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In this paper we consider the problem of a steady MHD flow of a non-Newtonian power-law and electrically conducting fluid in presence of an applied magnetic field. The boundary layer equations are solved in similarity form via the Lyapunov energy method, we show that this problem has an infinite number of positive global solutions.

Introduction

The study of non-Newtonian fluid flows has considerable interests, this is primarily because of the numerous applications in several engineering fields. Such processes are wire drawing, glass fiber and paper production, crystal growing, drawing of plastic sheets etc. For more details about the behavior in both steady and unsteady flow situations, together with mathematical models, we refer the reader to the books [START_REF] Lamfa | Principles of Non-Newtonian Fluid Mechanics[END_REF] by Astarita and Marucci, [START_REF] Bohme | Non-Newtonian Fluid Mechanics[END_REF] by Bohme and the references therein. One particular non-Newtonian model which has been widely studied is the Ostwald-de Wael power-law model [START_REF] Acrivos | Momentum and heat transfer in laminar boundary-layer flows Equations of non-Newtonian fluids past external surfaces[END_REF] [START_REF] Ece | Similarity solutions for free convection to power-law fluids from a heated vertical plate[END_REF], which relies the shear stress to the strain rate u y by the expression

τ xy = k|u y | n-1 u y , (1.1) 
where k is a positive constant, and n > 0 is called the power-law index . The case n < 1 is referred to pseudo-plastic or shear-thinning fluid, the case n > 1 is known as dilatant or shear-thickening fluid. The Newtonian fluid is a special case where the power-law index n is equal to one. In the present work we shall restrict our study to the case n > 1.

The magnetohydrodynamics (MHD) flow problems find also applications in a large variety of physical, geophysical and industrial fields [START_REF] Pavlov | Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a surface[END_REF]. It is also interesting to study the flow of non-Newtonian fluids with externally imposed magnetic fields. To the author knowledge MHD flow of non-Newtonian fluids was first studied by Sarpkaya [START_REF] Sarpkaya | Flow of non-Newtonian fluids in a magnetic field[END_REF]. In [START_REF] Sapunkov | Self-similar solutions of non-Newtonian fluid boundary in MHD[END_REF] Sapunkov derived the equations describing the similarity solutions for the non-Newtonian flow when the external applied magnetic field varies as x m-1 2 , in presence of a pressure gradient, he used the method of series expansion. Later, Djuvic [START_REF] Djuvic | Hiemenz magnetic flow of power-law fluids[END_REF] employed a Crocco's variables to study the unsteady flow with exponentially external velocity (in time). Recently, Liao [START_REF] Liao | On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet[END_REF] introduced a powerful technique (homotopy analysis) to give analytic solutions of MHD viscous flows of non-Newtonian fluids over a stretching sheet.

In this paper, we reconsider the steady two-dimensional laminar flow of an incompressible viscous electrically conducting dilatant fluid over a stretching flat plate with a power-law velocity distribution in the presence of a perpendicular magnetic field. Our interest in this work has been motivated by the work of Chiam [START_REF] Chiam | Solutions for the flow of a conducting power-law fluid in a transverse magnetic field and with a pressure gradient using Crocco variables[END_REF], who have considered the flow over an impermeable flat plate, for which similarity solutions were found via the Crocco transformation.

Derivation of the model

Consider a steady two-dimensional laminar flow of an incompressible dilatant and electrically conducting fluid of density ρ, past a semi-infinite flat plate. Let (x, y) be the Cartesian coordinates of any point in the flow domain, where x-axis is along the plate and y-axis is normal to it. Assume that a magnetic field H(x), is applied normally to the plate. The continuity and momentum equations can be simplified, within the boundary-layer approximation, into the following equations (see [START_REF] Sapunkov | Self-similar solutions of non-Newtonian fluid boundary in MHD[END_REF][10])

u x + v y = 0, (2.1 
)

uu x + vu y = ν(|u y | n-1 u y ) y + u e u ex + σµ 2 H 2 ρ (u e -u). (2.2)
Accompanied by the boundary conditions

u(x, 0) = U w (x), v(x, 0) = V w (x) and u(x, y) → u e (x) as y → ∞. (2.3) 
Where the functions u and v are the velocity components in the x and y directions respectively, u e (x) = U ∞ x m is the free-stream velocity. The parameters ν, n, µ, σ and H are the kinematic viscosity, the flow behavior index, the magnetic permeability, the electrical conductivity of the fluid, and the magnetic field intensity respectively. The functions U w (x) = u w x m (u w > 0) and

V w (x) = v w x m(2n-1)-n n+1
are the stretching and the suction/injection velocities respectively. In term of the stream-function (ψ which satisfied u(x, y) = ψ y (x, y) and v(x, y) = -ψ x (x, y)), equations (2.1),(2.2) can be reduced to the single equation

ψ y ψ xy -ψ x ψ yy = ν(|ψ yy | n-1 ψ yy ) y + u e u ex + σµ 2 H 2 ρ (u e -ψ y ), (2.4) 
subject to

ψ y (x, 0) = u w x m , ψ x (x, 0) = -v w x m(2n-1)-n n+1 and ψ y (x, y) = U ∞ x m as y → ∞. (2.5)
According to Sapunkov [START_REF] Sapunkov | Self-similar solutions of non-Newtonian fluid boundary in MHD[END_REF], similarity solutions for problem (2.4),(2.5) exist only if the magnetic field has the following form H(x) ∼ x m-1 2 . To look for similarity solutions we define the following η := Ayx -a and ψ(x, y)

:= Bx b f (η), (2.6) 
where f is the transformed dimensionless stream function and η is the similarity variable. Thanks to (2.6), the function f satisfies the new boundary value problem

   (|f ′′ | n-1 f ′′ ) ′ + af f ′′ + m(1 -f ′ 2 ) + M(1 -f ′ ) = 0, f (0) = α, f ′ (0) = δ, f ′ (∞) = 1, (2.7) 
if and only if

a = 1 + m(2n -1) n + 1 , b = 1 + m(n -2) n + 1 , a -b = m,
and the parameters A and B satisfy

AB = u ∞ and νB n-2 A 2(n-1) = 1.
Where the primes denote differentiation with respect to η, the function f ′ (η) denotes the normalized velocity and the parameters

M = σµ 2 H 2 0 (n + 1) u ∞ ρ , α = - (n + 1)v w (m + 1)(νu 2n-1 ∞ ) 1 n+1 and δ = u w u ∞ ,
are respectively: The Hartmann number, the suction/injection and the stretching parameters. Such problems have been investigated by several authors for example, Anderson et al. [START_REF] Anderson | Magnetohydrodynamic flow of a powerlaw fluid over a stretching sheet[END_REF], Zhang et al. [START_REF] Zhang | A boundary layer problem arising in gravity driven laminar film of power-law fluids along vertical walls[END_REF] and Kumari and Nath [START_REF] Kumari | MHD boundary layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free stream[END_REF].

In the same context, Chiam [START_REF] Chiam | Solutions for the flow of a conducting power-law fluid in a transverse magnetic field and with a pressure gradient using Crocco variables[END_REF] studied Problem (2.1)-( 2.3). To look for similarity solutions, he solved the following boundary value problem

   n|f ′′ | n-1 f ′′′ + f f ′′ + β(1 -f ′ 2 ) + M(1 -f ′ ) = 0, f (0) = 0, f ′ (0) = 0, f ′ (∞) = 0. (2.8) 
Where β = m(n+1) (2n-1)m+1 . We aim here to stress that for n = 1, equation (2.7) 1 can be degenerate at some point η s for which f ′′ (η s ) = 0 (for more details see [START_REF] Hammouch | Étude mathématique et numérique de quelques problèmes issus de la dynamique des fluides[END_REF]) and then any solution of (2.7) is not necessarily of C 3 (0, ∞). Hence equations (2.7) 1 and (2.8) 1 are not equivalent. Let us notice that for the Newtonian case (n = 1), problem (2.7) reduces to the Falkner-Skan flow in Magnetohydrodynamics, which has been studied by Hildyard [START_REF] Hildyard | Falkner-Skan Problems in Magnetohydrodynamics[END_REF], Aly et al. [START_REF] Aly | Similarity solutions of a MHD boundary-layer flow past a continuous moving surface[END_REF] and Hoernel [START_REF] Hoernel | On the similarity solutions for a steady MHD equation[END_REF]. The case m = M = 0 leads to the generalized Blasius problem (see [START_REF] Nachman | Mass transfer into boundary-layers for power-law fluids[END_REF]). While the case m = -M, by a suitable scaling, is referred to the mixed convection of a non-Newtonian fluid in a porous medium (see for example [START_REF] Pop | Mixed convection to power-law type non-Newtonian fluids from a vetical wall[END_REF]). We note also that in absence of the magnetic field, problem (2.7) is simplified to the Falkner-Skan flow for non-Newtonian fluids. A complete study on this subject is given in [START_REF] Denier | On the boundary-layer equations for power-law fluids[END_REF] by Denier and Dabrowski. Very recently, Aly et al. [START_REF] Aly | Similarity solutions of a MHD boundary-layer flow past a continuous moving surface[END_REF] reported a theoretical and numerical investigations on the existence of solutions to problem (2.7) for Newtonian fluids (n = 1), say

   f ′′′ + m+1 2 f f ′′ + m(1 -f ′ 2 ) + M(1 -f ′ ) = 0, f (0) = α ≥ 0, f ′ (0) = δ, f ′′ (0) = γ.
(2.9)

They showed that problem (2.9) has multiple solutions for any δ ∈ (0, Γ) and γ ∈ R satisfying

γ 2 ≤ 2m 3 δ 3 + Mδ 2 -2(M + m)δ, (2.10) 
where

Γ = - 3M 4m 1 + 1 + 16m 3M 2 (m + M) > 1.
In the present work, we aim to extend their results to the non-Newtonian dilatant fluids (n > 1), by using a condition on γ which is different from (2.10) and without any restriction on the parameter δ.

Non-uniqueness of solutions

Guided by the analysis of [START_REF] Brighi | On a similarity boundary layer equation[END_REF], [START_REF] Hammouch | Étude mathématique et numérique de quelques problèmes issus de la dynamique des fluides[END_REF] and [START_REF] Guedda | Similarity solutions of differential equations for boundary layer approximations in porous media[END_REF], we aim to prove the existence of solutions to problem (2.7), for related values of the parameters m, M, n, α, δ and γ. This result will be established by mean of the so-called shooting method, the boundary value problem (2.7) is then converted into the following initial value problem

   (|f ′′ | n-1 f ′′ ) ′ + af f ′′ + m(1 -f ′ 2 ) + M(1 -f ′ ) = 0, f (0) = α, f ′ (0) = δ, f ′′ (0) = γ. (3.1)
Where the real number γ is the shooting parameter. The initial value problem (3.1) can be transformed into the equivalent first order ordinary differential system

           f ′ = g, g ′ = |h| 1-n n h, h ′ = -af |h| -m(1 -g 2 ) -M(1 -g), (3.2) 
with the conditions

f (0) = α, g(0) = δ, h(0) = |γ| n-1 γ. (3.3) 
By the classical theory of ordinary differential equations, problem (3.2),(3.3) has a unique local (maximal) solution for every γ = 0. Let f γ denotes this solution and (0, η γ ), η γ ≤ ∞, denotes its maximal interval of existence. The main task now is to show how existence of solutions depends on γ.

The local solution f γ satisfies the following

|f ′′ γ | n-1 f ′′ γ + af ′ γ f γ -M(f γ + α) = |γ| n-1 γ + aαδ -(M + m)η + (a + m) 0 η f ′ γ 2 (τ )dτ. (3.4)
Equation (3.4) will be used for proving the main results. DEFINITION 3.1. A function f γ is said to be a solution to (3.1) 

if f ∈ C 2 (0, ∞), |f ′′ γ | n-1 f ′′ γ ∈ C 1 (0, ∞) and satisfies lim η→∞ f ′ γ (η) = 1 (i) and lim η→∞ f ′′ γ (η) = 0 (ii) 3.1. Suction/Injection flows (α ∈ R) THEOREM 3.1. Assume α ∈ R, δ > 0, M > 0 , n > 1 and -1 3n < m < -M. For any γ satisfying |γ| n-1 γ > -aαδ (⋆),
problem (3.1) admits a global unbounded solution.

Proof. From a physical point of view, it is more convenient to prove the result for the cases α ≥ 0 (suction) α < 0 (injection) separately.

We have to show that f γ is a positive monotonic increasing function on (0, η γ ), globally defined and going to infinity with η. For this sake we define the Lyapunov Energy function by

V (η) = 1 n + 1 |f ′′ | n+1 - m 3 f ′3 - M 2 f ′2 + (M + m)f ′ . (3.5) Which satisfies V ′ (η) = -af f ′′2 .
Then V is monotonic decreasing on (0, η γ ). On the other hand, from equation (3.4) and condition (⋆) we see that f γ ′ and f γ are positive on (0, η γ ) as long as f γ exists. Using the Lyapunov function V we see that f γ ′ and f γ ′′ are bounded, since V is bounded from below by 3M +4m 6

. If f γ were also bounded, say f → η∞ L with L ∈ (0, ∞) (since f γ is positive). Then f γ ′ (η) → η∞ 0 which implies that f ′′ γ (η k ) → k∞ 0, where (η k ) k≥0 is a sequence tending to infinity with k. Using again (3.4) to deduce

|f ′′ γ (η k )| n-1 f ′′ γ (η k ) + af ′ γ (η k )f γ (η k ) = -M(f γ (η k ) + α) + |γ| n-1 γ + aαδ- (M + m)η k + (a + m) 0 η k f ′ γ 2 (τ )dτ.
Letting k → ∞, the right hand side goes to zero while the left hand side goes to minus infinity, which is impossible. then f γ is a global unbounded solution to (3.1).

From the above f ′ γ and f ′′ γ are bounded and f ′ γ is monotonic increasing on (η 1 , ∞), for η 1 large enough. Then there exists l > 0 such that lim η→∞ f ′ γ (η) = l, and there exits a sequence (ζ k ) k , tending to infinity with k such that lim k→∞ f ′′ γ (ζ k ) = 0. Making recourse to the Lyapunov function

V we get lim η→∞ f ′′ γ (ζ k ) = 0. Assume now that f ′′ γ is not monotonic on any interval [η 2 , ∞).
Then, there exists a sequence (τ k ) k going to infinity with k such that:

• (|f ′′ γ | n-1 f ′′ γ ) ′ (τ k ) = 0, • |f ′′ γ | n-1 f ′′ γ (τ 2k ) is a local minimum, • |f ′′ γ | n-1 f ′′ γ (τ 2k+1
) is a local maximum. From (3.1) 1 , we have

f ′′ γ (τ k ) = - m(1 -f ′2 γ (τ k )) + M(1 -f ′ γ (τ k )) af γ (τ k ) .
Since f ′ γ is bounded and f γ goes to infinity with η k , we get easily from the above that f ′′ γ goes to zero with η. Now we show that f γ satisfies (i). Recall that f ′ γ is a positive bounded function then f ′ γ → l with l ∈ (α, ∞). At infinity we have f γ ∼ ηl and from identity (3.4) we get

|f ′′ γ | n-1 f ′′ γ ∼ η[ml 2 + Ml -(M + m)] + o(1)
as η approaches infinity, this leaves only the possibility that l is either 1 or -M m -1, thanks to the positivity of f ′ γ we deduce that l = 1. To finish we show the result for α < 0. In such case, the function f γ is negative on a small neighborhood of zero. According to (3.4) f γ cannot have a local maximum, then two possibilities arise:

• Either f γ < 0 ∀ η ∈ (0, η γ ) • Or ∃ η ⋆ such that f γ < 0 on (0, η ⋆ ), f γ (η ⋆ ) = 0 and f γ > 0 ∀η > η ⋆ .
Assume that the first assertion holds, then α > f γ (∞) ≤ 0 and f ′ γ (∞) = 0, f ′ being positive we use again (3.4) to get that f ′′ γ is positive. A contradiction. Then, f γ has exactly one zero η ⋆ . We define the shifted function h by :

η -→ h(η) = f γ (η + η ⋆ ),
which satisfies h(0) = 0, h ′ (0) = δ and h ′′ (0) > 0, and we use the above analysis to conclude that h is an unbounded global solution to (3.1).

Reversed flows (δ < 0)

Now we pay attention to the case of reversed flows (δ < 0). First, we show that the shooting parameter has to be positive. PROPOSITION 3.1. Let f γ be a solution to (3.1) with m ∈ (-1 3n , -M), α < 0, δ < 0 and γ ≤ 0, then the condition (i) is failed.

Proof. Let δ < 0, if γ ≤ 0 then f γ
′′ is negative on some (0, η 0 ), for η 0 small, and equation (3.1) can be written as

(f γ ′′ e F ) ′ = - e F n |f ′′ γ | 1-n m(1 -f ′2 γ ) + M(1 -f ′ γ ) ,
where

F (η) = a n 0 η f γ |f γ ′′ | 1-n dτ .
From this we see that η -→ f ′′ e F decreases and then f ′′ γ (η) ≤ 0 for all η ∈ (0, η γ ). It follows that f ′ γ is decreasing on (0, η γ ) and then the condition (i) could not be satisfied. THEOREM 3.2. Let δ < 0, α > 0 and m ∈ (-1 3n , -M). For any γ > 0 satisfying

αγ n - 1 2 δ 2 γ n-1 + aα 2 δ - M 2 α 2 > 0 (⋆⋆),
problem (3.1) has a global unbounded solution.

Proof. Let f γ be the local solution of (3.1), define the auxiliary function

G(η) = f γ f γ ′′ |f ′′ γ | n-1 - 1 2 f ′2 γ |f ′′ γ | n-1 + af 2 γ f ′ γ - M 2 f 2 γ , (3.6) 
which satisfies

G ′ (η) = -(m+M)f γ + 2a + m + (n -1)a 2n f ′2 γ f γ + n -1 2n f ′2 γ f ′′ γ -1 m(1 -f ′ γ 2 ) + M(1 -f ′ γ ) , (3.7 
) and G(0) > 0. Since f ′ γ < 0, the function f γ is negative on a small neighborhood of zero. Assume that there exists

η 1 ∈ (0, ∞) such that f γ (η) > 0, f ′ γ < 0 ∀η ∈ [0, η 1 ) and f γ (η 1 ) = 0.
Hence G is a monotonic nondecreasing function on (0, η 1 ) and then G(η 1 ) ≤ 0. Then G(η) ≤ 0 for all η ∈ (0, η 1 ), in particular G(0) ≤ 0, which is a contradiction with (⋆⋆). Therefore we have :

• Either f γ > 0 and f ′ γ ≤ 0 ∀η ≥ 0 • Or ∃η 2 > 0 : f γ > 0, f ′ γ < 0 ∀η ∈ (0, η 2 ), f ′ γ (η 2 ) = 0 and f γ (η 2
) is a local maximum. Assume that the first assertion holds, then f γ has a finit limit at infinity, say L ∈ (0, ∞) and there exists a sequence (χ k ) k ≥ 0 tending to infinity with k such that f ′ γ (χ k ) goes to zero at infinity. If f ′ γ is monotonic (resp. non-monotonic on any interval (η, ∞)) we get f ′ γ goes to zero at infinity and then f ′′ γ (δ k ) goes to zero at infinity for a sequence (δ k ) k≥0 going to infinity with k (resp. f ′′ γ (δ k ) = 0 and f ′ γ (δ k ) goes to zero at infinity). Because G(0) < G(δ k ), we obtain a contradiction by taking the limit as k goes to infinity. Now, we claim that the function f γ cannot have a local maximum after η 2 . Actually, assume there exists η 3 > η 2 such that f γ (η 3 ) is a local maximum. At this point the function G takes a negative value and satisfies G(η 3 ) ≥ G(0) a contradiction. Since f γ is monotonic increasing after η 2 we deduce as the above that is a global solution. Next, we argue as in the proof of Theorem. 3.1 to show that f γ is unbounded at infinity and satisfies (i) and (ii).

Flow with large initial velocity (δ ≫ 1)

In this subsection, we construct asymptotic solutions to problem (3.1) when the real δ is very large. Adopting the method used in [START_REF] Aly | Mixed convection boundary-layer flow over a vertical surface embedded in a porous medium[END_REF] by Aly et al., we assume that such solutions can be written under the following form f (η) = η + ξ r g(t), where t = ξ s η, ξ = δ -1 and r, s ∈ R.

Then problem (3.1) reads

   ξ (r+2s)(n-2) (|g ′′ | n-1 g ′′ ) ′ + aηξ -r g ′′ + agg ′′ -(2m + M)ξ -(r+s) -mg ′ 2 = 0, g(0) = αξ -r , g ′ (0) = ξ 1-(r+s) , g ′ (∞) = 0. (3.8) Setting r = 2n-1
n+1 and s = 2-n n+1 , ensures that the highest derivative remains present in the resulting problem. As ξ goes to infinity, we deduce    (|g ′′ | n-1 g ′′ ) ′ + agg ′′ + mg ′ 2 = 0, g(0) = 0, g ′ (0) = 1, g ′ (∞) = 0.

(3.9) Problem (3.9) describes the steady free convection flow of a non-Newtonian power-law fluid over a stretching flat plate embedded in a porous medium. In [START_REF] Hammouch | Étude mathématique et numérique de quelques problèmes issus de la dynamique des fluides[END_REF], it was shown that for m ∈ (-1 3n , 0) any local solution g, whith positive values of τ (τ = g ′′ (0)), is global and satisfies the following asymptotic behaviour g(t) ∼ t 1+m(2n-1) 1+m(n-2) , as t → ∞.

Consequently, a solution f for positive γ and large δ (if it exists), may have the following large η-behaviour f (η) ∼ η 1 + (δ -1) .

Concluding remarks

Based on the similarity transformation approach, the boundary layer equations for flows of purely viscous non-Newtonian dilatant and electrically conducting fluids are investigated. Using a shooting argument, it is shown that the relevant problem admits an infinite number of solutions ( [START_REF] Magyari | Mechanical and thermal characteristics of a mixed convection boundary-layer flow in a saturated porous mediuM[END_REF][25] [START_REF] Riley | Multiple Solutions of the Falkner-Skan Equation for Flow Past a Stretching Boundary[END_REF] and [START_REF]The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls[END_REF]), this is due to the arbitrariness of the shooting parameter γ. From a physical point of view, we underline that γ = f ′′ (0) originates from the local skin friction coefficient C fx , and the local Reynolds number Re x = (u w x m ) 2-n x n νk via the the formula

C fx Re x 1 n+1 = 2 a n 1 n+1 |γ| n-1 γ.
In conclusion, we may expect that the solutions determined above are physically acceptable. However, only experiments are able to prove their physical existence.
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