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Abstract.
In this paper we consider the problem of a steady MHD flow of a non-Newtonian power-law and
electrically conducting fluid in presence of an applied magnetic field. The boundary layer equa-
tions are solved in similarity form via the Lyapunov energy method, we show that this problem has
an infinite number of positive global solutions.
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1. Introduction

The study of non-Newtonian fluid flows has considerable interests, this is primarily because of the
numerous applications in several engineering fields. Such processes are wire drawing, glass fiber
and paper production, crystal growing, drawing of plastic sheets etc. For more details about the
behavior in both steady and unsteady flow situations, together with mathematical models, we refer
the reader to the books [1] by Astarita and Marucci, [2] by Bohme and the references therein. One
particular non-Newtonian model which has been widely studied is the Ostwald-de Wael power-law
model [3][4], which relies the shear stress to the strain rateuy by the expression

τxy = k|uy|
n−1uy, (1.1)

wherek is a positive constant, andn > 0 is called the power-law index . The casen < 1 is referred
to pseudo-plastic or shear-thinning fluid, the casen > 1 is known as dilatant or shear-thickening
fluid. The Newtonian fluid is a special case where the power-law indexn is equal to one. In the
present work we shall restrict our study to the casen > 1.
The magnetohydrodynamics (MHD) flow problems find also applications in a large variety of
physical, geophysical and industrial fields [5]. It is also interesting to study the flow of non-
Newtonian fluids with externally imposed magnetic fields. Tothe author knowledge MHD flow
of non-Newtonian fluids was first studied by Sarpkaya [6]. In [7] Sapunkov derived the equations
describing the similarity solutions for the non-Newtonianflow when the external applied magnetic
field varies asx

m−1
2 , in presence of a pressure gradient, he used the method of series expansion.

Later, Djuvic [8] employed a Crocco’s variables to study theunsteady flow with exponentially ex-
ternal velocity (in time). Recently, Liao [9] introduced a powerful technique (homotopy analysis)
to give analytic solutions of MHD viscous flows of non-Newtonian fluids over a stretching sheet.
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In this paper, we reconsider the steady two-dimensional laminar flow of an incompressible viscous
electrically conducting dilatant fluid over a stretching flat plate with a power-law velocity distribu-
tion in the presence of a perpendicular magnetic field. Our interest in this work has been motivated
by the work of Chiam [10], who have considered the flow over an impermeable flat plate, for which
similarity solutions were found via the Crocco transformation.

2. Derivation of the model

Consider a steady two-dimensional laminar flow of an incompressible dilatant and electrically con-
ducting fluid of densityρ, past a semi-infinite flat plate. Let(x, y) be the Cartesian coordinates of
any point in the flow domain, wherex−axis is along the plate andy−axis is normal to it. Assume
that a magnetic fieldH(x), is applied normally to the plate.
The continuity and momentum equations can be simplified, within the boundary-layer approxima-
tion, into the following equations (see[7][10])

ux + vy = 0, (2.1)

uux + vuy = ν(|uy|
n−1uy)y + ueuex +

σµ2H2

ρ
(ue − u). (2.2)

Accompanied by the boundary conditions

u(x, 0) = Uw(x), v(x, 0) = Vw(x) and u(x, y) → ue(x) asy → ∞. (2.3)

Where the functionsu andv are the velocity components in thex andy directions respectively,
ue(x) = U∞x

m is the free-stream velocity. The parametersν, n, µ, σ andH are the kinematic
viscosity, the flow behavior index, the magnetic permeability, the electrical conductivity of the
fluid, and the magnetic field intensity respectively. The functionsUw(x) = uwx

m(uw > 0) and

Vw(x) = vwx
m(2n−1)−n

n+1 are the stretching and the suction/injection velocities respectively.
In term of the stream-function (ψ which satisfied u(x, y) = ψy(x, y) and v(x, y) = −ψx(x, y)),
equations (2.1),(2.2) can be reduced to the single equation

ψyψxy − ψxψyy = ν(|ψyy|
n−1ψyy)y + ueuex +

σµ2H2

ρ
(ue − ψy), (2.4)

subject to

ψy(x, 0) = uwx
m, ψx(x, 0) = −vwx

m(2n−1)−n

n+1 and ψy(x, y) = U∞x
m as y → ∞. (2.5)

According to Sapunkov [7], similarity solutions for problem (2.4),(2.5) exist only if the magnetic
field has the following form H(x) ∼ x

m−1
2 .

To look for similarity solutions we define the following

η := Ayx−a and ψ(x, y) := Bxbf(η), (2.6)

wheref is the transformed dimensionless stream function andη is the similarity variable. Thanks
to (2.6), the functionf satisfies the new boundary value problem







(|f ′′|n−1f ′′)′ + aff ′′ +m(1 − f ′2) +M(1 − f ′) = 0,

f(0) = α, f ′(0) = δ, f ′(∞) = 1,
(2.7)
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if and only if

a =
1 +m(2n− 1)

n+ 1
, b =

1 +m(n− 2)

n+ 1
, a− b = m,

and the parametersA andB satisfy

AB = u∞ and νBn−2A2(n−1) = 1.

Where the primes denote differentiation with respect toη, the functionf ′(η) denotes the normal-
ized velocity and the parameters

M =
σµ2H2

0 (n+ 1)

u∞ρ
, α = −

(n+ 1)vw

(m+ 1)(νu2n−1
∞ )

1
n+1

and δ =
uw

u∞
,

are respectively: The Hartmann number, the suction/injection and the stretching parameters.
Such problems have been investigated by several authors forexample, Anderson et al. [11], Zhang
et al. [12] and Kumari and Nath [13].
In the same context, Chiam [10] studied Problem (2.1)-(2.3). To look for similarity solutions, he
solved the following boundary value problem







n|f ′′|n−1f ′′′ + ff ′′ + β(1 − f ′2) +M(1 − f ′) = 0,

f(0) = 0, f ′(0) = 0, f ′(∞) = 0.
(2.8)

Whereβ = m(n+1)
(2n−1)m+1

. We aim here to stress that forn 6= 1, equation (2.7)1 can be degenerate at
some pointηs for whichf ′′(ηs) = 0 (for more details see [15]) and then any solution of (2.7) is not
necessarily ofC3(0,∞). Hence equations (2.7)1 and (2.8)1 are not equivalent.
Let us notice that for the Newtonian case(n = 1), problem (2.7) reduces to the Falkner-Skan flow
in Magnetohydrodynamics, which has been studied by Hildyard [17], Aly et al. [18] and Hoernel
[19]. The casem = M = 0 leads to the generalized Blasius problem (see [20]). While the case
m = −M , by a suitable scaling, is referred to the mixed convection of a non-Newtonian fluid in a
porous medium (see for example [21]). We note also that in absence of the magnetic field, problem
(2.7) is simplified to the Falkner-Skan flow for non-Newtonian fluids. A complete study on this
subject is given in [22] by Denier and Dabrowski.
Very recently, Aly et al. [18] reported a theoretical and numerical investigations on the existence
of solutions to problem (2.7) for Newtonian fluids(n = 1), say







f ′′′ + m+1
2
ff ′′ +m(1 − f ′2) +M(1 − f ′) = 0,

f(0) = α ≥ 0, f ′(0) = δ, f ′′(0) = γ.

(2.9)

They showed that problem (2.9) has multiple solutions for any δ ∈ (0,Γ) andγ ∈ R satisfying

γ2 ≤
2m

3
δ3 +Mδ2 − 2(M +m)δ, (2.10)

whereΓ = −
3M

4m

[

1 +

√

1 +
16m

3M2
(m+M)

]

> 1. In the present work, we aim to extend their

results to the non-Newtonian dilatant fluids(n > 1), by using a condition onγ which is different
from (2.10) and without any restriction on the parameterδ.
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3. Non-uniqueness of solutions

Guided by the analysis of [14],[15] and [16], we aim to prove the existence of solutions to problem
(2.7), for related values of the parametersm,M, n, α, δ andγ. This result will be established by
mean of the so-called shooting method, the boundary value problem (2.7) is then converted into
the following initial value problem







(|f ′′|n−1f ′′)′ + aff ′′ +m(1 − f ′2) +M(1 − f ′) = 0,

f(0) = α, f ′(0) = δ, f ′′(0) = γ.

(3.1)

Where the real numberγ is the shooting parameter.
The initial value problem (3.1) can be transformed into the equivalent first order ordinary differen-
tial system























f ′ = g,

g′ = |h|
1−n

n h,

h′ = −af |h| −m(1 − g2) −M(1 − g),

(3.2)

with the conditions
f(0) = α, g(0) = δ, h(0) = |γ|n−1γ. (3.3)

By the classical theory of ordinary differential equations, problem (3.2),(3.3) has a unique local
(maximal) solution for everyγ 6= 0. Let fγ denotes this solution and(0, ηγ), ηγ ≤ ∞, denotes its
maximal interval of existence. The main task now is to show how existence of solutions depends
onγ.
The local solutionfγ satisfies the following

|f ′′
γ|

n−1f ′′
γ + af ′

γfγ −M(fγ +α) = |γ|n−1γ + aαδ− (M +m)η + (a+m)

∫

0

η

f ′
γ
2
(τ)dτ. (3.4)

Equation (3.4) will be used for proving the main results.

DEFINITION 3.1. A function fγ is said to be a solution to (3.1) iff ∈ C2(0,∞), |f ′′
γ |

n−1f ′′
γ ∈

C1(0,∞) and satisfies

lim
η→∞

f ′
γ(η) = 1 (i) and lim

η→∞
f ′′

γ (η) = 0 (ii)

3.1. Suction/Injection flows (α ∈ R)

THEOREM 3.1. Assumeα ∈ R, δ > 0, M > 0 , n > 1 and − 1
3n

< m < −M . For anyγ
satisfying

|γ|n−1γ > −aαδ (⋆),

problem (3.1) admits a global unbounded solution.

Proof. From a physical point of view, it is more convenient to prove the result for the casesα ≥ 0
(suction)α < 0 (injection) separately.
We have to show thatfγ is a positive monotonic increasing function on(0, ηγ), globally defined
and going to infinity withη. For this sake we define the Lyapunov Energy function by

V (η) =
1

n+ 1
|f ′′|n+1 −

m

3
f ′3 −

M

2
f ′2 + (M +m)f ′. (3.5)
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Which satisfies
V ′(η) = −aff ′′2.

ThenV is monotonic decreasing on(0, ηγ). On the other hand, from equation (3.4) and condition
(⋆) we see thatfγ

′ andfγ are positive on(0, ηγ) as long asfγ exists. Using the Lyapunov function
V we see thatfγ

′ andfγ
′′ are bounded, sinceV is bounded from below by3M+4m

6
. If fγ were also

bounded, sayf →η∞L with L ∈ (0,∞) (sincefγ is positive). Thenfγ
′(η) →η∞ 0 which implies

thatf ′′
γ (ηk) →k∞ 0, where(ηk)k≥0 is a sequence tending to infinity withk. Using again (3.4) to

deduce

|f ′′
γ (ηk)|

n−1f ′′
γ (ηk) + af ′

γ(ηk)fγ(ηk) = −M(fγ(ηk) + α) + |γ|n−1γ + aαδ−

(M +m)ηk + (a +m)

∫

0

ηk

f ′
γ
2
(τ)dτ.

Letting k → ∞, the right hand side goes to zero while the left hand side goesto minus infinity,
which is impossible. thenfγ is a global unbounded solution to (3.1).
From the abovef ′

γ andf ′′
γ are bounded andf ′

γ is monotonic increasing on(η1,∞), for η1 large
enough. Then there existsl > 0 such thatlimη→∞ f ′

γ(η) = l, and there exits a sequence(ζk)k,
tending to infinity withk such thatlimk→∞ f ′′

γ (ζk) = 0. Making recourse to the Lyapunov function
V we getlimη→∞ f ′′

γ (ζk) = 0.
Assume now thatf ′′

γ is not monotonic on any interval[η2,∞). Then, there exists a sequence(τk)k

going to infinity withk such that:
• (|f ′′

γ |
n−1f ′′

γ )′(τk) = 0,
• |f ′′

γ |
n−1f ′′

γ (τ2k) is a local minimum,
• |f ′′

γ |
n−1f ′′

γ (τ2k+1) is a local maximum.
From (3.1)1, we have

f ′′
γ (τk) = −

m(1 − f ′2
γ (τk)) +M(1 − f ′

γ(τk))

afγ(τk)
.

Sincef ′
γ is bounded andfγ goes to infinity withηk, we get easily from the above thatf ′′

γ goes to
zero withη.
Now we show thatfγ satisfies (i). Recall thatf ′

γ is a positive bounded function thenf ′
γ → l with

l ∈ (α,∞). At infinity we havefγ ∼ ηl and from identity (3.4) we get

|f ′′
γ |

n−1f ′′
γ ∼ η[ml2 +Ml − (M +m)] + o(1)

asη approaches infinity, this leaves only the possibility thatl is either1 or −M
m

− 1, thanks to the
positivity of f ′

γ we deduce thatl = 1.
To finish we show the result forα < 0. In such case, the functionfγ is negative on a small
neighborhood of zero. According to (3.4)fγ cannot have a local maximum, then two possibilities
arise:
• Either fγ < 0 ∀ η ∈ (0, ηγ)
• Or ∃ η⋆ such that fγ < 0 on (0, η⋆), fγ(η⋆) = 0 and fγ > 0 ∀η > η⋆.

Assume that the first assertion holds, thenα > fγ(∞) ≤ 0 andf ′
γ(∞) = 0, f ′ being positive we

use again (3.4) to get thatf ′′
γ is positive. A contradiction. Then,fγ has exactly one zeroη⋆. We

define the shifted functionh by :

η 7−→ h(η) = fγ(η + η⋆),

which satisfiesh(0) = 0, h′(0) = δ andh′′(0) > 0, and we use the above analysis to conclude that
h is an unbounded global solution to (3.1). �
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3.2. Reversed flows(δ < 0)

Now we pay attention to the case of reversed flows(δ < 0). First, we show that the shooting
parameter has to be positive.

PROPOSITION3.1. Let fγ be a solution to (3.1) withm ∈ (− 1
3n
,−M), α < 0, δ < 0 andγ ≤ 0,

then the condition (i) is failed.

Proof. Let δ < 0, if γ ≤ 0 thenfγ
′′ is negative on some(0, η0), for η0 small, and equation (3.1)

can be written as

(fγ
′′eF )′ = −

eF

n
|f ′′

γ |
1−n

[

m(1 − f ′2
γ ) +M(1 − f ′

γ)
]

,

whereF (η) =
a

n

∫

0

η

fγ |fγ
′′|1−ndτ . From this we see thatη 7−→ f ′′eF decreases and thenf ′′

γ (η) ≤ 0

for all η ∈ (0, ηγ). It follows thatf ′
γ is decreasing on(0, ηγ) and then the condition (i) could not

be satisfied. �

THEOREM 3.2. Let δ < 0, α > 0 andm ∈ (− 1
3n
,−M). For anyγ > 0 satisfying

αγn −
1

2
δ2γn−1 + aα2δ −

M

2
α2 > 0 (⋆⋆),

problem (3.1) has a global unbounded solution.

Proof. Let fγ be the local solution of (3.1), define the auxiliary function

G(η) = fγfγ
′′|f ′′

γ |
n−1 −

1

2
f ′2

γ |f ′′
γ |

n−1 + af 2
γ f

′
γ −

M

2
f 2

γ , (3.6)

which satisfies

G′(η) = −(m+M)fγ+

[

2a+m+
(n− 1)a

2n

]

f ′2
γ fγ+

n− 1

2n
f ′2

γ f
′′
γ
−1

[

m(1 − f ′
γ
2
) +M(1 − f ′

γ)
]

,

(3.7)
andG(0) > 0.
Sincef ′

γ < 0, the functionfγ is negative on a small neighborhood of zero. Assume that there exists
η1 ∈ (0,∞) such that

fγ(η) > 0, f ′
γ < 0 ∀η ∈ [0, η1) and fγ(η1) = 0.

HenceG is a monotonic nondecreasing function on(0, η1) and thenG(η1) ≤ 0. ThenG(η) ≤ 0
for all η ∈ (0, η1), in particularG(0) ≤ 0, which is a contradiction with(⋆⋆). Therefore we have :
• Either fγ > 0 and f ′

γ ≤ 0 ∀η ≥ 0
•Or ∃η2 > 0 : fγ > 0, f ′

γ < 0 ∀η ∈ (0, η2), f ′
γ(η2) = 0 and fγ(η2) is a local maximum.

Assume that the first assertion holds, thenfγ has a finit limit at infinity, sayL ∈ (0,∞) and there
exists a sequence(χk)k ≥ 0 tending to infinity withk such thatf ′

γ(χk) goes to zero at infinity. Iff ′
γ

is monotonic (resp. non-monotonic on any interval(η,∞)) we getf ′
γ goes to zero at infinity and

thenf ′′
γ (δk) goes to zero at infinity for a sequence(δk)k≥0 going to infinity withk (resp.f ′′

γ (δk) = 0
andf ′

γ(δk) goes to zero at infinity). BecauseG(0) < G(δk), we obtain a contradiction by taking
the limit ask goes to infinity.
Now, we claim that the functionfγ cannot have a local maximum afterη2. Actually, assume there
existsη3 > η2 such thatfγ(η3) is a local maximum. At this point the functionG takes a negative
value and satisfiesG(η3) ≥ G(0) a contradiction. Sincefγ is monotonic increasing afterη2 we
deduce as the above that is a global solution.
Next, we argue as in the proof of Theorem. 3.1 to show thatfγ is unbounded at infinity and satisfies
(i) and (ii). �
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3.3. Flow with large initial velocity (δ ≫ 1)

In this subsection, we construct asymptotic solutions to problem (3.1) when the realδ is very large.
Adopting the method used in [23] by Aly et al., we assume that such solutions can be written under
the following form

f(η) = η + ξrg(t), where t = ξsη, ξ = δ − 1 and r, s ∈ R.

Then problem (3.1) reads






ξ(r+2s)(n−2)(|g′′|n−1g′′)′ + aηξ−rg′′ + agg′′ − (2m+M)ξ−(r+s) −mg′
2 = 0,

g(0) = αξ−r, g′(0) = ξ1−(r+s), g′(∞) = 0.
(3.8)

Settingr = 2n−1
n+1

ands = 2−n
n+1

, ensures that the highest derivative remains present in theresulting
problem.
As ξ goes to infinity, we deduce







(|g′′|n−1g′′)′ + agg′′ +mg′2 = 0,

g(0) = 0, g′(0) = 1, g′(∞) = 0.
(3.9)

Problem (3.9) describes the steady free convection flow of a non-Newtonian power-law fluid over
a stretching flat plate embedded in a porous medium. In [15], it was shown that form ∈ (− 1

3n
, 0)

any local solutiong, whith positive values ofτ (τ = g′′(0)), is global and satisfies the following
asymptotic behaviour

g(t) ∼ t
1+m(2n−1)
1+m(n−2) , as t→ ∞.

Consequently, a solutionf for positiveγ and largeδ (if it exists), may have the following large
η-behaviour

f(η) ∼ η
[

1 + (δ − 1)
1

1+m(n−2) η
m(n−1)+2
1+m(n−2)

]

.

4. Concluding remarks

Based on the similarity transformation approach, the boundary layer equations for flows of purely
viscous non-Newtonian dilatant and electrically conducting fluids are investigated. Using a shoot-
ing argument, it is shown that the relevant problem admits aninfinite number of solutions ([24][25][26]
and [27]), this is due to the arbitrariness of the shooting parameterγ. From a physical point of view,
we underline thatγ = f ′′(0) originates from the local skin friction coefficientCfx

, and the local

Reynolds numberRex =
(uwx

m)2−nxn

νk
via the the formula

Cfx
Rex

1
n+1 = 2

(a

n

)
1

n+1
|γ|n−1γ.

In conclusion, we may expect that the solutions determined above are physically acceptable. How-
ever, only experiments are able to prove their physical existence.
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