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Abstract

We study the p-adic behavior of Jacobi sums for Q(ζp) and link
this study to the p-Sylow subgroup of the class group of Q(ζp)

+ and
to some properties of the jacobian of the Fermat curve Xp + Y p = 1
over Fℓ where ℓ is a prime number distinct from p.

Let p be a prime number, p ≥ 5. Iwasawa has shown that the p-adic
properties of Jacobi sums for Q(ζp) are linked to Vandiver’s Conjecture (see
[5]). In this paper, we follow Iwasawa’s ideas and study the p-adic properties
of the subgroup J of Q(ζp)

∗ generated by Jacobi sums.
Let A be the p-Sylow subgroup of the class group of Q(ζp). If E denotes

the group of units of Q(ζp), then if Vandiver’s Conjecture is true for p, by

Kummer Theory, we must have A−

pA−
→֒ Gal(Q(ζp)(

p
√
E)/Q(ζp)). Note that

J is analoguous for the odd part to the group of cyclotomic units for the even
part. We introduce a submodule W of Q(ζp)

∗ which was already considered
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by Iwasawa ([6]). This module can be thought as the analogue for the odd
part of the group of units for the even part. We observe that J ⊂ W
and if the Iwasawa-Leopoldt Conjecture is true for p then W (Q(ζp)

∗)p =
J(Q(ζp)

∗)p. We prove that if pA− = {0} then (Corollary 4.8):

A+

pA+
→֒ Gal(Q(ζp)(

p
√
W )/Q(ζp)).

The last part of our paper is devoted to the study of the jacobian of the
Fermat curve Xp + Y p = 1 over Fℓ where ℓ is a prime number, ℓ 6= p.
It is well-known that Jacobi sums play an important role in the study of
that jacobian. Following ideas developped by Greenberg ([4]), we prove that
Vandiver’s Conjecture is equivalent to some properties of that jacobian (for
the precise statement see Corollary 5.3).

The authors thank Cornelius Greither for interesting discussions on the
converse of Kummer’s Lemma which led us to the study of the analoguous
statement for the odd part . The second author thanks the mathematicians
of the Laboratoire de Mathématiques Nicolas Oresme for their hospitality
during his stay at Caen.

1 Notations

Let p be a prime number, p ≥ 5. Let ζp ∈ µp \ {1}, and let L = Q(ζp).

Set O = Z[ζp] and E = O∗. Let ∆ = Gal(L/Q) and let ∆̂ = Hom(∆,Z∗p).
Let I be the group of fractional ideals of L which are prime to p, and let P
be the group of principal ideals in I. Let A be the p-Sylow subgroup of the
ideal class group of L.

Set π = ζp − 1, K = Qp(ζp), U = 1 + π2Zp[ζp]. Observe that if A ∈ P,
then there exists α ∈ L∗ ∩ U such that A = αO. If H is a subgroup of U,
we will denote the closure of H in U by H. Let ω ∈ ∆̂ be the Teichmüller
character, i.e. :

∀σ ∈ ∆, σ(ζp) = ζω(σ)
p .

For ρ ∈ ∆̂, we set:

eρ =
1

p− 1

∑

δ∈∆

ρ−1(δ)δ ∈ Zp[∆].
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If M is a Zp[∆]-module, for ρ ∈ ∆̂, we set:

M(ρ) = eρM.

For ψ ∈ ∆̂, ψ odd, recall that:

B1,ψ =
1

p

p−1∑

a=1

aψ(a).

Set:

θ =
1

p

p−1∑

a=1

aσ−1
a ∈ Q[∆],

where σa ∈ ∆ is such that σa(ζp) = ζap . Observe that we have the following
equality in C[∆] :

θ =
N

2
+

∑

ψ∈∆̂, ψ odd

B1,ψ−1eψ,

where N =
∑

δ∈∆ δ.
Let M be a Z[∆]-module, we set:

M− = {m ∈M, σ−1(m) = −m},

M+ = {m ∈M, σ−1(m) = m}.
If M is an abelian group of finite type, we set:

M [p] = {m ∈M, pm = 0},

dpM = dimFp

M

pM
.

2 Background on Jacobi Sums

Let Cl(L) be the ideal class group of L, then:

Cl(L) ≃ I
P .
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Note that we have a natural Z[∆]-morphism (see [6], pages 102-103):

φ : (AnnZ[∆]Cl(L))− → HomZ[∆](Cl(L),
E+

(E+)2
).

For the convenience of the reader, we recall the construction of φ. Let x ∈
(AnnZ[∆]Cl(L))−. Let A ∈ I, we have:

Ax = γaO,

where γa ∈ L∗ ∩ U. Now:
γa = εaγ

−1
a ,

for some εa ∈ E+∩U. One can prove that we obtain a well-defined morphism
of Z[∆]-modules: φ(x) : Cl(L) → E+

(E+)2
, class of A 7→ class of εa.

In this paragraph, we will study the kernel of the morphism φ.
Let W be the set of elements f ∈ HomZ[∆](I, L∗) such that:

- f(I) ⊂ U,
- there exists β(f) ∈ Z[∆] such that for all α ∈ L∗ ∩ U, f(αO) = αβ(f).
One can prove that if f ∈ W then β(f) is unique, the map β : W → Z[∆]
is an injective Z[∆]-morphism and β(W) ⊂ AnnZ[∆](Cl(L)) (see [2]). If B
denotes the group of Hecke characters of type (A0) that have values in Q(ζp)
(see [6]), then one can prove that B is isomorphic to W.

Lemma 2.1 Kerφ = β(W−).

Proof We just prove the inclusion Kerφ ⊂ β(W−). Let x ∈ Kerφ. Let
A ∈ I, then there exists an unique γa ∈ L∗ ∩ U such that γaγa = 1 and:

Ax = γaO.

Let f : I → L∗, A 7→ γa. It is not difficult to see that f ∈ HomZ[∆](I, L∗)
and f(I) ⊂ U. Now, let α ∈ L∗ ∩ U, we have:

f(αO) = αxu,

for some u ∈ E. Since x ∈ Z[∆]− and α, f(αO) ∈ U, we must have u = 1.
Threfore f ∈ W− and x = β(f). ♦

Now, we recall some basic properties of Gauss and Jacobi sums (we refer
the reader to [11], paragraph 6.1).
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Let P be a prime ideal in I and let ℓ be the prime number such that ℓ ∈ P.
We fix ζℓ ∈ µℓ \ {1}. Set FP = O

P
. Let χP : F∗P → µp, such that:

∀α ∈ F∗P , χP (α) ≡ α
1−NP
p (mod P ),

where NP =| O
P
| . For a ∈ Z

pZ
, we set:

τa(P ) = −
∑

α∈FP

χaP (α)ζ
TrFP /Fℓ

(α)

ℓ .

We also set τ(P ) = τ1(P ). For a, b ∈ Z

pZ
, we set:

ja,b(P ) = −
∑

α∈FP

χaP (α)χbP (1 − α).

Then:
- if a + b ≡ 0 (mod p),

i) if a 6≡ 0 (mod p), ja,b(P ) = 1,
ii) if a ≡ 0 (mod p), ja,b(P ) = 2 −NP,

- if a + b 6≡ 0 (mod p), we have:

ja,b(P ) =
τa(P )τb(P )

τa+b(P )
.

Observe that τ(P ) ≡ 1 (mod π), and therefore (see [5], Theorem 1):

∀a, b ∈ Z

pZ
, ja,b(P ) ∈ U.

Let Ω be the compositum of the fields Q(ζℓ) where ℓ runs through the prime
numbers distinct from p. The map P 7→ τ(P ) induces by linearity a Z[∆]-
morphism:

τ : I → Ω(ζp)
∗.

Let G be the sub-Z[∆]-module of HomZ[∆](I,Ω(ζp)
∗) generated by τ. We

set:
J = G ∩ HomZ[∆](I, L∗).

Let S be the Stickelberger ideal of L, i.e. : S = Z[∆]θ ∩ Z[∆]. Then one
can prove the following facts (see [2]):
- J ⊂ W,
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- the map β : W → Z[∆] induces an isomorphism of Z[∆]-modules :

J ≃ S.

Lemma 2.2 Let N ∈ HomZ[∆](IL, L
∗) be the ideal norm map. Then, as a

Z-module:

J = NZ ⊕
(p−1)/2⊕

n=1

j1,nZ.

Proof Recall that, for 1 ≤ n ≤ p− 2, for a prime P in I, we have:

j1,n(P ) = −
∑

α∈FP

χP (α)χnP (1 − α) =
τ(P )τn(P )

τn+1(P )
.

Thus, for 1 ≤ n ≤ p− 2, we have:

j1,n = τ 1+σn−σ1+n =
ττn
τn+1

,

where for a ∈ F∗p, τ
σa = τa. Observe that:

∀a ∈ F∗p, τaτ−a = N.

Thus N ∈ J . Since J ≃ S, J is a Z-module of rank (p + 1)/2. It is not
difficult to show that (see [5], Lemma 2):

J = τpZ

(p−1)/2⊕

a=1

τ−aτ
aZ.

Observe also that, for 2 ≤ n ≤ p− 2, we have:

j1,p−n = j1,n−1.

Let V be the sub-Z-module of J generated by N and the j1,n, 1 ≤ n ≤
(p− 1)/2. Then for 1 ≤ n ≤ p− 2, j1,n ∈ V. Furthermore:

p−2∏

n=1

j1,n =
τp

N .
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Therefore τp ∈ V. Since τ−1τ
1 = N , τ−1τ

1 ∈ V. Now, let 2 ≤ r ≤ (p− 1)/2
and assume that we have proved that τ−(r−1)τ

r−1 ∈ V. We have:

j1,r−1 =
ττr−1

τr
=

N ττ−1
1−r

N τ−1
−r

.

Thus:
τ−r = j−1

1,r−1τ1−rτ
−1,

and
τ−rτ

r = j−1
1,r−1τ−(r−1)τ

r−1.

Thus τ−rτ
r ∈ V and the Lemma follows. ♦

Lemma 2.3 Let ℓ be a prime number, ℓ 6= p. Let P be a prime ideal of O
above ℓ and let a ∈ {1, · · · , p− 2}. Then Q(j1,a(P )) = L if and only if ℓ ≡ 1
(mod p) and a2 + a+ 1 6≡ 0 (mod p) if p ≡ 1 (mod 3).

Proof Since j1,a(P ) ≡ 1 (mod π2) and j1,a(P )j1,a(P )σ−1 = ℓf where f is
the order of ℓ in (Z/pZ)∗, we have:

∀σ ∈ ∆, j1,a(P )σ = j1,a(P ) ⇔ j1,a(P )σO = j1,a(P )O.

Recall that:

∀σ ∈ ∆, j1,a(P )σO = j1,a(P )O ⇔ P (σ−1)(1+σa−σ1+a)θ = O.

Since j1,a(P )σℓ = j1,a(P ), we can assume ℓ ≡ 1 (mod p). Let σ ∈ ∆, we
have to consider the following equation in C[∆] :

(σ − 1)(1 + σa − σ1+a)θ = 0.

This is equivalent to:

∀ψ ∈ ∆̂, ψ odd, (ψ(σ) − 1)(1 + ψ(a) − ψ(1 + a)) = 0.

Assume that ω3(σ) 6= 1. Then:

1 + ω3(a) − ω3(1 + a) = 0.

This implies:
a2 + a ≡ 0 (mod p),
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which is a contradiction. Thus ω3(σ) = 1. Let’s suppose that σ 6= 1. We
get:

1 + ω(a) = ω(1 + a),

which is equivalent to:

a2 + a + 1 ≡ 0 (mod p).

Conversely, one can see that if p ≡ 1 (mod 3), a2 + a + 1 ≡ 0 (mod p),
ω3(σ) = 1, then:

∀ψ ∈ ∆̂, ψ odd, (ψ(σ) − 1)(1 + ψ(a) − ψ(1 + a)) = 0.

The Lemma follows. ♦
For x ∈ Zp, let [x] ∈ {0, · · · , p− 1} such that x ≡ [x] (mod p). We set:

η = (

p−2∏

n=1

j
[n−1]
1,n )1−σ−1 ∈ J −.

Lemma 2.4

a) Let ψ ∈ ∆̂, ψ 6= ω, ψ odd. Then:

eψ(

p−2∑

n=1

(1 + σn − σ1+n)[n
−1]) ∈ Z∗peψ.

b) We have:

1

p
eω(

p−2∑

n=1

(1 + σn − σ1+n)[n
−1]) ∈ Z∗peω.

Proof

a) Write ψ = ωk, k odd, k ∈ {3, · · · , p− 2}. We have:

p−2∑

n=2

(1 + ψ(n) − ψ(1 + n))[n−1] ≡
p−1∑

n=1

1 + nk − (1 + n)k

n
≡ k (mod p).

This implies a).
b) We have:

∀a ∈ F∗p, ω(a) ≡ ap (mod p2).
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Thus:

1

p

p−2∑

n=1

(1 + ω(n) − ω(1 + n))[n−1] ≡ −
p−1∑

n=1

p−1∑

k=1

p!

(p− k)! k! p
nk−1 (mod p).

And we get:

1

p

p−2∑

n=1

(1 + ω(n) − ω(1 + n))[n−1] ≡ −1 (mod p).

This implies b). ♦
Lemma 2.5 Let ℓ be a prime number, ℓ 6= p. Let Vℓ be the sub-Z[∆]-module
of L∗/(L∗)p generated by {f(P ), f ∈ J } where P is some prime of I above

ℓ. Let ψ ∈ ∆̂, ψ odd and ψ 6= ω. Then:

Vℓ(ψ) = Fpeψη(P ).

Proof Let E = L(ζℓ). Then:

L∗

(L∗)p
(ψ) →֒ E∗

(E∗)p
(ψ).

Now, in E∗

(E∗)p
(ψ), we have:

Vℓ(ψ) = Fpeψτ(P ).

It remains to apply Lemma 2.4. ♦
Finally, we mention the following Lemma:

Lemma 2.6 We have:

(J − : Z[∆]η) = 2
p−3
2

1

p

∏

ψ∈∆̂, ψ odd

(

p−2∑

n=1

(1 + ψ(n) − ψ(1 + n))[n−1]).

Furthermore:
(J − : Z[∆]η) 6≡ 0 (mod p).

Proof Set J̃ − = (1 − σ−1)J ⊂ J −. Ten (see [11], paragraph 6.4):

(J − : J̃ −) = 2
p−3
2 .

Now, by the same kind of arguments as in [11], paragraph 6.4, we get:

(J̃ − : Z[∆]η) =
1

p

∏

ψ∈∆̂, ψ odd

(

p−2∑

n=1

(1 + ψ(n) − ψ(1 + n))[n−1]).

It remains to apply Lemma 2.4. to conclude the proof of this Lemma. ♦
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3 Jacobi Sums and the Ideal Class Group of

Q(ζp)

Recall that the Iwasawa-Leopoldt Conjecture asserts that A is a cyclic
Zp[∆]-module. This Conjecture is equivalent to:

∀ψ ∈ ∆̂, ψ odd, ψ 6= ω, A(ψ) ≃ Zp

B1,ψ−1Zp
.

It is well-known (see [11], Theorem 10.9) that:

∀ψ ∈ ∆̂, ψ odd, ψ 6= ω, A(ωψ−1) = {0} ⇒ A(ψ) ≃ Zp

B1,ψ−1Zp
.

In this paragraph, we will study the links between Jacobi sums and the
structure of A−.

We fix ψ ∈ ∆̂, ψ odd and ψ 6= ω. We set:

m(ψ) = vp(B1,ψ−1).

Recall that, by [11], paragraph 13.6, we have:

| A(ψ) |= pm(ψ).

Let pk(ψ) be the exponent of the group A(ψ). Then:

B1,ψ−1 ≡ 0 (mod pk(ψ)).

Lemma 3.1 Let P be a prime ideal in I above a prime number ℓ. Then:

eψη(P )O = 0 in
I
Ip ⇔ ψ(ℓ) 6= 1 orB1,ψ−1 ≡ 0 (mod p).

Proof First note that, if ρ ∈ ∆̂, then eρP = 0 in I
Ip

if and only if ρ(ℓ) 6= 1.
By the Stickelberger Theorem, we have:

η(P )O = (

p−2∑

n=1

(1 + σn − σ1+n)[n
−1])(1 − σ−1)θ P.

Recall that:
eψθ = B1,ψ−1eψ.

The Lemma follows. ♦
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Lemma 3.2 Let f ∈ W−. Then f lies in Wp if and only if for all prime
ideal P ∈ I, f(P ) ∈ (L∗)p.

Proof Let f ∈ W− such that for all prime ideal P ∈ I, f(P ) ∈ (L∗)p. Let
A ∈ I. Then there exists γa ∈ L∗ ∩ U such that γaγa = 1 and:

f(A) = γpa.

Observe that β(f) ∈ p(Z[∆])−. Let g : I → L∗, A 7→ γa. Then one can
verify that f = gp and g ∈ W−. ♦

Let m ≥ 1 such that pm >| A | . Set n =| Cl(L) | / | A | . Let
em(ψ) ∈ Z[∆]− such that:

em(ψ) ≡ eψ (mod pm).

Set:
βψ = 2npk(ψ)em(ψ) ∈ Z[∆]−.

Since npk(ψ)em(ψ) ∈ (AnnZ[∆Cl(L))−, by Lemma 2.1, there exists a unique
element fψ ∈ W− such that β(fψ) = βψ. Recall that:

(AnnZp[∆]A)(ψ) = pk(ψ)Zpeψ.

Therefore, for 0 ≤ k ≤ m, W−

(W−)pk
(ψ) is cyclic of order pk generated by the

image of fψ. We set:

W = {f(A), A ∈ I, f ∈ W},

and:
J = {f(A), A ∈ I, f ∈ J }.

Observe that J is a sub-Z[∆]-module of W, and it is called the module of
Jacobi sums of Q(ζp). Note that, by Lemma 3.2, we have:

W (L∗)p

(L∗)p
(ψ) 6= {0}.

Theorem 3.3 The map fψ induces an isomorphism of groups:

A(ψ) ≃ W (L∗)p
k(ψ)

(L∗)pk(ψ)
(ψ).
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Proof First observe that m ≥ k(ψ) + 1. Let P be a prime in I. Then:

fψ(P )O = P βψ .

Let ρ ∈ ∆̂, ρ 6= ψ. Then:

em(ρ)em(ψ) ≡ 0 (mod pm).

Therefore, there exists γ ∈ L∗ ∩ U such that:

P (1−σ−1)nem(ρ)em(ψ) = (
γ

σ−1(γ)
)pO.

But (1− σ−1)em(ψ) = 2em(ψ). Thus, there exists α ∈ L∗ ∩U, ασ−1(α) = 1,
and:

fψ(P )em(ρ) = αp
k(ψ)+1

.

Therefore, eρfψ(I) = 0 in L∗/(L∗)p
k(ψ)+1

.
It is clear that fψ induces a morphism:

I
(I)pmP (ψ) → L∗

(L∗)pk(ψ)
(ψ).

Now, let P be a prime in I such that eψfψ(P ) = 0 in L∗

(L∗)p
k(ψ) (ψ). Then, by

the above remark, we get:

fψ(P ) = 0 inL∗/(L∗)p
k(ψ)

.

Thus, there exists γ ∈ L∗ ∩ U such that:

P βψ = γp
k(ψ)O.

Thus:
P 2nem(ψ) = γO.

This implies:

eψP = 0 in
I

(I)pmP (ψ).

Thus our map is injective. Now, observe that the image of the map induced

by fψ is W (L∗)p
k(ψ)

(L∗)p
k(ψ) (ψ) and that:

A(ψ) ≃ I
(I)pmP (ψ).
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The Theorem follows. ♦
Recall that:

η = (

p−2∏

n=1

j
[n−1]
1,n )1−σ−1 ∈ J −.

Set:

z = (1 − σ−1)

p−2∑

n=1

(1 + σn − σ1+n)[n
−1] ∈ Z[∆]−.

We have:
β(η) = zθ.

Corollary 3.4

1) The map η induces an isomorphism of groups:

A(ψ) ≃ J(L∗)p
m(ψ)

(L∗)pm(ψ)
(ψ).

2) J(L∗)p

(L∗)p
(ψ) 6= {0} if and only if A(ψ) is Zp-cyclic.

Proof

1) Let P be a prime in I. Then one can show that:

fψ(P )zθ = η(P )2npk(ψ)em(ψ).

The first assertion follows from Theorem 3.3.
2) Note that:

A(ψ) is Zp−cyclic ⇔ m(ψ) = k(ψ).

Thus, if A(ψ) is Zp-cyclic, then:

J(L∗)p

(L∗)p
(ψ) =

W (L∗)p

(L∗)p
(ψ) 6= {0}.

By the proof of assertion 1), if k(ψ) < m(ψ) and if P is a prime in I, then:

η(P )em(ψ) ∈ (L∗)p.

Therefore, we get assertion 2). ♦
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4 The p-adic behavior of Jacobi Sums

Let M be a subgroup of L∗/(L∗)p, we say thatM is unramified if L(p
√
M)/L

is an unramified extension. Note that Kummer’s Lemma asserts that ([11],
Theorem 5.36):

∀ρ ∈ ∆̂, ρ even, ρ 6= 1,
E

Ep
(ρ) is unramified ⇒ B1,ρω−1 ≡ 0 (mod p).

It is natural to ask if this implication is in fact an equivalence (see [1], [3]).
We will say that the converse of Kummer’s Lemma is true for the character
ρ if we have:

E

Ep
(ρ) is unramified ⇔ B1,ρω−1 ≡ 0 (mod p).

In this paragraph, we will study this question with the help of Jacobi sums.
Let F/L be the maximal abelian p-extension of L which is unramified

outside p. Set X = Gal(F/L). We have an exact sequence of Zp[∆]-modules
([11], Corollary 13.6):

0 → U

E
→ X → A→ 0 .

Let ρ ∈ ∆̂, observe that:
- if ρ = 1, ω then X (ρ) ≃ Zp,
- if ρ is even,ρ 6= 1, X (ρ) ≃ TorZpX (ρ),
- if ρ is odd, ρ 6= ω, X (ρ) ≃ Zp ⊕ TorZpX (ρ).

Lemma 4.1 Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. Then:

dpTorZpX (ψ) = dpA(ωψ−1).

Proof This is a consequence of the proof of Leopoldt’s reflection Theorem
([11], Theorem 10.9). For the convenience of the reader, we give the proof
of the above Lemma.

Let H be the Galois group of the maximal abelian extension of L which
is unramified outside p and of exponent p. Then H is a Zp[∆]-module and
we have:
- H(1) ≃ Fp and corresponds to L(ζp2)/L,
- H(ω) ≃ Fp and corresponds to L(p

√
p)/L,
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- if ρ is even, ρ 6= 1, dpH(ρ) = dpTorZpX (ρ),
- if ρ is odd,ρ 6= ω, then dpH(ρ) = 1 + dpTorZpX (ρ).
Let V be the sub-Z[∆]-module of L∗/(L∗)p which corresponds to H, i.e.
H = Gal(L(p

√
V )/L). Let M be the sub-Z[∆]-module of L∗/(L∗)p generated

by E and 1 − ζp. We have an exact sequence:

0 →M → V → A[p] → 0.

Soit ψ ∈ ∆̂, ψ odd, ψ 6= ω. We have by Kummer theory :

1 + dpTorZpX (ψ) = dpV (ωψ−1).

And, by the above exact sequence, we have:

dpV (ωψ−1) = 1 + dpA(ωψ−1).

The Lemma follows. ♦

Lemma 4.2 Let ρ ∈ ∆̂, ρ even and ρ 6= 1. If E
Ep

(ρ) is ramified then
dpA(ρ) = dpA(ωρ−1).

Proof We keep the notations of the proof of Lemma 4.1. Let V nr ⊂ V which
corresponds via Kummmer theory to A/pA. Then:

V nr(ρ) ≃ A

pA
(ωρ−1).

But we have:
E
Ep

(ρ) is ramified if and only if V nr(ρ) →֒ A[p](ρ).
Now recall that:

dpA(ρ) ≤ dpA(ωρ−1).

The Lemma follows. ♦

Lemma 4.3 There exists an unique Z[∆]-morphism ϕ : K∗ → Zp[∆] such
that:

∀x ∈ K∗, ϕ(x)ζp = Logp(x).

Furthermore, we have:

Imϕ =
⊕

ρ=1,ω

pZpeρ
⊕

ρ6=1,ω

Zpeρ.
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Proof Let λ ∈ K∗ such that λp−1 = −p. Then:

K∗ = λZ × µp−1 × µp × U.

Recall that:
- the kernel of Logp on K∗ is equal to λZ × µp−1 × µp,
- LogpU = π2Zp[ζp].

For ρ ∈ ∆̂, set:

τ(ρ) =

p−1∑

a=1

ρ(a)ζp ∈ Zp[ζp].

Then:
eρζp = τ(ρ−1).

But recall that that Zp[ζp] = Zp[∆]ζp. Thus:

eρZp[ζp] = Zpτ(ρ
−1).

If ρ = ωk, k ∈ {0 · · · , p− 2}, we have:

vp(τ(ρ
−1)) =

k

p− 1
.

Therefore:
π2Zp[ζp] =

⊕

ρ=1,ω

pZpτ(ρ
−1)

⊕

ρ6=1,ω

Zpτ(ρ
−1).

The Lemma follows. ♦
Let P be a prime in I. We fix a generator rP ∈ F∗P such that:

χP (rP ) = ζp.

For x ∈ F∗P , let Ind(P, x) ∈ {0, · · · , NP − 2} such that:

x = rInd(P,x)
p .

We recall the following Theorem (see also [9] for a statement similar but
weaker than part 2) of the following Theorem):

Theorem 4.4

1) ϕ(1 − ζp) =
∑

ρ∈∆̂,ρ6=1,ρ even −(p− 1)−1Lp(1, ρ)eρ.

2) Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. Write ψ = ωk, k ∈ {2, · · · , p− 2}. We have:

eψϕ(η(P )) ≡ 2k Ind(P,

p−1∏

a=1

(
1 − ζ−ap
1 − ζp

)a
k−1

) eψ (mod p).
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Proof

1) Let ρ ∈ ∆̂, ρ even, ρ 6= 1. By [11], Theorem 5.18, we have:

Lp(1, ρ)τ(ρ
−1) = −(p− 1)eρLogp(1 − ζp).

Thus the first assertion follows.
2) Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. By a beautiful result of Uehara ([10], Theo-
rem1), we have:

eψLogp(η(P )) ≡ 2k Ind(P,

p−1∏

a=1

(
1 − ζ−ap
1 − ζp

)a
k−1

) τ(ψ−1) (mod p).

This implies the second assertion. ♦

Theorem 4.5 Let ψ ∈ ∆̂, ψ 6= ω, ψ odd. We have the following exact
sequences:

0 → TorZpX (ψ) → A(ψ) → W (ψ)

Upk(ψ)(ψ)
→ 0,

0 → TorZpX (ψ) → A(ψ) → J(ψ)

Upm(ψ)(ψ)
→ 0.

Proof This Theorem is a consequence of the method developped by Iwasawa
in [5]. Let’s recall briefly this method.

Let f ∈ W. Set, for n ≥ 2, Pn = {αO, α ≡ 1 (mod πn)}. Observe
that:

f(Pn) ⊂ 1 + πnZp[ζp].

Let:

X̃ = lim
←

I
Pn
.

If F̃ is the maximal abelian extension of L which is unramified outside p,
then, we get by class field theory:

X̃ ≃ Gal(F̃ /L).

By [11], Theorem 13.4, the natural surjective map X̃ → X has a finite kernel
of order prime to p. Thus f induces a map:

f : X → U.
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Furthermore:
f(U) = Uβ(f) ⊂ f(X ).

Now let ψ ∈ ∆̂, ψ odd, ψ 6= ω. We have a map:

f : X (ψ) → U(ψ).

But:
X (ψ) ≃ Zp

⊕
TorZpX (ψ),

and:
U(ψ) ≃ Zp.

Thus, if eψβ(f) 6= 0, we get:

Ker (f : X (ψ) → U(ψ)) = TorZpX (ψ).

Therefore, if eψβ(f) 6= 0, we get the following exact sequence induced by f :

0 → TorZpX (ψ) → A(ψ) → f(X )(ψ)

Uβ(f)(ψ)
→ 0.

It remains to apply this construction to fψ and η to get the desired exact
sequences. ♦

Corollary 4.6

1) Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. Then:

dpA(ψ) = 1 + dpA(ωψ−1) ⇔ B1,ψ−1 ≡ 0 (mod p) andW (ψ) = U(ψ).

2) Let ρ ∈ ∆̂, ρ even and ρ 6= 1. Assume that B1,ρω−1 ≡ 0 (mod p) and
that W (ωρ−1) = U(ωρ−1) then the converse of Kummer’s Lemma is true
for the character ρ.

Proof

1) We apply Theorem 4.5. We identify TorZpX (ψ) with its image in A(ψ).
We can write:

A(ψ) = B
⊕

C,

where C is cyclic of order pk(ψ) and B ⊂ TorZpX (ψ). Now:

(C : C ∩ TorZpX (ψ)) = (W (ψ) : Upk(ψ)

(ψ)).
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It remains to apply Lemma 4.1 to get the desired result.
2) We apply the first assertion and Lemma 4.1, we get:

dpA(ρ) = dpA(ωρ−1) − 1.

It remains to apply Lemma 4.2. ♦
We set:

W nr = {α ∈W, α ∈ Up}.
Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. We assume that B1,ψ−1 ≡ 0 (mod p). Write:

A(ψ) =
Z

pe1Z

⊕
· · ·

⊕ Z

petZ
,

where t = dpA(ψ) and 1 ≤ e1 ≤ · · · ≤ et = k(ψ). Set:

n(ψ) =| {i ∈ {1, · · · t}, ei = k(ψ)} | .

Corollary 4.7 We have:

n(ψ) − 1 ≤ dimFp

W nr(L∗)p

(L∗)p
≤ n(ψ).

Furthermore:

dimFp

W nr(L∗)p

(L∗)p
= n(ψ) ⇔W (ψ) 6= U(ψ).

Proof By Theorem4.5 and Theorem 3.3, we have:

W nr(L∗)p
k(ψ)

(L∗)pk(ψ)
≃ Ker(A(ψ) → W (ψ)

Upk(ψ)(ψ)
).

The Corollary follows. ♦

Corollary 4.8 Assume that pA− = {0}. Then we have an isomorphism of
groups:

Gal(L(p
√
W nr)/L) ≃ A+

pA+
.
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Proof This result is a consequence of Kummer theory, Corollary 4.7 and
Corollary 4.6. ♦

Note that the above results lead us to ask the following problem (which
is a restatement of the converse of Kummer’s Lemma):

do we have ϕ(W
−
) = (Imϕ)−?

Observe that eωϕ(W
−
) = eω(Imϕ)−, and since K4(Z) = {0}, we have

A(ω−2) = {0} (see [7]) and therefore eω3ϕ(W
−
) = eω3(Imϕ)−.

5 Remarks on the Jacobian of the Fermat

Curve over a finite field

First we fix some notations and recall some basic facts about global function
fields.

Let Fq be a finite field having q elements. Let ℓ be the character-

sitic of Fq, ℓ 6= p. Let Fq be a fixed algebraic closure of Fq and let F̃q =
∪n≥1, n 6≡0 (mod p)Fqn ⊂ Fq. Let k/Fq be a global function field such that Fq
is algebraically closed in k. We set:
- Dk : the group of divisors of k,
- D0

k : the group of divisors of degree zero of k,
- Pk : the group of principal divisors of k,
- Jk : the jacobian of k, note that we have:

∀n ≥ 1, Jk(Fqn) ≃
D0

Fqnk

PFqnk

,

- gk : the genus of k,
- Lk(Z) ∈ Z[Z] : the numerator of the zeta function of k, we recall that:

Lk(Z)

(1 − Z)(1 − qZ)
=

∏

v place of k

(1 − Zdeg v)−1,

furthermore degZLk(Z) = 2gk and Lk(1) =| Jk(Fq) |,
- Ck(Fqn) = Jk(Fqn) ⊗Z Zp,

- d̃pJk = dpCk(F̃q), observe that there exists an integer m, m 6≡ 0 (mod p),
such that :

Ck(F̃q) = Ck(Fqm).
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Write:

Lk(Z) =

2gk∏

i=1

(1 − αiZ).

For simplicity, we assume that vp(αi−1) > 0 for i = 1, · · · , 2gk. In this case,
we have:

Ck(F̃q) = Ck(Fq).

Set Pk(Z) =
∏2gk

i=1(Z − (αi − 1)). Let γ be the Frobenius of Fq, and set:

Cn(k) = Ck(Fqpn ).

Let C∞(k) = ∪n≥0Cn(k), and set:

Mk = Hom(
Qp

Zp
, C∞(k)).

Then Mk is isomorphic to the p-adic Tate-module of Jk. Set Λ = Zp[[Z]]
where Z corresponds to γ − 1. Then it is well-known that:
- Mk is a Λ-module of finite type and of torsion,
- as a Zp-module Mk is isomorphic to Z2gk

p ,
- Mk/ωnMk ≃ Cn(k), where ωn = (1 + Z)p

n − 1,
- CharΛMk = Pk(Z)Λ,
- the action of Z on Mk is semi-simple, i.e. the minimal polynomial of the
action of Z on Mk has only simple roots.

Now, let ℓ be a prime number, ℓ 6= p. We fix a prime P of O above ℓ and
we view O/P as a subfield of Fℓ, thus Fq = O/P ⊂ F̃ℓ.We identify ζp with its
image in Fq. Let X be an indeterminate over Fq, we set k = Fℓ(X, Y ) where
Xp + Y p = 1, and we set: T = Xp. For a, b ∈ Z, let τa,b ∈ Gal(Fℓk/Fℓ(T ))
such that:

τa,b(X) = ζapX and τa,b(Y ) = ζbpY.

Let a ∈ {1, · · · , p−2}. Let Ha be the subgroup of Gal(Fℓk/Fℓ(T )) generated
by τ1,[−a−1]. Set:

Ea = Fℓ(T,XY
a).

We set:
E = FqEa,

F = Fqk,
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and observe that:
F̃ℓ = F̃q.

It is clear that:
FHa = E.

Finally, we set:
G = Gal(E/Fq(T )).

Note that gE = (p− 1)/2.

Lemma 5.1 We have:

LE(Z) =
∏

σ∈∆

(1 − j1,a(P )σZ).

Proof Let χ ∈ Ĝ such that:

χ(g) = ζ−1
p ,

where g ∈ G is such that g(XY a) = ζpXY
a. Note that:

LE(Z) =
∏

σ∈∆

L(Z, χσ),

where:
L(Z, χ) =

∏

v place of Fq(T )

(1 − χ(v)Zdeg v)−1.

Since 2ge = p− 1, we get:

degZL(Z, χ) = 1.

For b ∈ Fq \ {0, 1}, we denote the Frobenius of T − b in E/Fq(T ) by Frobb.
We have:

Frobb(XY
a) = (b(1 − b)a)(q−1)/pXY a.

But:
L(Z, χ) ≡ 1 + (

∑

b∈Fq\{0,1}

χ(Frobb))X (mod X2).

Thus:
L(Z, χ) = 1 + (

∑

b∈Fq\{0,1}

χ(Frobb))X.
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But, we can write:

j1,a(P ) = −
p−1∑

i=0

Niζ
−i
p ,

where Ni =| {α ∈ Fq \ {0, 1}, (α(1 − α)a)(q−1)/p ≡ ζ−ip (mod P )} | .
Therefore:

j1,a(P ) = −
∑

b∈Fq\{0,1}

χ(Frobb).

The Lemma follows. ♦

Theorem 5.2 Let n be the smallest integer (if it exists) such that 3 ≤ n ≤
p− 2, n odd and eωnj1,a(P ) 6∈ Up, then:

Jk(F̃ℓ)
Ha ⊗Z Zp ≃ (

Z

pZ
)n.

If such an integer doesn’t exist then:
1) d̃pJ

Ha
k = p− 1,

2) we have:

Jk(F̃ℓ)
Ha ⊗Z Zp ≃ (

Z

pZ
)p−1 ⇔ ℓp−1 6≡ 1 (mod p2).

Proof The proof of this result is based on ideas developped by Greenberg
in [4]. Set H = Ha. Let P0 be the prime of E above T, P1 the prime of E
above T − 1 and P∞ the prime of E above 1

T
. Recall that we have in DE :

p(P0 − P∞) = (T ),

p(P1 − P∞) = (T − 1),

P0 − P∞ + a(P1 − P∞) = (XY a).

Thus, by [4], paragraph 2, we get:

JE(Fq)
G ≃ Z

pZ
,

and JE(Fq)
G is generated by the class of P0 −P∞. Observe also that F/E is

unramified and cyclic of order p. Let’s start by the folowing exact sequence:

0 → F∗q → F ∗ → PF → 0.
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We get:
PH
F

PE
≃ Z

pZ
,

and
PHF
PE

is generated by the image of P0 − P∞ in DF . In particular:

PH
F

PE
≃ JE(Fq)

G.

Note that we also have:

0 → H1(H,PF ) → H2(H,F∗q) → H2(H,F ∗).

But F/E is unramified and cyclic, therefore every element of F∗q is a norm
in the extension F/E. Thus:

H1(H,PF ) ≃ Z

pZ
.

Now, we look at the exact sequence:

0 → PF → D0
F → JF (Fq) → 0.

Since F/E is unramified:

H1(H,D0
F ) = {0}.

Therefore, we have obtained the following exact sequence:

0 → JE(Fq)
G → JE(Fq) → JF (Fq)

H → Z

pZ
→ 0.

Now, it is not difficult to deduce that, for all n ≥ 1, we have the following
exact sequence:

0 → Z

pZ
→ JE(Fqn) → JF (Fqn)

H → Z

pZ
→ 0.

From this, we get the following exact sequence of Zp[G]-modules and Λ-
modules:

0 → ME → MH
F → Z

pZ
→ 0.
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Recall that in our situation, by Lemma 5.1, we have:

PE(Z) =
∏

σ∈∆

(Z − (j1,a(P )σ − 1)).

Furthermore the action of G and Z commute on MH
F . Now, we have:

- CharΛM
H
F = CharΛME = PE(Z)Λ,

- MH
F ≃ Zp−1

p as Zp-modules,
- MH

F /ωn ≃ Cn(F )H .
Observe that:

C0(F )H = Jk(F̃ℓ)
Ha ⊗Z Zp.

Note also that the minimal polynomial of the action of Z on MH
F is:

Irr(j1,a(P ) − 1,Qp;Z) := G(Z).

Set N =
∑

δ∈G δ. Then one can see that:

NME = NMH
F = {0}.

Thus MH
F is a Zp[G]/NZp[G]-module. Now, we identify Zp[G]/NZp[G] with

Zp[ζp]. Since MH
F ≃ Zp−1

p , there exists m ∈MH
F such that:

MH
F ≃ Zp[ζp].m,

i.e. MH
F is a free Zp[ζp]-module of rank one. Therefore there exists an

element x ∈ Zp[ζp] such that:

Zm = xm.

Now set:
D(Z) =

∏

σ∈∆

(Z − xσ) ∈ Λ.

Then:
D(Z)MH

F = {0}.
Therefore G(Z) divides D(Z) in Λ. Thus there exists σ ∈ ∆ such that:

xσ = j1,a(P ) − 1.

But:

C0(F )H ≃ MH
F

ZMH
F

≃ Zp[ζp]

xZp[ζp]
.
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Therefore, we get:

Jk(F̃ℓ)
Ha ⊗Z Zp ≃

Zp[ζp]

(j1,a(P ) − 1)Zp[ζp]
.

Recall that j1,a(P ) ≡ 1 (mod π2). Thus:

vp(j1,a(P ) − 1) = vp(Logp(j1,a(P ))).

Now:

Logp(j1,a(P )) =
1

2
fLogp(ℓ) +

∑

ψ∈∆̂,ψ odd

eψLogp(j1,a(P )),

where f is the order of ℓ in (Z/pZ)∗. Let ψ ∈ ∆̂, ψ = ωn, n odd. If
eψLogp(j1,a(P )) 6= 0, then:

vp(eψLogp(j1,a(P ))) ≡ n

p− 1
(mod Z),

furthermore:

vp(eψLogp(j1,a(P ))) >
n

p− 1
⇔ eψj1,a(P ) ∈ Up.

Note also that:

vp(eωLogp(j1,a(P ))) >
1

p− 1
.

The Theorem follows. ♦

Corollary 5.3 Let n ∈ {3, · · · , p − 2}, n odd. Let a ∈ {1, · · · , p − 2} such
that 1+an−(1+a)n 6≡ 0 (mod p). The following assertions are equivalent:
1) A(ω1−n) = {0},
2) there exists a prime number ℓ, ℓ 6= p, such that d̃pJ

Ha
k = n.

Proof Observe that 2) implies 1) by the above Theorem and Theorem 4.5.
Write ψ = ωn. Let ℓ be a prime number, ℓ 6= p. Write:

F(ℓ) =
O
ℓO ,

and:

Dℓ =
F∗(ℓ)

(F∗(ℓ))
p
.
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Observe that Dℓ is a Zp[∆]-module. Let Cyc be the group of cyclotomic

units of L. We denote the image of Cyc in Dℓ by Cyc
ℓ
. Then Theorem 4.4

asserts that eψCyc
ℓ
= {1} in Dℓ if and only if eψj1,a(P ) ∈ Up, where P is a

prime of O above ℓ. Let:
B = L(p

√
Cyc).

We assume that 1) holds. We apply the Chebotarev density theorem to the
extension B/L, then there exist infinitely many primes ℓ such that:

- eρCyc
ℓ
= {1} for ρ 6= ψ,

- eψCyc
ℓ 6= {1}.

It remains to apply Theorem 5.2 and the above remarks to get 2). ♦
Now, let ℓ be a prime number. Let p be an odd prime number, p 6= ℓ. Let

T be an indeterminate over Fℓ and let Ep/Fℓ(T ) be the imaginary quadratic
extension defined by:

Ep = Fℓ(T,X) whereX2 −X + T p = 0.

Let n be an odd integer, n ≥ 3. Let Sn(ℓ) denote the set of primes p such

that d̃pJEp = n. By our above results, we remark that if p ∈ Sn(ℓ) then
A(ω1−n) = {0}. Observe that if ℓn 6≡ 1 (mod p) then p 6∈ Sn(ℓ), and
therefore Sn(ℓ) is a finite set. Set S(ℓ) = ∪nSn(ℓ), where n runs through the
odd integers. Observe that if the order of ℓ modulo p is even then p 6∈ S(ℓ.)
Therefore, by a classical result of Hasse (see [8]) there exist infinitely many
prime p not in S(ℓ) (in fact at least ”2/3 of the prime numbers ”are not in
S(ℓ)). Thus, we ask the following question:

is S(ℓ) infinite?
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