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ABSTRACT

In spite of its success, the standard 2-D discrete wavelet transform (2D-DWT) is not completely adapted to
represent image entities like edges or oriented textures. Indeed the DWT is limited by the spatial isotropy of
its basis functions that can not take advantage of edges regularity and moreover, direction edge that is neither
vertical or horizontal is represented using many of these wavelet basis functions which does mean that DWT
does not provide a sparse representation for such discontinuities. Several representations have been proposed
to overcome this lack. Some of them deal with more orientations while introducing redundancy (e.g. ridgelets,
curvelets, contourlets) and their implementations are not trivial or require 2-D non separable filtering. We present
two oriented lifting-based schemes using separable filtering, lead by edge extraction, and inspired from bandelets
and curved wavelets. An image is decomposed into a quadtree according to the edge elements orientation. For
each leaf, a wavelet transform is performed along the most regular orientation, and then along its orthogonal
direction. Different adapted filters may be used for these two directions in order to achieve anisotropic filtering.
Our method permits also a perfect reconstruction and a critical sampling.

Keywords: lifting scheme, geometry, multidirection, multiresolution, separable filtering, sparse image represen-
tation, wavelets

1. INTRODUCTION

Wavelets have proved their capabilities in detecting horizontal, vertical and punctual singularities. On the
contrary, the analysis of edges that are not straightly horizontal or vertical with a separable orthonormal wavelets
base is not optimized. In fact wavelets coefficients that represent such edges will be found in each subband at
the different resolutions. Over the past decade, several image representations have been developed to overcome
the lack of the wavelets in term of edges orientation and anisotropy, but keeping its advantage in multiresolution,
both spatial and frequency localization and critical sampling.

Two different ways can be found in the literature to build a suitable representation. On one hand some new
bases have been developed to take into account more orientations. On the other hand some transformations
apply a wavelet transform using an adapted lifting scheme based on the content of the considered image.

Among the transformations using a fixed base, the Ridgelet Transform1 decomposes the image into straight
edges that cross the whole image by applying the wavelet transform in the Radon domain. Considering very
restrictive size conditions,2 this transform introduces redundancies. This transform represents a straight singu-
larity with one coefficient but it is rare to find such an edge in natural images. So this transform is applied
on blocks where it is more likely to fit such a straight structures. Later the Curvelet Transform3 introduces
multiscale analysis by applying a block based Ridgelet Transform after a subband decomposition step. All these
transforms need a rotation operator which is challenging to implement in the discrete domain. On the contrary,
the Contourlet4 Transform has been defined in the discrete domain in order to perform as Curvelets and proposes
a multiresolution and multidirectional expansion using non-separable filter banks.

Basically, the wavelet transform is applied along the rows and the colums of the image, but it can also be
applied along other directions. As example, the Curved Wavelet5 is first applied along five different directions on



each image blocks, and keeps finally the orientation that minimizes the energy in the high frequency subbands.
The image analysis in this case is implicit and for each block an overhead is transmitted with the chosen
orientation. On the contrary the Bandelet Transform6 requires an explicit edges detection, edges are then
modeled using splines which give the orientation required for the lifting. Our approach is a compromise between
these two transforms because it applies a fixed oriented wavelet transform lead by the position of the significant
edges. Some theory on oriented lifting scheme is presented in the first section, followed by two implementations
of it. Then the EDOWT is presented on full images and some results are finally provided.

2. ORIENTED LIFTING SCHEME

The 1-D wavelet transform can be implemented by a lifting scheme7 providing an in-place tranformation that
predicts odd samples from the even ones, and then updates the values of even samples with the computed
prediction error (see figure 1). The standard bidimensional wavelet transform is thus implemented by two
successive lifting schemes, one along the lines, and the other one along the columns.

Pα Pα Pα Pα

Uβ Uβ Uβ Uβ

s0 s1 s2 s3 s4 s5 s6 s7

p0 p1 p2 p3

u0 u1 u2 u3

p4 p5 p6 p7

u4 u5 u6 u7

prediction step

update step

Pα(s2k+1) = s2k+1 + α (s2k + s2k+2)

Pα(s2k) = s2k

Uβ(s2k) = s2k + β (s2k−1 + s2k+1)

Uβ(s2k+1) = s2k+1

Figure 1. 1D-lifting scheme with only one prediction-update step

For an oriented lifting scheme, both the prediction and the update steps can be obtained considering samples
that are not on the same line when filtering along a mostly horizontal direction or the same column when filtering
along a mostly vertical direction. In the following we will only consider the case of the filtering along a mostly
horizontal direction using column-based lifting scheme.

To implement such a transform, one solution consists of predicting odd column elements from a linear com-
bination of even column elements and then by updating the even ones from the prediction errors (see figure 2).
The even and odd samples are then split into two subimages. This transform permits thus perfect reconstruction
and critical sampling. The definitions and proof are given in the appendix.

To compute a bidimensional transform (i.e. an image transform), one line-based and one column-based lifting
have to be applied: the first one on the full size image, and the other on the two resulting subimages taking into
account the subsampling. Apart from the strictly horizontal or vertical orientations, these two lifting transforms
are not commutative.

The choice of the directions for the filtering is based on the image content in order to perform an anisotropic
filtering of its rectilinear edges and oriented textures. One filter can be used along the direction of regularity,
and another one along the gradient direction.

Considering the non commutativity of the line- or column-based lifting, the choice of their order can not be
hazardous. We decide to apply a lifting along the regularity first so that the high frequency subband does not
contain any large coefficients and the noise in the low frequency subband is minimal. The second lifting, along
the orthogonal direction, is therefore less sensitive to noise.
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Figure 2. An example of a column-based lifting scheme

3. LIFTING FILTERING IMPLEMENTATION

Two different implementations of the lifting scheme have been studied. The main difference between these two
schemes lies in the selection of neighboring pixels to be used in the prediction of the current pixel (xc, yc). In the
first scheme, the filtering process is applied on an 8-connected discrete line, like in,8 defined by a (p, q) direction
vector whereas in the second implementation, the neighbors’ positions are determined by an orientation angle
and the associated value is interpolated. As seen in the previous section (and the appendix), provided the
interpolation is equivalent to a linear combination of pixels from the same row or column, the reconstruction
remains perfect. In the following descriptions of these two implementations, we will assume that a column-based
lifting is perform first, followed by a line-based lifting to simplify the notations.

3.1. (p, q)-lifting scheme

In this first version, the region is partitioned into 8-connected discrete lines9 defined by :

0 ≤ −q × x + p × y < max(|p|, |q|), (1)

where (p, q) is a vector representing the lines orientation (see figure 3).

As an example, the left neighbor pixel of (xc, yc) is the 8-connected pixel on the left column that lies on the

same discrete line defined in (eq. 1), e.g. the pixel (xc − 1, yl) where
⌊

−q×(xc−1)+p×yl

max(|p|,|q|)

⌋

=
⌊

−q×(xc)+p×yc

max(|p|,|q|)

⌋

.

After a column-based lifting along (p, q), if we want to apply a line-based lifting in the orthogonal direction
on a previous resulting subband, we need to deal with the horizontal subsampling. Therefore the orthogonal
lifting will be processed along (− q

2 , p) if q is even, else (−q, 2p) instead of (−q, p).

This implementation has a few drawbacks. The definition of the discrete path along which the region is
filtered depends on the choice of the region origin. Although the modification of the filtering path is weak, it can
have important consequences near edges. Indeed, prediction and update of a pixel close to a natural edge may
not be efficient because it can use neighbors that lie on both sides of the edge. This problem doesn’t occur when
filtering along the gradient direction, but in the direction of regularity. Furthermore the irregularity of the local
orientation of a discrete line leads to a large variation of the prediction errors while filtering an edge that does
not exactly match the filtering orientation (see figure 6-d). For these reasons we propose the following lifting
scheme.

3.2. θ-lifting scheme

This second implementation of the oriented lifting scheme is parametrized by a continuous orientation θ and
the values of the left and right neighbors required in the prediction and update process are interpolated (see
figure 4).
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Figure 3. (p, q)-lifting scheme with (p, q) = (3,−2) and the orthogonal filtering along a resulting subband

As an example, the left neighbor pixel of (xc, yc) is the interpolated value of the pixel (xc − 1, yc − tan θ).

After a column-based lifting using θ as an orientation, if we want to apply a line-based lifting in the orthogonal
direction on a previous resulting subband, we need to deal with the horizontal subsampling too. Therefore the
orthognal lifting will be processed using the orientation π

2 + arctan
(

tan θ
2

)

instead of π
2 + θ.

Contrary to the first implementation, this lifting scheme is less sensitive to the real edge orientation, but we
still observe poor prediction near edges (see figure 6-e).
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Figure 4. θ-lifting scheme with θ = −33, 69◦ and the orthogonal filtering along a resulting subband

4. EDGE DRIVEN FILTERING

Our implementations lacks in optimal representing of the edges for one main reason: the prediction operation
may use pixel values that lie on the opposite side of an edge to the current pixel. This one results in a poor
prediction. This drawback comes directly from the implementation as for the (p, q)-lifting scheme and also from
the fact that the orientation of the lifting process might not be strictly the orientation of the edges.

This issue is solved by taking into account the position of the edges which are available at the decoder. An
edge element must be predicted using the best estimation of the edge orientation at this point, and a non edge
element must be predicted from other non edge elements that lie on the same side of the edge (see figure 5).
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Figure 5. edge driven θ-lifting scheme with θ = −33.69◦

This is an additional reason to perform first the lifting along the direction of regularity since we do not know
the edges position after the subsampling. This implementation permits also to better handle edges that are not
rectilinear or that do not match the lifting orientation on both previous implementations as seen on figure 6-f
and 6-g.

(a) original image (b) extracted edge

(c) horizontal DWT (d) (p, q) = (4,−3) (e) θ = 36.8699◦ (f) (p, q) = (4,−3) (g) θ = 36.8699◦

Figure 6. Figures (c) to (g) represents the high frequency subband of the image (a) after a standard DWT along the
lines (c), a (p, q)-lifting scheme not using edge position and using it (d and f), a θ-lifting scheme not using edge position
and using it (e and g)



5. EDGE DRIVEN ORIENTED WAVELET TRANSFORM (EDOWT)

In natural images, there is not necessarily a significant single orientation. Therefore we have to segment the
image into regions, homogeneous according to an orientation criterion, and determine for each of them the best
filtering orientation from a finite number of classes. For this purpose, we assume that the significant edges of
the image have been extracted10 and are available for the analysis and synthesis processes. In a coding context
it implies that the edges are coded and transmitted to the decoder.

From the position and the orientation of the edges, the image is segmented in two steps as described in
figure 7. The first step consists of building a quadtree where each leaf is associated to a significant orientation
or no specific orientation. Then the image is split into two components: the mostly horizontal component which
will first be column-based lifted, and the mostly vertical one which will be first line-based lifted. These two steps
are computed on both the coder and the decoder from the only edge information. These two components are
thus filtered independently to finally produce four subbands :

• LF which contains the low frequencies along the two successive filtering directions

• HFOrtho, the low frequencies along the directions of regularity, and the high frequencies along its orthog-
onal directions

• HFRegh, the high frequencies along the directions of regularity for the mostly horizontal component

• HFRegv, the high frequencies along the directions of regularity for the mostly vertical component.

5.1. Oriented-based quadtree segmentation

From the information of position and orientation of the extracted edges, a histogram of the orientation of the
edge elements can be computed for any block of the image. Therefore a quadtree is built where each leaf follows
the rules:

• if the leaf does not contain any edge element, the leaf is considered as the background, and no specific
orientation is associated;

• if a significant number of edges elements, e.g. 75%, belong to the same orientation class, then this orien-
tation is chosen as the regularity orientation;

else, the leaf is split until its size reaches a predetermined minimum without satisfying the previous conditions.
Therefore the leaf is considered as texture, and no specific orientation is associated.

At this point of the algorithm, we classify the leaves of the quadtree into three categories:

mostly horizontal (θ ∈] − π
4 + kπ, π

4 + kπ[, k ∈ Z) where a column-based lifting has to be apply first;

mostly vertical (θ ∈]π
4 + kπ, 3π

4 + kπ[, k ∈ Z) where a line-based lifting has to be apply first;

undefined (background, texture or θ = π
4 + k π

2 , k ∈ Z) where either one can be applied first.

Nevertheless for the third category, an order of the lifting for each undefined leaf must still be assigned in
order to perform the complete transform.
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Figure 7. The different steps of the EDOWT

5.2. Direction-based quadtree segmentation

A column from a mostly horizontal leaf can be predicted using an adjacent column of another mostly horizontal
leaf no matter what their filtering orientation is because it still uses even columns to predict odd ones, and then
odd columns to update even ones (see figure 8-a). This also makes a hypothetical merging step in the quadtree
segmentation useless because it is already done implicitly.

On the contrary, a column from a mostly horizontal leaf can not always be predicted from a column that
belongs to a mostly vertical leaf because this later column contains both original pixel values and prediction error
values (see figure 8-b). Using the wrong type of pixel values would cause the reconstruction to fail. That’s why



we choose to filter the mostly horizontal and the mostly vertical component independently. Another possible
solution could be to use only even elements of a mostly vertical column to predict odd mostly horizontal column,
and only odd elements of a mostly vertical column to update even mostly horizontal column.

Pα Pα Pα Pα
Uβ Uβ Uβ Uβ

(a)

Pα Pα

Pα

Pα

Uβ Uβ

Uβ

Uβ

(b)

Figure 8. (a) No boundary issue between two leaves of same direction and (b) but not between two leaves of different
direction

This segmentation into two independent components may lead to block artefacts, therefore it is important
to minimize the boundaries between these components. In the current version of the algorithm, the quadtree is
traversed from the leaves to the root and the undefined leaves are labeled based on criteria such as the number
and configuration of horizontal and vertical siblings already labeled.

5.3. Filtering process

The two resulting components are filtered independently. A column-based lifting along the directions of regularity
is applied on the mostly horizontal component that produces LFRegh and HFRegh whereas a line-based lifting
is applied on the mostly vertical component to produce LFRegv and HFRegv. A line-based lifting along the
orthogonal directions of the directions of regularity is then applied on the low frequency subband LFRegh and
a column-based lifting on the LFRegv to finally obtain, with a merging step, the four desired subbands LF ,
HFOrtho, HFRegh and HFRegv (see figure 7).

We choose not to apply a second lifting step on HFRegh and HFRegv along the orthogonal direction of the
direction of regularity because the content of these subbands is ideally very weak, and therefore a few coefficients
of these subbands are aimed to be coded.

This transform can be easily re-applied on the low frequency subband LF provided the coded edge represen-
tation adapted to this new resolution.

6. RESULTS

The different steps of the EDOWT are illustrated in the figure 10 with the application of the EDOWT on a
natural test image: boats.

One of the interests of the EDOWT is the original frequency representation based on the geometry of the
image. The subbands HFRegh and HFRegv describe the high frequency information along the directions of



regularity whereas HFOrtho the singularities along the orthogonal directions of the directions of regularity.
Not only the content of HFRegh and HFRegv is very low compared to HFOrtho, but the high frequency
information along edges is also perceptually less relevant compared to the high frequency informationacross
edges. As described in figure 9, a protocol is proposed to highlight the efficiency of the representation by
comparing an image reconstructed after a EDOWT with only the LF and HFOrtho subbands versus an image
reconstructed after applying the 2D-DWT using the same number of coefficients: half of the number of pixels in
the original image. The chosen coefficients of the 2D-DWT are the approximation coefficients (CA), and half of
the horizontal and vertical details coefficients (CH and CV ).

image
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HFOrtho

HFRegh

HFRegv

image

LF

EDOWT

2D
−

DW
T

1D − DWT
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0
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CH

recontructed
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Figure 9. Protocol used to highlight the efficiency of the EDOWT representation regarding the nature of the subbands
produced

The results given in the table 1 show that the PSNR of the reconstructed image is higher with half the
number of pixels of the original image after the EDOWT than after the 2D-DWT. Moreover the quality of the
reconstructed image is really improved near the edges with the EDOWT because the regularity along them is
preserved.

PSNR (in dB)
Image 2D-DWT EDOWT

baboon 25.3209 26.9359
boats 34.0039 36.9431
lena 35.7486 38.5378
raft 29.5536 31.9039
train 22.6937 24.6016

Table 1. PSNR of the reconstructed image after applying the EDOWT and the 2D-DWT

However, in some regions of the image, the EDOWT performs worse than the 2D-DWT. There are two reasons
for this: if the edges are not well estimated, the prediction along the edges is not efficient, and therefore some
high prediction errors are not used for the reconstruction. Also if there is more than one significant orientation
in a region, e.g. two edges crossing each other, only one orientation is treated well and the other one appears in
the high frequency subbands HFRegh and HGRegv that are not used here for the reconstruction.



7. CONCLUSION

In this paper, a new anisotropic multidirectional transform: the Edge Driven Oriented Wavelet Transform
(EDOWT) is presented with two different implementations. This transform is based on an oriented lifting scheme
along discrete lines, or with an interpolation of pixel values in a predetermined orientation. This transform can
filter differently the directions of regularity and its orthogonal directions, providing an anisotropic transform.
Moreover the EDOWT is implemented with separable filtering and permits critical sampling.

This transform provides an original frequency representation based on the geometry of the image. Some
subbands represent the high frequency along the direction of the edges, whereas some represent the high frequency
across them. This nature of the different subbands overcomes a lack in the standard bidimensional wavelet
transform and can be used for a quantification and coding purpose. An EDOWT adapted SPIHT algorithm is
currently under development to provide full comparison to the 2D-DWT.

APPENDIX A. COLUMN-BASED LIFTING

The definitions and the proof for the line-based lifting can be easily deduced from the column-based lifting
scheme definitions.

A.1. Definitions

A.1.1. Prediction

P x
α (s) : (x, y) 7→

{

s(x, y) if x is even

s(x, y) + α
[

lcΛ
s (x − 1) + lcΛ′

s (x + 1)
]

if x is odd
(2)

where:
lcΛ

s (x) =
∑

i

λi · s(x, yi), Λ = (λi)i. (3)

A.1.2. Update

Ux
β (p) : (x, y) 7→

{

p(x, y) + β
[

lcΛ
p (x − 1) + lcΛ′

p (x + 1)
]

if x is even

p(x, y) if x is odd
(4)

A.1.3. Scaling

Sx
γ (u) : (x, y) 7→

{

γ · u(x, y) if x is even
1
γ
· u(x, y) is x is odd

(5)

A.1.4. Split

Splitx : s 7→ (e, o) with

{

e(x, y) = s(2x, y)
o(x, y) = s(2x + 1, y)

(6)

A.1.5. Merge

Mergex : (e, o) 7→ s with

{

s(2x, y) = e(x, y)
s(2x + i, y) = o(x, y)

(7)

A.1.6. Lifting: direct transform

Lx
A,B,γ : s 7→ Splitx ◦ Sx

γ ◦
0

⊙

i=n−1

(Ux
βi

◦ P x
αi

)(s) (8)

where:
A = (αi)0≤i<n and B = (βi)0≤i<n (9)

and:
n−1
⊙

i=0

(Ux
βi

◦ P x
αi

) = (Ux
β0

◦ P x
α0

) ◦ · · · ◦ (Ux
βn−1

◦ P x
αn−1

) (10)



A.1.7. Lifting: inverse transform

(Lx
A,B,γ)−1 : (e, o) 7→

n−1
⊙

i=0

(P x
−αi

◦ Ux
−βi

) ◦ S 1

γ
◦ Mergex(e, o) (11)

A.2. Proof

The proof of the inversibility of the column-based lifting scheme is trivial except for the prediction and update
steps. The proof for the update step which is similar to the prediction step is given below. If x is odd,

Ux
−β ◦ Ux

β (p)(x, y) = Ux
β (p)(x, y) = p(x, y).

If x is even,

Ux
−β ◦ Uβ(p)x(x, y) = Ux

β (p)(x, y) − β
[

lcΛ
Ux

β
(p)(x − 1) + lcΛ′

Ux
β
(p)(x + 1)

]

.

From (eq. 3),

lcΛ
Ux

β
(p)(x − 1) =

∑

i

λi · U
x
β (p)(x − 1, yi), Λ = (λi)i,

and because x − 1 is odd, (eq. 4) gives:

lcΛ
Ux

β
(p)(x − 1) =

∑

i

λi · p(x − 1, yi), Λ = (λi)i.

Therefore:

Ux
−β ◦ Uβ(p)x(x, y) = p(x, y) + β

[

lcΛ
p (x − 1) + lcΛ′

p (x + 1)
]

− β
[

lcΛ
p (x − 1) + lcΛ′

p (x + 1)
]

= p(x, y).

The inverse transform of Ux
β is well Ux

−β .
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