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Multiple solutions of steady MHD flow of dilatant
fluids
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Faculte de Matlematiques et d’'Informatique, 33 rue Saint-Leu 80039 Amiemsce

Abstract.

In this paper we consider the problem of a steady MHD flow of a-Newtonian power-law and
electrically conducting fluid in presence of an applied negnfield. The boundary layer equa-
tions are solved in similarity form via the Lyapunov energgthod, we show that this problem has
an infinite number of positive global solutions.

Keywords: Asymptotic solution; Boundary-layer; Degenerate difféi@ equation; MHD flow;
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1. Introduction

The study of non-Newtonian fluid flows has considerable egts; this is primarily because of the

numerous applications in several engineering fields. Suebegses are wire drawing, glass fiber
and paper production, crystal growing, drawing of plastieets etc. For more details about the
behavior in both steady and unsteady flow situations, tegetith mathematical models, we refer

the reader to the bookld [1] by Astarita and Marudgdi, [2] by Betand the references therein. One
particular non-Newtonian model which has been widely €tdds the Ostwald-de Wael power-law

model [3][4], which relies the shear stress to the straia gty the expression

Tay = k;|uy|"_1uy, (1.1)

wherek is a positive constant, and> 0 is called the power-law index . The case< 1 is referred
to pseudo-plastic or shear-thinning fluid, the case 1 is known as dilatant or shear-thickening
fluid. The Newtonian fluid is a special case where the poweritalex n is equal to one. In the
present work we shall restrict our study to the case 1.

The magnetohydrodynamics (MHD) flow problems find also ajapions in a large variety of
physical, geophysical and industrial field$ [5]. It is alsteresting to study the flow of non-
Newtonian fluids with externally imposed magnetic fields. the author knowledge MHD flow
of non-Newtonian fluids was first studied by Sarpkdya [6].[dhSapunkov derived the equations
describing the similarity solutions for the non-Newtonflw when the external applied magnetic
field varies asc™z, in presence of a pressure gradient, he used the methodied sgpansion.
Later, Djuvic [8] employed a Crocco’s variables to study timsteady flow with exponentially ex-
ternal velocity (in time). Recently, Lia][9] introduced aveerful technique (homotopy analysis)
to give analytic solutions of MHD viscous flows of non-Newiamfluids over a stretching sheet.
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In this paper, we reconsider the steady two-dimensionahlanflow of an incompressible viscous
electrically conducting dilatant fluid over a stretching fitate with a power-law velocity distribu-
tion in the presence of a perpendicular magnetic field. Creré@st in this work has been motivated
by the work of Chiam[[7]0], who have considered the flow ovemapdarmeable flat plate, for which
similarity solutions were found via the Crocco transforimat

2. Derivation of the model

Consider a steady two-dimensional laminar flow of an incaragible dilatant and electrically con-
ducting fluid of density, past a semi-infinite flat plate. Lét, y) be the Cartesian coordinates of
any point in the flow domain, where—axis is along the plate ang-axis is normal to it. Assume
that a magnetic field/ (z), is applied normally to the plate.

The continuity and momentum equations can be simplifiehiwvihe boundary-layer approxima-
tion, into the following equations (s¢¢[[]]10])

Ug + v, =0, 2.1)
2H2
utt, + vy, = v(|uy|" g )y, 4 Uetiey + UMp (Ue — u). (2.2)
Accompanied by the boundary conditions
u(z,0) = Uy(x), v(x,0) =V,(z) and u(z,y) — u.(r) asy — oo. (2.3)

Where the functions andv are the velocity components in theandy directions respectively,
ue(r) = Uyx™ is the free-stream velocity. The parameters, i, 0 and H are the kinematic
viscosity, the flow behavior index, the magnetic permeshbithe electrical conductivity of the
fluid, and the magnetic field intensity respectively. ThectionsU,,(z) = u,x™(u,, > 0) and

(2n—1)—n

V(x) = vex w1 are the stretching and the suction/injection velocitispeetively.
In term of the stream-function/(which satisfied u(x,y) = ¢, (x,y) and v(z,y) = —¢.(z,y)),
equations[(2]1)[(2.2) can be reduced to the single equation

ou’H?

Yyay — Valhyy = V(|¢yy|nilwyy)y Tt Uelley + (te —1y), (2.4)

subject to

m(2n—1)—n

Py (x,0) = ™, Yu(z,0) = —v,x" T and ¢, (z,y) =Ux2z™ as y—oo. (2.5)

According to Sapunko\[]7], similarity solutions for probie[2.4),(2.5) exist only if the magnetic
field has the following form H(z) ~ z"=".
To look for similarity solutions we define the following

n:=Ayz™® and o(z,y) := Baf(n), (2.6)

wheref is the transformed dimensionless stream functionsaisdthe similarity variable. Thanks
to ([2.6), the functiory satisfies the new boundary value problem

{ (LS 1=+ af f7 4+ m(l = f7%) + M(1— f') =0,
fO)=a,  f0)=0d  [floo)=1,

2.7)



if and only if

14+m(2n—1) b 1+ m(n—2)
a = =
n+1 ’ n+1

, a—b=m,

and the parameter$ and B satisfy
AB =u,, and vB"24%"D =1,

Where the primes denote differentiation with respeocj,tthe functionf’(n) denotes the normal-
ized velocity and the parameters
optH(n+1) (n+ 1)vy Uy

M=-""0"""7 4=- — and §=—2%,
Uoop (m+ 1) (vu2n—1)nt Uoo

are respectively: The Hartmann number, the suction/ilge@nd the stretching parameters.
Such problems have been investigated by several authoegdomnple, Anderson et a[ Jl11], Zhang
et al. [I2] and Kumari and NatfiTiL3].

In the same context, Chiarp J10] studied Problg¢m]| (2 I)}(2T8)look for similarity solutions, he
solved the following boundary value problem

{ n|f//|n71f///+ff//+ﬁ(1 o f/2) + M(l _ f/) _ 0’
f(0)=0, f(0)=0, [f(o0)=0.

(2.8)

Wheregj = % We aim here to stress that fars# 1, equation|[(2]7)can be degenerate at
some point, for which f”(n,) = 0 (for more details sed [15]) and then any solution[of| (2.7)is n
necessarily o£?(0, c0). Hence equation§ (2.7and (Z-B) are not equivalent.

Let us notice that for the Newtonian case= 1), problem [2.J7) reduces to the Falkner-Skan flow
in Magnetohydrodynamics, which has been studied by Hildlyay], Aly et al. [I8] and Hoernel
[[9]. The casen = M = 0 leads to the generalized Blasius problem ($ek [20]). Whiecase
m = — M, by a suitable scaling, is referred to the mixed convecticammon-Newtonian fluid in a
porous medium (see for exampfe][21]). We note also that iaratesof the magnetic field, problem
(2.7) is simplified to the Falkner-Skan flow for non-Newtanftuids. A complete study on this
subject is given in[[42] by Denier and Dabrowski.

Very recently, Aly et al. [I8] reported a theoretical and ruimal investigations on the existence
of solutions to problen(3.7) for Newtonian fluide = 1), say

{ 7 L A m(L = )+ M (1= 1) =0,

f0)=a=0, f(0)=96 [f"(0)=r-

They showed that problerp (P.9) has multiple solutions fgr@g (0,I") andy € R satisfying

(2.9)

2m

v? < ?53 + Mo — 2(M + m)s, (2.10)
3M 16 , .
wherel' = i [1 + \/1 + 3]\;; (m+ M)| > 1. In the present work, we aim to extend their
m

results to the non-Newtonian dilatant fluigs > 1), by using a condition or which is different
from (Z.I0) and without any restriction on the parameter



3. Non-uniqueness of solutions

Guided by the analysis of [1L4[,[[L5] and ]16], we aim to prove éxistence of solutions to problem
E.7), for related values of the parameters), n, «, § and~. This result will be established by
mean of the so-called shooting method, the boundary valoielgm [2.J7) is then converted into
the following initial value problem

{ (LS 11+ af f7 4+ m(l = f72) + M(1— f') =0,
fO)=a, f(0)=2d, [f'(0)=r.

Where the real numberis the shooting parameter.
The initial value problem[(3] 1) can be transformed into theiealent first order ordinary differen-
tial system

(3.1)

=gy
g = |h|""h, (3.2)

W =—aflh| =m(1 —g*) — M(1 — g),
with the conditions
f0)=a, g(0)=0d, h(0)=]""". (3.3)

By the classical theory of ordinary differential equatippsoblem [3:2)][(3]3) has a unique local
(maximal) solution for every # 0. Let f, denotes this solution an@, n,), n, < oo, denotes its
maximal interval of existence. The main task now is to show baistence of solutions depends
on-~.

The local solutiony,, satisfies the following

[+ af ' fy = M(fy +a) = "y +aad — (M +m)n + (a+ m)/o f1(r)dr. (3.4)

Equation [3}) will be used for proving the main results.

DEFINITION 3.1. A function f., is said to be a solution td (3.1) ff € C*(0, 00),
C1(0, 00) and satisfies

f§/|n71f§/ c
lim f/(n) =1 (i) and lim f/(n) =0 (ii)
n—00 7—00

3.1. Suction/Injection flows (x € R)

THEOREM 3.1. Assumex € R, 6 >0, M > 0,n > 1 and—:%n < m < —M. For anyy
satisfying
Y [" Ty > —aad (),

problem [3]1) admits a global unbounded solution.

Proof. From a physical point of view, it is more convenient to prave tesult for the cases> 0
(suction)a < 0 (injection) separately.

We have to show thaf, is a positive monotonic increasing function @7, ), globally defined
and going to infinity withy. For this sake we define the Lyapunov Energy function by

1 |f//|n+1 o

B m
41

3 %f’z + (M +m)f'. (3.5)

B3
/ 2

V(n)

4



Which satisfies
V() = —af ",

ThenV is monotonic decreasing dfl, n,). On the other hand, from equatidn {3.4) and condition
(x) we see thaf.,” and f, are positive or{0, 7, ) as long ag’,, exists. Using the Lyapunov function
V we see thaf,’ and f,"” are bounded, since is bounded from below by If £, were also
bounded, say —, L with L € (0, c0) (sincef, is positive). Thenf,’() —,. 0 which implies
that f7'(nk) —ree 0, Where(n)r>o is @ sequence tending to infinity with Using again[(3]4) to
deduce

£ )" 2 () + () S (k) = =M (fy (i) + @) + [y[" 'y + aad—

(M +m)n + (a + m)/omff(r)dr.

Letting & — oo, the right hand side goes to zero while the left hand side gwesnus infinity,
which is impossible. therf, is a global unbounded solution o (3.1).

From the above! and f! are bounded and| is monotonic increasing of,, o), for », large
enough. Then there exists> 0 such thaflim, .., f(n) = [, and there exits a sequen@g ),
tending to infinity withk such thatim; ... f”'(¢x) = 0. Making recourse to the Lyapunov function
V we getlim,, ., f/(Cx) = 0.

Assume now thaf! is not monotonic on any interval,, co). Then, there exists a sequerneg)x
going to infinity withk such that:

o (11" 1)) (T) =0,

o [f" 1 fl(72) s alocal minimum

o [f]" 1 f(Tok41) IS @local maximum

From (3.1), we have

m(1 — f2(r.)) + M(1 — fi (7))
af(7i) '

Sincef! is bounded and, goes to infinity withy,, we get easily from the above that goes to
zero withr).

Now we show thaff,, satisfies (i). Recall that’ is a positive bounded function thef) — [ with
[ € (a,00). Atinfinity we havef, ~ nl and from identity [(3]4) we get

f() = —

\f,'y'|"’1f,’y' ~ nml* + Ml — (M +m)] + o(1)

asn approaches infinity, this leaves only the possibility thigteither1 or —% — 1, thanks to the
positivity of f! we deduce that= 1.

To finish we show the result for < 0. In such case, the functiofy, is negative on a small
neighborhood of zero. According tp (B.4) cannot have a local maximum, then two possibilities
arise:

e Either f, <0Vne(0,n,)

e Or dn, suchthat f, <0 on (0,n.), fy(n)=0 and f, >0 Vn>n,..
Assume that the first assertion holds, ther- f,(oc) < 0 andf/(oc) = 0, f' being positive we
use again[(3]4) to get thdl' is positive. A contradiction. Thery,, has exactly one zerg,. We
define the shifted functioh by :

n— h(n) = f,(n+n),

which satisfied:(0) = 0, 2'(0) = § andh”(0) > 0, and we use the above analysis to conclude that
h is an unbounded global solution fo (3.1). [ |



3.2. Reversed flowss < 0)

Now we pay attention to the case of reversed flgws< 0). First, we show that the shooting
parameter has to be positive.

PROPOSITION3.1. Let f, be a solution to[(3}1) witih € (—5-, —M), a < 0,6 < 0 andy < 0,
then the condition (i) is failed.

Proof. Letd < 0, if v < 0thenf,” is negative on som@, ), for n, small, and equatiorf (3.1)
can be written as

(€Y = =—|f1" [m(L = £2) + M(1 = £3)].

7
whereF (n) = 2/ Sy fy"[' " dr. Fromthis we see that— f”¢” decreases and thefi(n) < 0
n

0
for all n € (0,7,). It follows that f is decreasing of0, n,) and then the condition (i) could not
be satisfied. ]

THEOREM 3.2. Letd < 0,« > 0 andm € (—5-, —M). For anyy > 0 satisfying
1 M
ay" — 5527”_1 + aa*s — 7042 >0 (%*),
problem [3]1) has a global unbounded solution.
Proof. Let f, be the local solution 0f (3.1), define the auxiliary function
G _ " et n—1 1 12| e n—1 2 pl M 2 3.6
(n)_f'Yf'Y |f'y| _§f7|f'y| +af'yffy_?ffy? ( . )
which satisfies
(n—1)a

G'(n) = —=(m+M)f,+|2a +m + o f42fv+

n_
2n

1 ! "n— / !
fnyffy ! m(]' - ff\/z) + M(l - ffy)] )
(3.7)
andG(0) > 0.
Sincef, < 0, the functionf, is negative on a small neighborhood of zero. Assume thag evasts
n € (0,00) such that

fm) >0, f <0 Vpel0,m) and f (nm)=0.

HenceG is a monotonic nondecreasing function @nn;) and thenG(n;) < 0. ThenG(n) < 0
forall n € (0,7,), in particularG(0) < 0, which is a contradiction witlxx). Therefore we have :
e Either f, >0 and f <0 Vn=>0

eOr Iy >0: f,>0, f/<0 Vne(0,m), fin)=0 and f (n) Iisalocal maximum
Assume that the first assertion holds, thfernas a finit limit at infinity, say.. € (0, co) and there
exists a sequendg ), > 0 tending to infinity withk such thatf! (xx) goes to zero at infinity. If!

is monotonic (resp. non-monotonic on any interitgloo)) we getf’ goes to zero at infinity and
thenf”'(x) goes to zero at infinity for a sequen@g),>o going to infinity with (resp. f7/(0x) = 0
and f! (0x) goes to zero at infinity). Becauge0) < G(dy), we obtain a contradiction by taking
the limit ask goes to infinity.

Now, we claim that the functiori, cannot have a local maximum aftgr. Actually, assume there
existsn; > 7, such thatf. (n;) is a local maximum. At this point the functiag takes a negative
value and satisfie&(n;) > G(0) a contradiction. Sinc¢, is monotonic increasing aftep we
deduce as the above that is a global solution.

Next, we argue as in the proof of Theorgm,] 3.1 to show th&t unbounded at infinity and satisfies
(i) and (ii). [ |



3.3. Flow with large initial velocity (6 > 1)

In this subsection, we construct asymptotic solutions ¢df@m (3.]1) when the redlis very large.
Adopting the method used ifi 23] by Aly et al., we assume thaehsolutions can be written under
the following form

f(n)=n+¢&g(t), where t=¢7n, (=06—1 and r,seR.

Then problem[(3]1) reads

{ gr2m=2)(|g"n=1g"Y + ané="g" + agg” — (2m + M)+ —mg” = 0,
(3.8)

9(0) =&, g'(0)=€"0F) ¢'(o0) = 0.

2n 1 andS _

Settingr =
problem.

As £ goes to infinity, we deduce
{ (I9"I"""g") + agg” +mg" =0,

9(0) =0, ¢(0)=1, g'(c0) =0.

Problem [3.P) describes the steady free convection flow @iraNewtonian power-law fluid over
a stretching flat plate embedded in a porous medium_In [L8}as shown that fom € (—3-,0)
any local solutiory, whith positive values of (7 = ¢”(0)), is global and satisfies the following
asymptotic behaviour

+1’ ensures that the highest derivative remains present irethdting

(3.9)

1+m(2n—1)

g(t) ~ tTHmm=2) as t— oo.

Consequently, a solutiofi for positivey and larges (if it exists), may have the following large
n-behaviour

~ 1 + 6 — 1 1+m(n 2) ;n-k(:;(i)-gi
f(n) ~mn U

4. Concluding remarks

Based on the similarity transformation approach, the baonthyer equations for flows of purely
viscous non-Newtonian dilatant and electrically conchgfiuids are investigated. Using a shoot-
ing argument, it is shown that the relevant problem admitafamite number of solutions[[[24][25][26]
and [2T]), this is due to the arbitrariness of the shootimgmeetery. From a physical point of view,
we underline thaty = f”(0) originates from the local skin friction coefficient,,, and the local

(uwxm)Q—n n

Reynolds numbeRe, = via the the formula
14

a

1
Cp, Re, ™1 = 2(2) " |y "y,
n

In conclusion, we may expect that the solutions determihed@are physically acceptable. How-
ever, only experiments are able to prove their physicatents.
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