fig. 6), the evolution
of the thickness of each layer is calculated from the volumetric variation presented on Fig. 4. It is
assumed that each layer can freely slip with respect to the other. At timet, each layern is described
by its lengthl(n, t) and its thicknesse(n, t). The linear shrinkage coefficientkr(n, t) of thenth layer
at timet is defined byl(n, t) = kr(n, t)l0 ande(n, t) = kr(n, t)∆z, thus the volumev(n, t) of thenth

layer is
v(n, t) = e(n, t) l2(n, t) = k3

r(n, t) l20 ∆z (50)
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Being given that the initial volumev0 of a layer att = 0 is: v0 = l20 ∆z, then the linear shrinkage
coefficientkr(n, t) is

kr(n, t) =

(

v(n, t)

v0

)

1
3

(51)

and the depth of the layern is

z(n, t) =
n

∑

i=1

e(i, t) (52)

with z0 = z(nmax, 0) = nmax∆z .
The set of equations describing the layern at timet is























l(n, t) = kr(n, t) l0

z(n, t) = z0

nmax

n
∑

i=1

kr(i, t)

e(n, t) = kr(n, t)∆z

(53)

The origin of the vertical axis Oz is the free surface of the resin and the axis Oz is oriented downwards.
It is assumed that the top of the voxel remains atz = 0, thus the shrinkage occurs forz > 0. If the
polymerization is independent of any physical constraint (such as gravity forces), the description of the
deformation of the voxel section is relatively simple. In the present simulation,the voxel is assumed to
adhere to the reactor wall.

4.2 Simulation results

The numerical data used in the simulation of the volumetric variation of a voxel during polymerization
are gathered in Tab. 2 where∆t is the time of irradiation of a voxel.

Table 2: Numerical data for the volumetric variation

l0 = 1 mm z0 = 0.5 mm
∆z = 0.05 mm nmax = 10
∆t = 0.1 s αmax = 0.15
τz,trans = 0.01 I0 = 3 10−7 E.mm−2.s−1

The deformation of the right half-part of the voxel has been simulated as the deformation is symmet-
rical with respect to its axis. On Fig. 7, the deformation of a voxel after 0.1 sirradiation is represented
during polymerization. It appears that the voxel shrinks with respect to the horizontal and vertical di-
rections, inducing a decrease of its length and thickness. This decreaseis more important for the layers
closer to the surface which absorb more laser flux (according to Beer-Lambert law).

5 Model of an element of two voxels

5.1 Description of the deformation of two adjacent voxels

At time t = 0, the laser light starts the sweeping of the first voxel on the surface of theresin. The
sweeping of a line of polymer is described by Fig. 8.∆t is the irradiation time for a voxel. The first
irradiated voxel is the one adhering to the reactor wall, then at each period∆t, the adjacent voxel is
irradiated to produce the line formed bynvox voxels.
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From timet = 0 to t = ∆t, the first voxel starts shrinking and deforming itself as indicated at the
previous section. At timet = ∆t, the angle between the layer and the vertical isα1 (Fig. 9). This angle is
negative as the chosen positive direction is clockwise. Then, att = ∆t, the irradiation of the second voxel
starts. It is assumed that this second voxel starts shrinking independentlyof the first one, and a fictitious
angleα2 is defined (Fig. 10) between the left side of the first layer of the second voxel with vertical if it
shrinks freely; again only one side is concerned as the shrinkage is assumed to be symmetrical. However,
the second voxel follows the deformation of the first one and has its own volumetric variation. The global
deformation of the second voxel is characterized by the angleαg between its first layer and horizontal

αg = α1 + α2 (54)

the second voxel deformates itself upwards ifαg < 0 and downwards ifαg > 0 (Fig. 11). Let us
calculate the angleαg(1, t) of the first layer of the second voxel with horizontal at timet

αg(1, t) = α1(1, t) + α2(1, t − ∆t) (55)

with α1(1, t) related to the first voxel, such that

tan(α1(l, t)) =

∣

∣

∣

∣

l(i, t) − l(2, t)

2e(1, t)

∣

∣

∣

∣

(56)

wherel(1, t) andl(2, t) are the lengths of the first and second layers,e(1, t) is the thickness of the first
layer at timet. The value ofα2 derives from the following equation

tan(α2(l, t − ∆t)) =

∣

∣

∣

∣

l(i, t − ∆t) − l(2, t − ∆t)

2e(1, t − ∆t)

∣

∣

∣

∣

(57)

These hypotheses, i.e. the deformation of the second voxel follows that of the first one and the angle
αg of the first layer of the second voxel with horizontal influences the global deformation of the second
voxel, require that each voxel remains sufficiently flexible to be able to follow the deformation of the
adjacent voxel, but simultaneously sufficiently solid to deformate itself as a single object. Thus, any
voxel must remain viscous during all the simulation of the deformation of the element.

5.2 Simulation results

The deformation of an element formed by two adjacent voxels was simulated withthe same numerical
data as Tab. 2 and a sweeping velocityvs = 10 mm.s−1. Fig. 11 represents the result of that simulation
at different times. A value ofαmax (0.15) larger than the experimental value (0.10) [14] was used to
amplify the deformations and emphasize the behavior of a voxel during polymerization.

It can be noticed that the deformation of the bar is the result of the deformations of each voxel as
well as of the interaction between both of them. This makes the accumulation of thedeformations in an
irradiated line clear, which is in agreement with the experimental result foundby [18, 19]. It shows that
the use of a single line by segmentation of the swept lines improves the final stateof the beam produced
by photolithography.

The method used to simulate the deformation of two adjacent voxels can be generalized to analyze
the deformation of a beam formed bynvox voxels. The shrinkage of the(i + 1)th voxel is delayed by
∆t (sweeping time for one voxel) with respect to that of the previous adjacentvoxel with respect to the
sweeping. Therefore the data describing the voxeli + 1 at timet are the same as those of the voxeli
at timet − ∆t. Thus, to record the deformation at timet of a beam ofnvox voxels, it suffices only to
have the data describing one voxel at successive timest− (nvox − 1)∆t, . . . , t−∆t, t. The variation of
the profile of the beam with respect to time is characterized by the propagationof a vertical deformation,
related to angleαg, in the sweeping direction. The voxels that are deformed at a given time stand up
again at the following times. If the beam is assumed to remain sufficiently soft, it stands up again totally
by itself when time progresses. However, the polymer becomes more rigid with timeand the relaxation
of the beam becomes less obvious.
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6 Conclusion

In this paper, a model of simulation of the behavior of an elementary volume of monomer during pho-
topolymerization has been developed. First, a kinetic model of the photopolymerization reaction takes
into account the variation of viscosity of the medium. This model has been usedto develop the final
model dedicated to the simulation of the volumetric shrinkage of each voxel. These simulations show
the importance of the gel effect and the difference of behavior of the reactant before and after the gel
point. The simulations performed by means of a geometrical model allow us to describe the deformation
of an isolated voxel or of a voxel interacting with its neighbor. This simple modeldescribes the relaxation
of a line swept by a laser and demonstrates that the deformation accumulates itself with time. The results
of that simulation are in agreement with the experimental observations concerning the deformation of a
beam: the alternate sweeping avoids the propagation of the deformation (memory effect) and minimizes
the interaction between the irradiated elements, i.e. the internal stresses that are generated.

Nomenclature

c monomer concentration ( mol.m−3)
e(n, t) thickness of layer n at time t (m)
E propagation activation energy (J.mol−1)
Ia intensity of the absorbed flux (E.mm−3.s−1)
It transmitted intensity (E.mm−2.s−1)
I0 intensity of the incident flux (E.mm−2.s−1)
k1, k2, k3 kinetic constant (m3.mol−1.s−1)
kD diffusion constant of molecules (m3.mol−1.s−1)
l0 initial length of one voxel (m)
l(n, t) length of layern at timet (m)
M monomer
n number of a layer
P polymer
rt number of free radicals at timet
R· radical
R gas constant (J.mol−1.K−1)
v(n, t) volume of a layer (m3)
vs sweeping velocity (m.s−1)
V volume of the voxel (m3)
t time (s)
τz,trans transmission rate
T temperature (K)
z thickness of the voxel at timet (m)
z(n, t) thickness of layern at timet (m)

Greek symbols

αmax maximum shrinkage rate
α1, α2 angles between the layer 1 with vertical respectively for voxels 1 and 2 (rd)
αg global angle of deformation (rd)
αr(n, t) linear shrinkage coefficient
ǫλ extinction coefficient at wavelength l (m2.mol−1)
η viscosity (Pa.s)
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φ quantum yield of radical creation
∆t irradiation time of one voxel (s)
∆tint integration step (s)
∆z thickness of a layer (m)
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Figure 1: Conversion rate of the monomer with respect to time for the different layers (indexed by
increasingn with respect to depth)
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Figure 5: Relative volumetric variation with respect to time withβ1 = 10 andβ2 = 100
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Figure 7: Visualization of the deformation of a voxel after 0.1 s of irradiation
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Figure 11: Visualization of the deformation of two adjacent voxels
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